MATH 20E Lecture 16 - Monday, May 6, 2013

Surface area continued

Last week, we have seen how to compute the surface area in 2 cases:

1) Parametric surface $S: x=x(u, v), y=y(u, v), z=z(u, v)$ with $(u, v) \in R$ some region of the $u v$-plane.
2) The surface S is the graph of a function $f(x, y)$ with $(x, y) \in R$ some region of the $u v$-plane.

Today, we we'll talk about two more cases:
3) Surface of revolution: S is obtained by taking the graph $y=f(x), a \leq x \leq b$ of a function of one variable and rotate around the x-axis (picture drawn).

$$
\operatorname{area}(S)=2 \pi \int_{a}^{b}|f(x)| \sqrt{1+\left(f^{\prime}(x)\right)^{2}} d x
$$

A small slice is a cylinder of height $d s$ (arc length element) and with base a circle of radius $|f(x)|$. The length of the circle is $2 \pi|f(x)|$ and $d s=\sqrt{1+\left(f^{\prime}(x)\right)^{2}} d x$ (from MATH 20C).

Example: $f(x)=x, 0 \leq x \leq 1$. (picture drawn) Get cylinder of height 1, base circle of radius 1 . Then the area is $2 \pi \int_{0}^{1} x \sqrt{2} d x=\pi \sqrt{2}$. (Same as last time).
4) Implicit surface $S: g(x, y, z)=0$

For a slanted plane $a x+b y_{+} c z=d$, the normal vector is $\mathbf{N}=(a, b, c)$. Picture drawn. Surface element $\Delta S=$? Look at projection to $x y$-plane: $\Delta A=\Delta S|\cos \alpha|=(|\mathbf{N} \cdot \hat{\mathbf{k}}| /\|\mathbf{N}\|) \Delta S$ (where $\alpha=$ angle between slanted surface element and horizontal: projection shrinks one direction by factor $|\cos \alpha|=(|\mathbf{N} \cdot \hat{\mathbf{k}}|) /\|\mathbf{N}\|$, preserves the other).

Hence $d S=\frac{\|\mathbf{N}\|}{|\mathbf{N} \cdot \hat{\mathbf{k}}|} d x d y$. For a general implicit surface S given by equation $g(x, y, z)=0$ we use linear approximation. Normal vector to the surface is $\mathbf{N}=\nabla g$. Thus $d S=\frac{\|\nabla g\|}{\left|g_{z}\right|} d x d y$ and

$$
\operatorname{area}(S)=\iint_{S} d S=\iint_{R} \frac{\|\nabla g\|}{\left|g_{z}\right|} d x d y=\iint_{R} \sqrt{\frac{g_{x}^{2}+g_{y}^{2}+g_{z}^{2}}{g_{z}^{2}}} d x d y
$$

where R is the shadow of S on the $x y$-plane.
Note: if S is vertical then the denominator is zero, cant project to $x y$-plane any more (but one could project e.g. to the $x z$-plane).

Example: $S=$ sphere of radius a. Given by implicit equation $x^{2}+y^{2}+z^{2}-a^{2}=0$. Then $g(x, y, z)=x^{2}+y^{2}+z^{2}-a^{2}$ and $\nabla g=(2 x, 2 y, 2 z)$, which has length $2 a$. On the other hand, $g_{z}=2 z= \pm 2 \sqrt{a^{2}-x^{2}-y^{2}}$. The shadow on $x y$-plane is the disk of radius a, and we have $\operatorname{area}(S)=2 \iint_{x^{2}+y^{2} \leq a^{2}} \frac{2 a}{2 \sqrt{a^{2}-x^{2}-y^{2}}} d x d y=2 a \int_{0}^{a} \int_{0}^{2 \pi} \frac{1}{\sqrt{a^{2}-r^{2}}} r d \theta d r=4 \pi a \int_{0}^{a} \frac{r}{\sqrt{a^{2}-r^{2}}} d r$. Use substitution $u=a^{2}-r^{2}$ and get that area of the sphere is equal to $4 \pi a^{2}$.

Integrating scalar function on surfaces

$$
\iint_{S} f(x, y, z) d S
$$

1) Parametric surface $S: x=x(u, v), y=y(u, v), z=z(u, v)$ with $(u, v) \in R$ some region of the $u v$-plane.

The parametrization is $\Phi(u, v)=(x(u, v), y(u, v), z(u, v))$ and we know that the area element is $d S=\left\|\Phi_{u} \times \Phi_{v}\right\| d u d v$. Then

$$
\iint_{S} f(x, y, z) d S=\iint_{R} f(x(u, v), y(u, v), z(u, v))\left\|\Phi_{u} \times \Phi_{v}\right\| d u d v .
$$

Example: Integrate $f(x, y, z)=\sqrt{x^{2}+y^{2}+1}$ on the surface $S: x=r \cos \theta, y=r \sin \theta, z=\theta, 0 \leq$ $r \leq 1,0 \leq \theta \leq 2 \pi$ (helicoid, see picture on page 464 of the textbook).
$\Phi_{r} \times \Phi_{\theta}=\left|\begin{array}{ccc}\hat{\mathbf{i}} & \hat{\mathbf{j}} & \hat{\mathbf{k}} \\ \cos \theta & \sin \theta & 0 \\ -r \cos \theta & r \sin \theta & 1\end{array}\right|=\left|\begin{array}{cc}\sin \theta & 0 \\ r \sin \theta & 1\end{array}\right| \hat{\mathbf{\imath}}-\left|\begin{array}{cc}\cos \theta & 0 \\ -r \cos \theta & 1\end{array}\right| \hat{\mathbf{j}}+\left|\begin{array}{cc}\cos \theta & \sin \theta \\ -r \cos \theta & r \sin \theta\end{array}\right| \hat{\mathbf{k}}=\sin \theta \hat{\mathbf{l}}-\cos \theta \hat{\mathbf{j}}+r \hat{\mathbf{k}}$.
Hence $\left\|\Phi_{r} \times \Phi_{\theta}\right\|=\sqrt{1+r^{2}}$ and $d S=\sqrt{1+r^{2}} d r d \theta$. Therefore

$$
\iint_{S} f(x, y, z) d S=\iint_{S} \sqrt{x^{2}+y^{2}+1} d S=\iint_{S} \sqrt{r^{2}+1} d S=\int_{0}^{2 \pi} \int_{0}^{1}\left(r^{2}+1\right) d r d \theta=8 \pi / 3
$$

2) The surface S is the graph of a function $g(x, y)$ with $(x, y) \in R$ some region of the $u v$-plane.

Then $d S=\sqrt{1+g_{x}^{2}+g_{y}^{2}} d x d y$ and

$$
\iint_{S} f(x, y, z) d S=\iint_{R} f(x, y, g(x, y)) \sqrt{1+g_{x}^{2}+g_{y}^{2}} d x d y .
$$

MATH 20E Lecture 17 - Wednesday, May 8, 2013

Flux in 3D

$\vec{F}=P \hat{\mathbf{1}}+Q \hat{\mathbf{j}}+R \hat{\mathbf{k}}$ where P, Q, R are functions of $x, y, z S=$ surface in space
If $\vec{F}=$ velocity of a fluid flow, then flux $=$ flow per unit time across surface S.
Cut S into small pieces, then over each small piece: what passes through ΔS in unit time is the contents of a parallelepiped with base ΔS and third side given by \vec{F}.

Volume of box $=$ height \times area of base $=(\vec{F} \cdot \hat{\mathbf{n}}) \Delta S$ where $\hat{\mathbf{n}}$ is a unit normal vector to S.
Remark: there are 2 choices for $\hat{\mathbf{n}}$ (choose which way is counted positively $=$ "orientation")

Notation: $d \vec{S}=\hat{\mathbf{n}} d S$ ($d \vec{S}$ is often easier to compute than $\hat{\mathbf{n}}$ and $d S$ separately!).
In 3D, flux of a vector field is the double integral

$$
\text { Flux }=\iint_{S} \vec{F} \cdot \hat{\mathbf{n}} d S=\iint_{S} \vec{F} \cdot d \vec{S}
$$

Example 1: $\vec{F}=(x, y, z)$ through sphere of radius a centered at 0 .
$\hat{\mathbf{n}}=\frac{1}{a}(x, y, z)$ (other choice: $-\frac{1}{a}(x, y, z)$; traditionally choose $\hat{\mathbf{n}}$ pointing out).
$\vec{F} \cdot \hat{\mathbf{n}}=(x, y, z) \cdot \hat{\mathbf{n}}=\frac{1}{a}\left(x^{2}+y^{2}+z^{2}\right)=a$, so

$$
\iint_{S} F \cdot \hat{\mathbf{n}} d S=\iint_{S} a d S=a\left(4 \pi a^{2}\right)
$$

Example 2: Same sphere, $\vec{H}=z \hat{\mathbf{k}}$ Then $\vec{H} \cdot \hat{\mathbf{n}}=\frac{z^{2}}{a}$ and

$$
\iint_{S} \vec{H} \cdot n d S=\iint_{S} \frac{z^{2}}{a} d S
$$

Parametrize S by $x=a \cos \theta \sin \phi, y=a \sin \theta \sin \phi, z=a \cos \phi$ with $0 \leq \theta \leq 2 \pi, 0 \leq \phi \leq \pi$. Then

$$
d S=\sqrt{\left(\frac{\partial(y, z)}{\partial(\theta, \phi)}\right)^{2}+\left(\frac{\partial(x, z)}{\partial(\theta, \phi)}\right)^{2}+\left(\frac{\partial(x, y)}{\partial(\theta, \phi)}\right)^{2}} d \theta d \phi=a^{2} \sin \phi d \theta d \phi
$$

Flux is given by

$$
\iint_{S} \vec{H} \cdot n d S=\iint_{S} \frac{z^{2}}{a} d S=\int_{0}^{\pi} \int_{0}^{2 \pi} \frac{(a \cos \phi)^{2}}{a} a^{2} \sin \phi d \theta d \phi=2 \pi a^{3} \int_{0}^{\pi} \cos ^{2} \phi \sin \phi d \phi=\frac{4 \pi a^{3}}{3} .
$$

Setup. Sometimes we have an easy geometric argument, but in general we must compute the surface integral. The setup requires the use of two parameters to describe the surface, and $\vec{F} \cdot \hat{\mathbf{n}} d S$ must be expressed in terms of them. How to do this depends on the type of surface.

1. $S=$ parametric surface with parametrization $\Phi(u, v)=(x(u, v), y(u, v), z(u, v))(u, v) \in R$ some region of the $u v$-plane.
normal vector to the surface: $\Phi_{u} \times \Phi_{v}$, so unit normal $\hat{\mathbf{n}}=\frac{\Phi_{u} \times \Phi_{v}}{\left\|\Phi_{u} \times \Phi_{v}\right\|}$ surface area element $d S=\left\|\Phi_{u} \times \Phi_{v}\right\| d u d v$

Hence $d \vec{S}=\hat{\mathbf{n}} d S=\left(\Phi_{u} \times \Phi_{v}\right) d u d v$ and

$$
\text { Flux }=\iint_{S} \vec{F} \cdot d \vec{S}=\iint_{R} \vec{F} \cdot\left(\Phi_{u} \times \Phi_{v}\right) d u d v
$$

2. $S=$ graph of a function $g(x, y)$ with x, y in some region R of the $x y$-plane.
normal vector to the surface: $\left(-g_{x},-g_{y}, 1\right)$ so unit normal $\hat{\mathbf{n}}=\frac{\left(-g_{x},-g_{y}, 1\right)}{\sqrt{1+g_{x}^{2}+g_{y}^{2}}}$
surface area element $d S=\sqrt{1+g_{x}^{2}+g_{y}^{2}} d A$
Hence $d \vec{S}=\hat{\mathbf{n}} d S=\left(-g_{x},-g_{y}, 1\right) d A$ and

$$
\text { Flux }=\iint_{S} \vec{F} \cdot d \vec{S}=\iint_{R} \vec{F} \cdot\left(-g_{x},-g_{y}, 1\right) d A
$$

3. $S=$ implicit surface given by equation $f(x, y, z)=0$.
normal vector to the surface: ∇f, so unit normal $\hat{\mathbf{n}}=\frac{\nabla f}{\|\nabla f\|}$.
area element $d S=\frac{\|\nabla f\|}{|\nabla f \cdot \hat{\mathbf{k}}|} d A$.
Hence $d \vec{S}=\hat{\mathbf{n}} d S=\frac{1}{\nabla f \cdot \hat{\mathbf{k}}} \nabla f d A$ and

$$
\text { Flux }=\iint_{S} \vec{F} \cdot d \vec{S}=\iint_{R} \vec{F} \cdot(\nabla f) \frac{1}{\nabla f \cdot \hat{\mathbf{k}}} d A
$$

where R is the shadow of S on the $x y$-plane.

MATH 20E Lecture 18 - Friday, May 10, 2013

Scalar curl

$\vec{F}=M \hat{\mathbf{\imath}}+N \hat{\mathbf{j}}$ where M, N are functions of x, y.
$\operatorname{curl}(\vec{F})=N_{x}-M_{y}$ measures the failure of \vec{F} to be conservative.
We have seen $: N_{x}=M_{y} \stackrel{*}{\Longleftrightarrow} \vec{F}$ is a gradient field $\Longleftrightarrow \vec{F}$ is conservative (i.e. $\int_{C} \vec{F} \cdot d \vec{r}=0$ for any closed curve C.)
$(*): \Longrightarrow$ only holds if \vec{F} is defined everywhere, or in a simply-connected region (no holes).
Interpretation of curl: for a velocity field, curl = (twice) angular velocity of the rotation component of the motion.

Example: $\vec{F}=(a, b)$ uniform translation; $\operatorname{curl} \vec{F}=0$
Example: $\vec{F}=(x, y)$ expanding motion has curl zero.
Example: $\vec{F}=(-y, x)$ rotation at unit angular velocity has curl $\vec{F}=2$.
For a force field, curl $\vec{F}=$ torque exerted on a test mass, measures how \vec{F} imparts rotation motion.

Green's Theorem

If C is a positively oriented (i.e. counterclockwise) closed curve enclosing a region R, then the work done by a vector field $\vec{F}=(M, N)$ along C is

$$
\int_{C} \vec{F} \cdot d \vec{r}=\iint_{R}(\operatorname{curl} \vec{F}) d A \text { which means } \int_{C} M d x+N d y=\iint_{R}\left(N_{x}-M_{y}\right) d A .
$$

Application: proof of our criterion for gradient fields.
Theorem: if $\vec{F}=M \hat{\mathbf{\imath}}+N \hat{\mathbf{\jmath}}$ is defined and continuously differentiable in the whole plane, then $N_{x}=M_{y} \Longrightarrow \vec{F}$ is conservative (\vec{F} is a gradient field).

Proof: If $N_{x}=M_{y}$ then, by Green, $\int_{C} \vec{F} \cdot d \vec{r}=\iint_{R}(\operatorname{curl} \vec{F}) d A=\iint_{R} 0 d A=0$. So \vec{F} is conservative.

Note: this only works if \vec{F} and its curl are defined everywhere inside R.
Example: $\vec{F}=(x, y)$ and $C=$ circle of radius a oriented counterclockwise. We have seen $\operatorname{curl} \vec{F}=0$. To check that Green's theorem works, compute $\int_{C} \vec{F} \cdot d \vec{r}$.
Parametrization: $x=a \cos \theta, y=a \sin \theta 0 \leq \theta \leq 2 \pi$. So $d x=-a \sin \theta d \theta, d y=a \cos \theta d \theta$

$$
\int_{C} x d x+y d y=\int_{0}^{2 \pi}-a^{2} \sin \theta \cos \theta+a^{2} \sin \theta \cos \theta d \theta=0
$$

Example: $\vec{F}=(-y, x)$; have seen curl $\vec{F}=2$. Then for any closed curve C that encloses region R and is oriented counterclockwise. Plugging into $\int_{C} \vec{F} d \vec{r}=\iint_{R}(\operatorname{curl} \vec{F}) d A=2 \iint_{R} d A$ get

$$
\operatorname{area}(R)=\frac{1}{2} \int_{C} x d y-y d x
$$

Example (reduce a complicated area integral to an easy line integral): example 2, page 525.
Example (reduce a complicated line integral to an easy \iint): Let $C=$ unit circle centered at $(2,0)$, counterclockwise. $R=$ unit disk at $(2,0)$. Then

$$
\int_{C} y e^{-x} d x+\left(\frac{1}{2} x^{2}-e^{-x}\right) d y=\iint_{R} N_{x}-M_{y} d A=\left(x+e^{-x}\right)-e^{-x} d A=\iint_{R} x d A .
$$

Parametrize R in polar coordinates $x=2+r \cos \theta, y=r \sin \theta, 0 \leq \theta \leq 2 \pi, 0 \leq r \leq 1$ and get

$$
\iint_{R} x d A=\int_{0}^{2 \pi} \int_{0}^{1}(2+r \cos \theta) r d r d \theta=\int_{0}^{2 \pi} 1+\frac{\cos \theta}{3} d \theta=2 \pi
$$

(Note: direct calculation of the line integral would probably involve setting $x=2+\cos \theta$, $y=$ $\sin \theta$, but then we have exponential of trig functions and calculations get really complicated.)

Vector curl - only in 3D

Del operator. $\nabla=\left(\frac{\partial}{\partial x}, \frac{\partial}{\partial y}, \frac{\partial}{\partial z}\right)$ (symbolic notation!)
$\nabla f=\left(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial \partial}, \frac{\partial f}{\partial z}\right)$ gradient
$\vec{F}=P \hat{\mathbf{1}}+Q \mathbf{\mathbf { j }}+R \hat{\mathbf{k}}=(P, Q, R)$ where P, Q, R are functions of x, y, z

Definition: vector curl of \vec{F} is

$$
\begin{aligned}
\nabla \times \vec{F}=\left|\begin{array}{ccc}
\hat{\mathbf{1}} & \hat{\mathbf{j}} & \hat{\mathbf{k}} \\
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\
P & Q & R
\end{array}\right| & =\quad\left(\frac{\partial(Q, R)}{\partial(y, z)}\right) \hat{\mathbf{i}}-\left(\frac{\partial(P, R)}{\partial(x, z)}\right) \hat{\mathbf{j}}+\left(\frac{\partial(P, Q)}{\partial(x, y)}\right) \hat{\mathbf{k}} \\
& =\left(\frac{\partial R}{\partial y}-\frac{\partial Q}{\partial z}\right) \hat{\mathbf{i}}+\left(\frac{\partial P}{\partial z}-\frac{\partial R}{\partial x}\right) \hat{\mathbf{j}}+\left(\frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y}\right) \hat{\mathbf{k}}
\end{aligned}
$$

Note: If $\vec{F}=M(x, y) \hat{\mathbf{i}}+N(x, y) \hat{\mathbf{j}}$ is a plane vector field, we can think of it in space as $\vec{F}=M \hat{\mathbf{i}}+N \hat{\mathbf{j}}+0 \hat{\mathbf{k}}$. In this case, $\nabla \times \vec{F}=(\operatorname{curl} \vec{F}) \hat{\mathbf{k}}$.

