
MATH 20E Lecture 16 - Monday, May 6, 2013

Surface area continued

Last week, we have seen how to compute the surface area in 2 cases:

1) Parametric surface S : x = x(u, v), y = y(u, v), z = z(u, v) with (u, v) ∈ R some region of the
uv-plane.

2) The surface S is the graph of a function f(x, y) with (x, y) ∈ R some region of the uv-plane.

Today, we we’ll talk about two more cases:

3) Surface of revolution: S is obtained by taking the graph y = f(x), a ≤ x ≤ b of a function of
one variable and rotate around the x-axis (picture drawn).

area(S) = 2π

∫ b

a
|f(x)|

√
1 + (f ′(x))2 dx

A small slice is a cylinder of height ds (arc length element) and with base a circle of radius |f(x)|.
The length of the circle is 2π|f(x)| and ds =

√
1 + (f ′(x))2 dx (from MATH 20C).

Example: f(x) = x, 0 ≤ x ≤ 1. (picture drawn) Get cylinder of height 1, base circle of radius 1.
Then the area is 2π

∫ 1
0 x
√

2 dx = π
√

2. (Same as last time).

4) Implicit surface S : g(x, y, z) = 0

For a slanted plane ax+ by+cz = d, the normal vector is N = (a, b, c). Picture drawn. Surface
element ∆S = ? Look at projection to xy-plane: ∆A = ∆S| cosα| = (|N · k̂|/‖N‖)∆S (where α =
angle between slanted surface element and horizontal: projection shrinks one direction by factor
| cosα| = (|N · k̂|)/‖N‖, preserves the other).

Hence dS =
‖N‖
|N · k̂|

dxdy. For a general implicit surface S given by equation g(x, y, z) = 0 we

use linear approximation. Normal vector to the surface is N = ∇g. Thus dS =
‖∇g‖
|gz|

dxdy and

area(S) =

∫∫
S
dS =

∫∫
R

‖∇g‖
|gz|

dxdy =

∫∫
R

√
g2x + g2y + g2z

g2z
dxdy

where R is the shadow of S on the xy-plane.
Note: if S is vertical then the denominator is zero, cant project to xy-plane any more (but one

could project e.g. to the xz-plane).
Example: S = sphere of radius a. Given by implicit equation x2 + y2 + z2 − a2 = 0. Then

g(x, y, z) = x2 + y2 + z2 − a2 and ∇g = (2x, 2y, 2z), which has length 2a. On the other hand,
gz = 2z = ±2

√
a2 − x2 − y2. The shadow on xy-plane is the disk of radius a, and we have

area(S) = 2

∫∫
x2+y2≤a2

2a

2
√
a2 − x2 − y2

dxdy = 2a

∫ a

0

∫ 2π

0

1√
a2 − r2

rdθdr = 4πa

∫ a

0

r√
a2 − r2

dr.

Use substitution u = a2 − r2 and get that area of the sphere is equal to 4πa2.
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Integrating scalar function on surfaces∫∫
S
f(x, y, z)dS

1) Parametric surface S : x = x(u, v), y = y(u, v), z = z(u, v) with (u, v) ∈ R some region of the
uv-plane.

The parametrization is Φ(u, v) = (x(u, v), y(u, v), z(u, v)) and we know that the area element is
dS = ‖Φu × Φv‖dudv. Then∫∫

S
f(x, y, z)dS =

∫∫
R
f(x(u, v), y(u, v), z(u, v))‖Φu × Φv‖dudv.

Example: Integrate f(x, y, z) =
√
x2 + y2 + 1 on the surface S : x = r cos θ, y = r sin θ, z = θ, 0 ≤

r ≤ 1, 0 ≤ θ ≤ 2π (helicoid, see picture on page 464 of the textbook).

Φr×Φθ =

∣∣∣∣∣∣
ı̂ ̂ k̂

cos θ sin θ 0
−r cos θ r sin θ 1

∣∣∣∣∣∣ =

∣∣∣∣ sin θ 0
r sin θ 1

∣∣∣∣ ı̂−∣∣∣∣ cos θ 0
−r cos θ 1

∣∣∣∣ ̂+∣∣∣∣ cos θ sin θ
−r cos θ r sin θ

∣∣∣∣ k̂ = sin θı̂−cos θ̂+rk̂.

Hence ‖Φr × Φθ‖ =
√

1 + r2 and dS =
√

1 + r2drdθ. Therefore∫∫
S
f(x, y, z)dS =

∫∫
S

√
x2 + y2 + 1dS =

∫∫
S

√
r2 + 1dS =

∫ 2π

0

∫ 1

0
(r2 + 1)drdθ = 8π/3.

2) The surface S is the graph of a function g(x, y) with (x, y) ∈ R some region of the uv-plane.

Then dS =
√

1 + g2x + g2y dxdy and∫∫
S
f(x, y, z)dS =

∫∫
R
f(x, y, g(x, y))

√
1 + g2x + g2y dxdy.

MATH 20E Lecture 17 - Wednesday, May 8, 2013

Flux in 3D

~F = P ı̂ +Q̂ +Rk̂ where P,Q,R are functions of x, y, z S = surface in space
If ~F = velocity of a fluid flow, then flux = flow per unit time across surface S.

Cut S into small pieces, then over each small piece: what passes through ∆S in unit time is
the contents of a parallelepiped with base ∆S and third side given by ~F .

Volume of box = height × area of base = (~F · n̂)∆S where n̂ is a unit normal vector to S.

Remark: there are 2 choices for n̂ (choose which way is counted positively = “orientation”)
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Notation: d~S = n̂dS (d~S is often easier to compute than n̂ and dS separately!).

In 3D, flux of a vector field is the double integral

Flux =

∫∫
S

~F · n̂dS =

∫∫
S

~F · d~S.

Example 1: ~F = (x, y, z) through sphere of radius a centered at 0.

n̂ = 1
a(x, y, z) (other choice: − 1

a(x, y, z); traditionally choose n̂ pointing out).
~F · n̂ = (x, y, z) · n̂ = 1

a(x2 + y2 + z2) = a, so∫∫
S
F · n̂dS =

∫∫
S
adS = a(4πa2).

Example 2: Same sphere, ~H = zk̂ Then ~H · n̂ = z2

a and∫∫
S

~H · ndS =

∫∫
S

z2

a
dS

Parametrize S by x = a cos θ sinφ, y = a sin θ sinφ, z = a cosφ with 0 ≤ θ ≤ 2π, 0 ≤ φ ≤ π.
Then

dS =

√(
∂(y, z)

∂(θ, φ)

)2

+

(
∂(x, z)

∂(θ, φ)

)2

+

(
∂(x, y)

∂(θ, φ)

)2

dθdφ = a2 sinφ dθdφ.

Flux is given by∫∫
S

~H · ndS =

∫∫
S

z2

a
dS =

∫ π

0

∫ 2π

0

(a cosφ)2

a
a2 sinφ dθdφ = 2πa3

∫ π

0
cos2 φ sinφdφ =

4πa3

3
.

Setup. Sometimes we have an easy geometric argument, but in general we must compute the
surface integral. The setup requires the use of two parameters to describe the surface, and ~F · n̂dS
must be expressed in terms of them. How to do this depends on the type of surface.

1. S = parametric surface with parametrization Φ(u, v) = (x(u, v), y(u, v), z(u, v)) (u, v) ∈ R
some region of the uv-plane.

normal vector to the surface: Φu × Φv, so unit normal n̂ =
Φu × Φv

‖Φu × Φv‖
surface area element dS = ‖Φu × Φv‖dudv

Hence d~S = n̂dS = (Φu × Φv)dudv and

Flux =

∫∫
S

~F · d~S =

∫∫
R

~F · (Φu × Φv)dudv.

2. S = graph of a function g(x, y) with x, y in some region R of the xy-plane.

3



normal vector to the surface: (−gx,−gy, 1) so unit normal n̂ =
(−gx,−gy, 1)√

1 + g2x + g2y

surface area element dS =
√

1 + g2x + g2y dA

Hence d~S = n̂dS = (−gx,−gy, 1)dA and

Flux =

∫∫
S

~F · d~S =

∫∫
R

~F · (−gx,−gy, 1)dA.

3. S = implicit surface given by equation f(x, y, z) = 0.

normal vector to the surface: ∇f , so unit normal n̂ =
∇f
‖∇f‖

.

area element dS =
‖∇f‖
|∇f · k̂|

dA.

Hence d~S = n̂dS = 1
∇f ·k̂
∇f dA and

Flux =

∫∫
S

~F · d~S =

∫∫
R

~F · (∇f)
1

∇f · k̂
dA,

where R is the shadow of S on the xy-plane.

MATH 20E Lecture 18 - Friday, May 10, 2013

Scalar curl

~F = M ı̂ +N ̂ where M,N are functions of x, y.
curl(~F ) = Nx −My measures the failure of ~F to be conservative.

We have seen : Nx = My
∗⇐⇒ ~F is a gradient field ⇐⇒ ~F is conservative (i.e.

∫
C
~F · d~r = 0

for any closed curve C.)
(∗) : =⇒ only holds if ~F is defined everywhere, or in a simply-connected region (no holes).
Interpretation of curl: for a velocity field, curl = (twice) angular velocity of the rotation com-

ponent of the motion.
Example: ~F = (a, b) uniform translation; curl ~F = 0
Example: ~F = (x, y) expanding motion has curl zero.
Example: ~F = (−y, x) rotation at unit angular velocity has curl ~F = 2.
For a force field, curl ~F = torque exerted on a test mass, measures how ~F imparts rotation

motion.
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Green’s Theorem

If C is a positively oriented (i.e. counterclockwise) closed curve enclosing a region R, then the work
done by a vector field ~F = (M,N) along C is∫

C

~F · d~r =

∫∫
R

(curl ~F )dA which means

∫
C
Mdx+Ndy =

∫∫
R

(Nx −My)dA.

Application: proof of our criterion for gradient fields.
Theorem: if ~F = M ı̂ + N ̂ is defined and continuously differentiable in the whole plane, then

Nx = My =⇒ ~F is conservative (~F is a gradient field).

Proof: If Nx = My then, by Green,
∫
C
~F · d~r =

∫∫
R(curl ~F )dA =

∫∫
R 0dA = 0. So ~F is conser-

vative.
Note: this only works if ~F and its curl are defined everywhere inside R.
Example: ~F = (x, y) and C = circle of radius a oriented counterclockwise. We have seen

curl ~F = 0. To check that Green’s theorem works, compute
∫
C
~F · d~r.

Parametrization: x = a cos θ, y = a sin θ 0 ≤ θ ≤ 2π. So dx = −a sin θdθ, dy = a cos θdθ∫
C
xdx+ ydy =

∫ 2π

0
−a2 sin θ cos θ + a2 sin θ cos θdθ = 0.

Example: ~F = (−y, x); have seen curl ~F = 2. Then for any closed curve C that encloses region
R and is oriented counterclockwise. Plugging into

∫
C
~Fd~r =

∫∫
R(curl ~F )dA = 2

∫∫
R dA get

area(R) =
1

2

∫
C
xdy − ydx

Example (reduce a complicated area integral to an easy line integral): example 2, page 525.
Example (reduce a complicated line integral to an easy

∫∫
): Let C = unit circle centered at

(2, 0), counterclockwise. R = unit disk at (2, 0). Then

∫
C
ye−xdx+

(
1

2
x2 − e−x

)
dy =

∫∫
R
Nx −MydA = (x+ e−x)− e−xdA =

∫∫
R
xdA.

Parametrize R in polar coordinates x = 2 + r cos θ, y = r sin θ, 0 ≤ θ ≤ 2π, 0 ≤ r ≤ 1 and get∫∫
R
xdA =

∫ 2π

0

∫ 1

0
(2 + r cos θ)rdrdθ =

∫ 2π

0
1 +

cos θ

3
dθ = 2π.

(Note: direct calculation of the line integral would probably involve setting x = 2 + cos θ, y =
sin θ, but then we have exponential of trig functions and calculations get really complicated.)

Vector curl - only in 3D

Del operator. ∇ =
(
∂
∂x ,

∂
∂y ,

∂
∂z

)
(symbolic notation!)

∇f =
(
∂f
∂x ,

∂f
∂y ,

∂f
∂z

)
gradient

~F = P ı̂ +Q̂ +Rk̂ = (P,Q,R) where P,Q,R are functions of x, y, z
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Definition: vector curl of ~F is

∇× ~F =

∣∣∣∣∣∣
ı̂ ̂ k̂
∂
∂x

∂
∂y

∂
∂z

P Q R

∣∣∣∣∣∣ =

(
∂(Q,R)

∂(y, z)

)
ı̂−
(
∂(P,R)

∂(x, z)

)
̂ +

(
∂(P,Q)

∂(x, y)

)
k̂

=

(
∂R

∂y
− ∂Q

∂z

)
ı̂ +

(
∂P

∂z
− ∂R

∂x

)
̂ +

(
∂Q

∂x
− ∂P

∂y

)
k̂

Note: If ~F = M(x, y)̂ı + N(x, y)̂ is a plane vector field, we can think of it in space as
~F = M ı̂ +N ̂ + 0k̂. In this case, ∇× ~F = (curl ~F )k̂.
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