MATH 20E Lecture 22 - Monday, May 20, 2013

Started by discussing Problem 2 on the midterm and FTC.

Stokes' Theorem

This is another example of FTC in action.
Stokes' Theorem: If C is a closed curve in space, and S any surface bounded by C, then

$$
\int_{C} \vec{F} \cdot d \vec{r}=\iint_{S}(\nabla \times \vec{F}) \cdot \hat{\mathbf{n}} d S
$$

Orientation: compatibility of an orientation of C with an orientation of S (changing orientation changes sign on both sides of Stokes).
Rule: if I walk along C in positive direction, with S to my left, then $\hat{\mathbf{n}}$ is pointing up. (Various examples shown.)
Another formulation (right-hand rule): if thumb points along C (1-D object), index finger towards S (2-D object), then middle finger points along $\hat{\mathbf{n}}$ (3-D object).
(Various examples shown.)
Remark: In Stokes theorem we are free to choose any surface S bounded by C ! (e.g. if $C=$ circle, S could be a disk, a hemisphere, a cone, ...)

Example: verify Stokes for $F=z \hat{\mathbf{1}}+x \hat{\mathbf{j}}+y \mathbf{k}, C=$ unit circle in $x y$-plane (counterclockwise), $S=$ piece of paraboloid $z=1-x^{2}-y^{2}$.

Direct calculation: $x=\cos t, y=\sin t, z=0$, so

$$
\int_{C} \vec{F} \cdot d \vec{r}=\int_{C} z d x+x d y+y d z=\int_{C} x d y=\int_{0}^{2 \pi} \cos ^{2} t d t=\int_{0}^{2 \pi} \frac{1+\cos 2 t}{2} d t=\pi .
$$

By Stokes: $\nabla \times \vec{F}=(1,1,1)$, and $\hat{\mathbf{n}} d S=\left(-g_{x},-g_{y}, 1\right) d x d y$ for $g(x, y)=1-x^{2}-y^{2}$. So $\hat{\mathbf{n}} d S=(2 x, 2 y, 1) d x d y$ and

$$
\iint_{S}(\nabla \times \vec{F}) \cdot \hat{\mathbf{n}} d S=\iint_{\text {unit disk }}(1,1,1) \cdot(2 x, 2 y, 1) d x d y=\iint(2 x+2 y+1) d x d y=\iint 1 d x d y=\text { area }(\text { disk })=\pi
$$

$\left(\iint x d x d y=0\right.$ by symmetry and similarly for $\left.y\right)$.

MATH 20E Lecture 23 - Wednesday, May 22, 2013

Attention! A special case of Stokes' Theorem is when $S=$ surface in space that has no boundary, i.e. it is closed (e.g. sphere, torus). Then Stokes' Theorem tells us that $\iint_{S} \nabla \times \vec{F} d \vec{S}=0$ (the flux of the vector curl across S is 0). This holds for any $\vec{F}=P \hat{\mathbf{1}}+Q \hat{\mathbf{j}}+R \hat{\mathbf{k}}$ where P, Q, R are functions of x, y, z defined and differentiable everywhere on S.

Example 1: Let $\vec{F}=-2 x z \hat{\mathbf{1}}+y^{2} \hat{\mathbf{k}}$. a) Calculate $\nabla \times \vec{F}$. b) Show that $\iint_{R}(\nabla \times \vec{F}) \cdot \hat{\mathbf{n}} d S=0$ for any portion R of the unit sphere $x^{2}+y^{2}+z^{2}=1$. (take the normal vector fi pointing outward) c) Show that $\int_{C} \vec{F} \cdot d \vec{r}=0$ for any simple closed curve C on the unit sphere $x^{2}+y^{2}+z^{2}=1$.

Solution: a) $\nabla \times \vec{F}=\left|\begin{array}{ccc}\hat{\mathbf{i}} & \hat{\mathbf{j}} & \hat{\mathbf{k}} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ -2 x z & 0 & y^{2}\end{array}\right|=(2 y,-2 x, 0)$.
b) On the unit sphere, $\hat{\mathbf{n}}=(x, y, z)$ so $(\nabla \times \vec{F}) \cdot \hat{\mathbf{n}}=2 y x-2 x y=0$. Therefore $\iint_{R}(\nabla \times \vec{F}) \cdot \hat{\mathbf{n}} d S=$ 0.
c) By Stokes' Theorem $\int_{C} \vec{F} \cdot d \vec{r}=\iint_{R}(\nabla \times \vec{F}) \cdot \hat{\mathbf{n}} d S$ where R is the region delimited by C on the unit sphere. Using the result of b), we get $\int_{C} \vec{F} \cdot d \vec{r}=\iint_{R}(\nabla \times \vec{F}) \cdot \hat{\mathbf{n}} d S=0$.

Example 2: Let C be a simple closed plane curve going counterclockwise around a region R. Let $M=M(x, y)$. Express $\int_{C} M d x$ as a double integral over R.

Solution: this is an application to Green's theorem. Get $\int_{C} M d x=\iint_{R}-M_{y} d A$.
Example 3: Let S be the part of the spherical surface $x^{2}+y^{2}+z^{2}=2$ lying in $z>1$. Orient S upwards and give its bounding circle, C, lying in $z=1$ the compatible orientation. a) Parametrize C and use the parametrization to evaluate the line integral

$$
I=\int_{C} x z d x+y d y+y d z
$$

b) Compute the vector curl of the vector field $\vec{F}=x z \hat{\mathbf{1}}+y \hat{\mathbf{j}}+y \hat{\mathbf{k}}$.
c) Write down a flux integral through S which can be computed using the value of I.

Solution: a) $z=1$ and $x^{2}+y^{2}+z^{2}=1$, so $x^{2}+y^{2}=1$. Therefore C is the circle of radius 1 in the $z=1$ plane. Compatible orientation: counterclockwise.

Parametrization: $x=\cos t, y=\sin t, z=1$ Therefore $d x=-\sin t d t, d y=\cos t d t, d z=0$.

$$
I=\int_{C} x z d x+y d y+y d z=\int_{0}^{2 \pi}(-\cos t \sin t+\cos t \sin t) d t=0
$$

b)

$$
\nabla \times \vec{F}=\left|\begin{array}{ccc}
\hat{\mathbf{1}} & \hat{\mathbf{j}} & \hat{\mathbf{k}} \\
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\
x z & y & y
\end{array}\right|=\hat{\mathbf{1}}+x \hat{\mathbf{j}} .
$$

c) By Stokes' Theorem

$$
\int_{C} \vec{F} \cdot d \vec{r}=\iint_{S}(\nabla \times \vec{F}) \cdot \hat{\mathbf{n}} d S
$$

$\hat{\mathbf{n}}$ is the normal pointing upwards, so $\hat{\mathbf{n}}=\frac{(x, y, z)}{\sqrt{2}}$ on the upper hemisphere of radius $\sqrt{2}$. Thus

$$
I=\int_{C} \vec{F} \cdot d \vec{r}=\iint_{S}(1, x, 0) \cdot \frac{(x, y, z)}{\sqrt{2}} d S=\iint_{S} \frac{x+x y}{\sqrt{2}} d S .
$$

MATH 20E Lecture 24 - Friday, May 24, 2013

Divergence Theorem (Gauss-Green Theorem)

This is the 3D analogue of Green's theorem for flux. Divergence theorem: If S is a closed surface bounding a region W, with normal pointing outwards, and \vec{F} is a vector field defined and differentiable over all of W, then

$$
\iint_{S} \vec{F} \cdot d \vec{S}=\iiint_{W} \operatorname{div} \vec{F} d V
$$

In coordinates, for $\vec{F}=P(x, y, z) \hat{\mathbf{i}}+Q(x, y, z) \hat{\mathbf{j}}+R(x, y, z) \hat{\mathbf{k}}$:

$$
\iint_{S}(P, Q, R) \cdot \hat{\mathbf{n}} d S=\iiint_{W}\left(P_{x}+Q_{y}+R_{z}\right) d V
$$

Example: flux of $\vec{H}=z \hat{\mathbf{k}}$ out of sphere of radius a (seen in Lecture 17): $\operatorname{div} \vec{H}=0+0+1=1$, so

$$
\iint_{S} \vec{H} \cdot d \vec{S}=\iiint_{W} 1 d V=\operatorname{vol}(W)=\frac{4 \pi a^{3}}{3} .
$$

Physical interpretation: $\operatorname{div} \vec{F}=$ source rate $=$ flux generated per unit volume. Imagine an incompressible fluid flow (i.e. a given mass occupies a fixed volume) with velocity \vec{F}, then $\iint_{W} \operatorname{div} \vec{F} d V=\iint_{S} \vec{F} \cdot \hat{\mathbf{n}} d S$ says that flux through S is the net amount leaving W per unit time $=$ total amount of sources (minus sinks) in W.

Examples: did exercises 3 and 8 from Section 8.4 in the textbook.
Example: take S to be the upper hemisphere $x^{2}+y^{2}+z^{2}=1$ with $z \geq 0$. Compute the flux of $\vec{F}=3 x y^{2} \hat{\mathbf{i}}+3 x^{2} y \hat{\mathbf{j}}+z^{3} \hat{k}$ upward through S.

Flux $=\iint_{S} \vec{F} \cdot \hat{\mathbf{n}} d S$. In this case $\hat{\mathbf{n}}=(x, y, z)$ and $\vec{F} \cdot \hat{\mathbf{n}}=6 x^{2} y^{2}+z^{3}$. So flux $=\iint_{\text {unit circle }} 6 x^{2} y^{2}+$ $z^{4} d S=\iint_{\text {unit circle }} 6 x^{2} y^{2}+\left(1-x^{2}-y^{2}\right)^{2} d x d y$. Need to parametrize and deal with powers of trig functions, it gets ugly.

We would like to apply Gauss-Green, but cannot do it directly. Instead take $S_{1}=$ unit disk in the $x y$-plane with normal pointing down. Then $S+S_{1}$ enclose the upper half-ball W of radius 1 and the divergence theorem says that

$$
\iint_{S} \vec{F} \cdot \hat{\mathbf{n}} d S+\iint_{S_{1}} \vec{F} \cdot \hat{\mathbf{n}} d S=\iiint_{W}(\operatorname{div} \vec{F}) d V
$$

To finish next time.

