MATH 20E Lecture 19 - Monday, May 13, 2013

Taught by Prof. J. Roberts. Covered Green's Theorem and Stokes' theorem.

MATH 20E Lecture 20 - Wednesday, May 15, 2013

Review for the second Midterm

Work in space and plane

Work of a vector field \vec{F} (could be 2-dimensional, 3-dimensional or n-dimensional) along a trajectory C (in a space with as many dimensions as \vec{F}) is given by a line integral

$$
\text { work }=\int_{C} \vec{F} \cdot d \vec{r}=\int_{C} \vec{F} \cdot \hat{\mathbf{T}} d s
$$

In coordinates, in space: $\vec{F}=P \hat{\mathbf{1}}+Q \hat{\mathbf{j}}+R \hat{\mathbf{k}}$ where P, Q, R are functions of x, y, z it becomes $\int_{C} \vec{F} \cdot d \vec{r}=\int_{C} P d x+Q d y+R d z$.

In the plane: $\vec{F}=(M, N)$ where M, N are functions of x, y, it becomes

$$
\text { work }=\int_{C} \vec{F} \cdot d \vec{r}=\int_{C} \vec{F} \cdot \hat{\mathbf{T}} d s=\int_{C} M d x+N d y
$$

(Need to know: geometry so you don't need to compute!)
Evaluation: to evaluate a line integral, we reduce to a single parameter and substitute. E.g. $x=x(t), y=y(t)$ (but could also be in terms of x or y or some angle θ) and express
Special case: if curl $\vec{F}=N_{x}-M_{y}=0$ and \vec{F} is defined and differentiable everywhere then $\vec{F}=\nabla f$ for some potential $f(x, y)$. (\vec{F} is a gradient field) Then

$$
f_{x}=M(x, y) \quad f_{y}=N(x, y) .
$$

To find $f(x, y)$: integrate the first equation w.r.t x, take derivatives w.r.t. y and compare with the second equation. We can avoid computing the line integral for work by using the change in potential, via the Fundamental theorem of Calculus:

$$
\text { work }=\int_{C} \nabla f \cdot d \vec{r}=f(\text { end point of } C)-f(\text { start point of } C) \text {. }
$$

Attention: this holds only for work!

Flux in the plane

$\vec{F}=(M, N)$ where M, N are functions of x, y,
The flux of \vec{F} across the plane curve C is by definition by

$$
\text { flux }=\int_{C} \vec{F} \cdot \hat{\mathbf{n}} d s=\int_{C} M d y-N d x
$$

where $\hat{\mathbf{n}}=$ normal vector to C , rotated 90° clockwise from $\hat{\mathbf{T}}$. (picture drawn; explained how the coordinate formula comes from the fact that when we rotate vector (a, b) 90° clockwise, we get $(b,-a)$.
Physical interpretation: if \vec{F} is a velocity field (e.g. flow of a fluid), flux measures how much matter passes through C per unit time, counting positively what flows towards the right of C, negatively what flows towards the left of C, as seen from the point of view of a point traveling along C. Note: work and flux have different physical interpretations, but they are both line integrals, so they get setup and evaluated the same way.

Green's Theorem

$\vec{F}=(M, N)$ where M, N are functions of x, y
$C=$ closed plane curve that encloses region R counterclockwise

1. for work:

$$
\int_{C} \vec{F} \cdot d \vec{r}=\iint_{R} \operatorname{curl} \vec{F} d A
$$

in coordinates:

$$
\int_{C} M d x+N d y=\iint_{R}\left(N_{x}-M_{y}\right) d A
$$

2. vector form for work:

$$
\int_{C} \vec{F} \cdot d \vec{r}=\iint_{R}(\operatorname{curl} \vec{F}) \hat{\mathbf{k}} d A=\iint_{R} \nabla \times \vec{F} d A
$$

3. for flux (normal form):

$$
\text { flux out of } R=\int_{C} \vec{F} \cdot \hat{\mathbf{n}} d s=\iint_{R}(\operatorname{div} \vec{F}) d A \text {. }
$$

in coordinates:

$$
\int_{C} M d y-N d x=\iint_{R}\left(M_{x}+N_{y}\right) d A
$$

Example: we discussed Problem 14 from the study guide.

Flux in space

$\vec{F}=P \hat{\mathbf{\imath}}+Q \hat{\mathbf{j}}+R \hat{\mathbf{k}}$ where P, Q, R are functions of x, y, z
$S=$ surface in space

1. $S=$ parametric surface with parametrization $\Phi(u, v)=(x(u, v), y(u, v), z(u, v))$ for $(u, v) \in R$ some region of the $u v$-plane.

$$
\text { Flux }=\iint_{S} \vec{F} \cdot \hat{\mathbf{n}} d S=\iint_{S} \vec{F} \cdot d \vec{S}=\iint_{R} \vec{F} \cdot\left(\Phi_{u} \times \Phi_{v}\right) d u d v
$$

2. $S=$ graph of a function $g(x, y)$ with x, y in some region R of the $x y$-plane.

$$
\text { Flux }=\iint_{S} \vec{F} \cdot \hat{\mathbf{n}} d S=\iint_{S} \vec{F} \cdot d \vec{S}=\iint_{R} \vec{F} \cdot\left(-g_{x},-g_{y}, 1\right) d A .
$$

3. $S=$ implicit surface given by equation $f(x, y, z)=0$.

$$
\text { Flux }=\iint_{S} \vec{F} \cdot \hat{\mathbf{n}} d S=\iint_{S} \vec{F} \cdot d \vec{S}=\iint_{R} \vec{F} \cdot(\nabla f) \frac{1}{\nabla f \cdot \hat{\mathbf{k}}} d A
$$

where R is the shadow of S on the $x y$-plane.
Not covered due to lack of time: surface area, how to use Green's theorem to compute area of a plane region.

MATH 20E Lecture 21 - Friday, May 17, 2013: second midterm

