
MATH 20E Lecture 25 - Wednesday, May 29, 2013

Example from last time: take S to be the upper hemisphere x2 + y2 + z2 = 1 with z ≥ 0. Compute
the flux of ~F = 3xy2ı̂ + 3x2ŷ + z3k̂ upward through S.

Flux =
∫∫
S
~F ·n̂dS. In this case n̂ = (x, y, z) and ~F ·n̂ = 6x2y2+z3. So flux =

∫∫
unit circle 6x2y2+

z4dS =
∫∫

unit circle 6x2y2 + (1 − x2 − y2)2dxdy. Need to parametrize and deal with powers of trig
functions, it gets ugly.

We would like to apply Gauss-Green, but cannot do it directly. Instead take S1 = unit disk in
the xy-plane with normal pointing down. Then S + S1 enclose the upper half-ball W of radius 1
and the divergence theorem says that∫∫

S

~F · n̂dS +

∫∫
S1

~F · n̂dS =

∫∫∫
W

(div ~F )dV.

To finish next time. On S1 the n̂ = −k̂ so ~F · n̂ = −z3 = 0 on S1. So
∫∫
S1

~F · n̂dS = 0.

Then div ~F = 3(x2 + y2 + z2) and∫∫
S

~F · n̂dS =

∫∫∫
W

(div ~F )dV =

∫ 2π

0

∫ pi/2

0

∫ 1

0
3ρ4 sinφdρdφdθ =

6π

5
.

Conservative vector fields

Example: ~F = (yz, xz, xy). C : x = t3, y = t2, z = t, 0 ≤ t ≤ 1. Then dx = 3t2dt, dy = 2tdt, dz = dt
and substitute:∫

C

~F · d~r =

∫
C
yzdx+ xzdy + xydz =

∫ 1

0
t3(3t2dt) + t4(2tdt) + t5dt =

∫ 1

0
6t5dt = 1.

Same ~F , curve C ′ = segments from (0, 0, 0) to (1, 0, 0) to (1, 1, 0) to (1, 1, 1). In the xy-plane,
z = 0 =⇒ ~F = xyk̂, so ~F · d~r = 0, no work on either C1 or C2. For the last segment,
x = y = 1, dx = dy = 0, so ~F = (z, z, 1) and d~r = (0, 0, dz). We get

∫
C3

~F · d~r =
∫ 1
0 1dz = 1.

Both give the same answer because ~F is conservative, in fact ~F = ∇(xyz).
Recall the fundamental theorem of calculus for line integrals:∫ P1

P0

∇f · d~r = f(P1)− f(P0).

Gradient fields

~F = (P,Q,R)
?
= (fx, fy, fz) Then fxy = fyx, fxz = fzx, fyz = fzy, so Py = Qx, Pz = Rx, Qz =

Ry ⇐⇒ ∇× ~F = (Ry −Qz, Pz −Rx, Qx − Py) = (0, 0, 0).

Criterion: ~F is a gradient field if and only if ∇ × ~F = 0 and ~F is defined in whole space or
“simply connected” region of the space.

Definition: a region W is simply connected if every closed loop C inside W bounds some
surface S inside W .

Examples: the complement of the z-axis is not simply connected (shown by considering a loop
encircling the z-axis); the complement of the origin is simply connected. A ball is simply connected.
A sphere is simply connected. (Pictures drawn)
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In the plane: a region R is simply connected if for every closed loop C inside R the interior
bounded by C is contained in R. For instance, the plane with the origin removed is not simply
connected. Shown using the unit circle. (Picture drawn.)

MATH 20E Lecture 26 - Friday, May 31, 2013

Recall:
Criterion: ~F is a gradient field if and only if ∇× ~F = 0 and ~F is defined in whole space or simply
connected region of the space.

Examples: sphere is simply connected; torus is not (in fact it has two independent loops that
dont bound)

Proof of criterion: assume ~F defined in simply connected region W and with ∇ × ~F = 0.
Consider two curves C1 and C2 with same end points. Then C = C1 − C2 is a closed curve so
bounds some S ⊂W. Stokes’ Theorem tells us that∫

C1

~F · d~r −
∫
C2

~F · d~r =

∫
C

~F · d~r =

∫∫
S

(∇× ~F ) · n̂dS = 0.

Thus we get path independence =⇒ ~F conservative =⇒ can find potential

f(x, y, z) =

∫ (x,y,z)

A

~F · d~r.

Here A is some point in W.
Example: (a) for which a, b is ~F = (axy, x2 + z3, byz2?4z3) a gradient field? (b) For the a, b

found above, find a potential for ~F .
(a) Py = ax = 2x = Qx so a = 2;Pz = 0 = 0 = Rx;Qz = 3z2 = bz2 = Ry so b = 3.

(b) Systematic method to find a potential: use path-independence
f(x1, y1, z1) =

∫
C F ·d~r =

∫
C 2xydx+(x2 +z3)dy+(3yz2−4z3)dz where C is a curve of your choice

going from (0, 0, 0) to (x1, y1, z1).

Use a curve that gives an easy computation, e.g. 3 segments parallel to axes. Namely, take
C = C1 + C2 + C3 where C1 = segment from (0, 0, 0) to (x1, 0, 0);C2 = segment from (x1, 0, 0) to
(x1, y1, 0);C3 = segment from (x1, y1, 0) to (x1, y1, z1).

On C1 : x = t, y = 0, z = 0, 0 ≤ t ≤ x1; dx = dt, dy = dz = 0 =⇒
∫
C1
F · d~r =∫

C1
2xydx+ (x2 + z3)dy + (3yz2 − 4z3)dz =

∫
C1

0 = 0.

On C2 : x = x1, y = t, z = 0, 0 ≤ t ≤ y1; dx = 0, dy = dt, dz = 0 =⇒
∫
C2
F · d~r =∫

C2
2xydx+ (x2 + z3)dy + (3yz2 − 4z3)dz =

∫ y1
0 x21dy = x21y1.

On C3 : x = x1, y = y1, z = t, 0 ≤ t ≤ z1; dx = dy = 0, dz = dt =⇒
∫
C3
F · d~r =∫

C3
2xydx+ (x2 + z3)dy + (3yz2 − 4z3)dz =

∫ z1
0 (3y1t

2 − 4t3)dt = y1z
3
1 − z41 .

So f(x1, y1, z1) = x21y1 + y1z
3
1 − z41 .

Check: f(x, y, z) = x2y + yz3 − z4 =⇒ ∇f = (2xy, x2 + z3, 3yz2 − 4z3) = ~F . ©
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Proof of Green’s Theorem

Green’s Theorem:
∫
CMdx+Ndy =

∫∫
R(Nx −My)dA where C is a closed curve oriented counter-

clockwise enclosing region R of the plane.
Proof: two preliminary remarks:

1) the theorem splits into two identities,
∫
CMdx = −

∫∫
RMydA and

∫
C Ndy =

∫
RNxdA.

2) additivity: if theorem is true for R1 and R2 then its true for the union R = R1 ∪R2 (picture
drawn):

∫
C =

∫
C1

+
∫
C2

(the line integrals along inner portions cancel out) and
∫∫

R =
∫∫
R1

+
∫∫
R2
.

Main step in the proof: prove
∫
CMdx = −

∫∫
RMydA for “vertically simple” regions: a < x <

b, f1(x) < y < f2(x). (picture drawn). This is enough because we can divide any region into such
pieces and use additivity.
LHS: break C into four sides (C1 lower, C2 right vertical segment, C3 upper, C4 left vertical
segment);∫

C2
Mdx =

∫
C4
Mdx = 0 since x = constant on C2 and C4.

On C1 : x = x, y = f1(x), a ≤ x ≤ b so
∫
C1
M(x, y)dx =

∫ b
a M(x, f1(x))dx

On C3 : x = x, y = f2(x), b ≤ x ≤ a (because of the orientation) so∫
C3

M(x, y)dx = −
∫ b

a
M(x, f2(x))dx

∫
C

=

∫
C1

+

∫
C3

=

∫ b

a
(M(x, f1(x))−M(x, f2(x))) dx

RHS:

∫∫
R
−MydA = −

∫ b

a

∫ f2(x)

f1(x)
Mydydx = −

∫ b

a
(M(x, f2(x))−M(x, f1(x))) dx (= LHS).

Similarly
∫
C Ndy =

∫∫
RNxdA by subdividing into horizontally simple pieces. This completes

the proof.
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