MATH 20E Lecture 25 - Wednesday, May 29, 2013

Example from last time: take S to be the upper hemisphere $x^{2}+y^{2}+z^{2}=1$ with $z \geq 0$. Compute the flux of $\vec{F}=3 x y^{2} \hat{\mathbf{\imath}}+3 x^{2} y \hat{\mathbf{\jmath}}+z^{3} \hat{k}$ upward through S.

Flux $=\iint_{S} \vec{F} \cdot \hat{\mathbf{n}} d S$. In this case $\hat{\mathbf{n}}=(x, y, z)$ and $\vec{F} \cdot \hat{\mathbf{n}}=6 x^{2} y^{2}+z^{3}$. So flux $=\iint_{\text {unit circle }} 6 x^{2} y^{2}+$ $z^{4} d S=\iint_{\text {unit circle }} 6 x^{2} y^{2}+\left(1-x^{2}-y^{2}\right)^{2} d x d y$. Need to parametrize and deal with powers of trig functions, it gets ugly.

We would like to apply Gauss-Green, but cannot do it directly. Instead take $S_{1}=$ unit disk in the $x y$-plane with normal pointing down. Then $S+S_{1}$ enclose the upper half-ball W of radius 1 and the divergence theorem says that

$$
\iint_{S} \vec{F} \cdot \hat{\mathbf{n}} d S+\iint_{S_{1}} \vec{F} \cdot \hat{\mathbf{n}} d S=\iiint_{W}(\operatorname{div} \vec{F}) d V
$$

To finish next time. On S_{1} the $\hat{\mathbf{n}}=-\hat{\mathbf{k}}$ so $\vec{F} \cdot \hat{\mathbf{n}}=-z^{3}=0$ on S_{1}. So $\iint_{S_{1}} \vec{F} \cdot \hat{\mathbf{n}} d S=0$. Then $\operatorname{div} \vec{F}=3\left(x^{2}+y^{2}+z^{2}\right)$ and

$$
\iint_{S} \vec{F} \cdot \hat{\mathbf{n}} d S=\iiint_{W}(\operatorname{div} \vec{F}) d V=\int_{0}^{2 \pi} \int_{0}^{p i / 2} \int_{0}^{1} 3 \rho^{4} \sin \phi d \rho d \phi d \theta=\frac{6 \pi}{5} .
$$

Conservative vector fields

Example: $\vec{F}=(y z, x z, x y) . C: x=t^{3}, y=t^{2}, z=t, 0 \leq t \leq 1$. Then $d x=3 t^{2} d t, d y=2 t d t, d z=d t$ and substitute:

$$
\int_{C} \vec{F} \cdot d \vec{r}=\int_{C} y z d x+x z d y+x y d z=\int_{0}^{1} t^{3}\left(3 t^{2} d t\right)+t^{4}(2 t d t)+t^{5} d t=\int_{0}^{1} 6 t^{5} d t=1
$$

Same \vec{F}, curve $C^{\prime}=$ segments from $(0,0,0)$ to $(1,0,0)$ to $(1,1,0)$ to $(1,1,1)$. In the xy-plane, $z=0 \Longrightarrow \vec{F}=x y \hat{\mathbf{k}}$, so $\vec{F} \cdot d \vec{r}=0$, no work on either C_{1} or C_{2}. For the last segment, $x=y=1, d x=d y=0$, so $\vec{F}=(z, z, 1)$ and $d \vec{r}=(0,0, d z)$. We get $\int_{C_{3}} \vec{F} \cdot d \vec{r}=\int_{0}^{1} 1 d z=1$.
Both give the same answer because \vec{F} is conservative, in fact $\vec{F}=\nabla(x y z)$.
Recall the fundamental theorem of calculus for line integrals:

$$
\int_{P_{0}}^{P_{1}} \nabla f \cdot d \vec{r}=f\left(P_{1}\right)-f(P 0)
$$

Gradient fields

$\vec{F}=(P, Q, R) \stackrel{?}{=}\left(f_{x}, f_{y}, f_{z}\right)$ Then $f_{x y}=f_{y x}, f_{x z}=f_{z x}, f_{y z}=f_{z y}$, so $P_{y}=Q_{x}, P_{z}=R_{x}, Q_{z}=$ $R_{y} \Longleftrightarrow \nabla \times \vec{F}=\left(R_{y}-Q_{z}, P_{z}-R_{x}, Q_{x}-P_{y}\right)=(0,0,0)$.

Criterion: \vec{F} is a gradient field if and only if $\nabla \times \vec{F}=0$ and \vec{F} is defined in whole space or "simply connected" region of the space.

Definition: a region W is simply connected if every closed loop C inside W bounds some surface S inside W.

Examples: the complement of the z-axis is not simply connected (shown by considering a loop encircling the z-axis); the complement of the origin is simply connected. A ball is simply connected. A sphere is simply connected. (Pictures drawn)

In the plane: a region R is simply connected if for every closed loop C inside R the interior bounded by C is contained in R. For instance, the plane with the origin removed is not simply connected. Shown using the unit circle. (Picture drawn.)

MATH 20E Lecture 26 - Friday, May 31, 2013

Recall:
Criterion: \vec{F} is a gradient field if and only if $\nabla \times \vec{F}=0$ and \vec{F} is defined in whole space or simply connected region of the space.

Examples: sphere is simply connected; torus is not (in fact it has two independent loops that dont bound)

Proof of criterion: assume \vec{F} defined in simply connected region W and with $\nabla \times \vec{F}=0$. Consider two curves C_{1} and C_{2} with same end points. Then $C=C_{1}-C_{2}$ is a closed curve so bounds some $S \subset W$. Stokes' Theorem tells us that

$$
\int_{C_{1}} \vec{F} \cdot d \vec{r}-\int_{C_{2}} \vec{F} \cdot d \vec{r}=\int_{C} \vec{F} \cdot d \vec{r}=\iint_{S}(\nabla \times \vec{F}) \cdot \hat{\mathbf{n}} d S=0 .
$$

Thus we get path independence $\Longrightarrow \vec{F}$ conservative \Longrightarrow can find potential

$$
f(x, y, z)=\int_{A}^{(x, y, z)} \vec{F} \cdot d \vec{r} .
$$

Here A is some point in W.
Example: (a) for which a, b is $\vec{F}=\left(a x y, x^{2}+z^{3}, b y z^{2} ? 4 z^{3}\right)$ a gradient field? (b) For the a, b found above, find a potential for \vec{F}.
(a) $P_{y}=a x=2 x=Q_{x}$ so $a=2 ; P_{z}=0=0=R_{x} ; Q_{z}=3 z^{2}=b z^{2}=R_{y}$ so $b=3$.
(b) Systematic method to find a potential: use path-independence
$f\left(x_{1}, y_{1}, z_{1}\right)=\int_{C} F \cdot d \vec{r}=\int_{C} 2 x y d x+\left(x^{2}+z^{3}\right) d y+\left(3 y z^{2}-4 z^{3}\right) d z$ where C is a curve of your choice going from $(0,0,0)$ to $\left(x_{1}, y_{1}, z_{1}\right)$.

Use a curve that gives an easy computation, e.g. 3 segments parallel to axes. Namely, take $C=C_{1}+C_{2}+C_{3}$ where $C_{1}=$ segment from $(0,0,0)$ to $\left(x_{1}, 0,0\right) ; C_{2}=\operatorname{segment}$ from $\left(x_{1}, 0,0\right)$ to $\left(x_{1}, y_{1}, 0\right) ; C_{3}=\operatorname{segment}$ from $\left(x_{1}, y_{1}, 0\right)$ to $\left(x_{1}, y_{1}, z_{1}\right)$.

On $C_{1}: x=t, y=0, z=0,0 \leq t \leq x_{1} ; d x=d t, d y=d z=0 \quad \Longrightarrow \quad \int_{C_{1}} F \cdot d \vec{r}=$ $\int_{C_{1}} 2 x y d x+\left(x^{2}+z^{3}\right) d y+\left(3 y z^{2}-4 z^{3}\right) d z=\int_{C_{1}} 0=0$.

On $C_{2}: x=x_{1}, y=t, z=0,0 \leq t \leq y_{1} ; d x=0, d y=d t, d z=0 \quad \Longrightarrow \quad \int_{C_{2}} F \cdot d \vec{r}=$ $\int_{C_{2}} 2 x y d x+\left(x^{2}+z^{3}\right) d y+\left(3 y z^{2}-4 z^{3}\right) d z=\int_{0}^{y_{1}} x_{1}^{2} d y=x_{1}^{2} y_{1}$.

On $C_{3}: x=x_{1}, y=y_{1}, z=t, 0 \leq t \leq z_{1} ; d x=d y=0, d z=d t \quad \Longrightarrow \quad \int_{C_{3}} F \cdot d \vec{r}=$ $\int_{C_{3}} 2 x y d x+\left(x^{2}+z^{3}\right) d y+\left(3 y z^{2}-4 z^{3}\right) d z=\int_{0}^{z_{1}}\left(3 y_{1} t^{2}-4 t^{3}\right) d t=y_{1} z_{1}^{3}-z_{1}^{4}$.

So $f\left(x_{1}, y_{1}, z_{1}\right)=x_{1}^{2} y_{1}+y_{1} z_{1}^{3}-z_{1}^{4}$.
Check: $f(x, y, z)=x^{2} y+y z^{3}-z^{4} \Longrightarrow \nabla f=\left(2 x y, x^{2}+z^{3}, 3 y z^{2}-4 z^{3}\right)=\vec{F}$.

Proof of Green's Theorem

Green's Theorem: $\int_{C} M d x+N d y=\iint_{R}\left(N_{x}-M_{y}\right) d A$ where C is a closed curve oriented counterclockwise enclosing region R of the plane.
Proof: two preliminary remarks:

1) the theorem splits into two identities, $\int_{C} M d x=-\iint_{R} M_{y} d A$ and $\int_{C} N d y=\int_{R} N x d A$.
2) additivity: if theorem is true for R_{1} and R_{2} then its true for the union $R=R_{1} \cup R_{2}$ (picture drawn): $\int_{C}=\int_{C_{1}}+\int_{C_{2}}$ (the line integrals along inner portions cancel out) and $\iint R=\iint_{R_{1}}+\iint_{R_{2}}$.

Main step in the proof: prove $\int_{C} M d x=-\iint_{R} M_{y} d A$ for "vertically simple" regions: $a<x<$ $b, f_{1}(x)<y<f_{2}(x)$. (picture drawn). This is enough because we can divide any region into such pieces and use additivity.
LHS: break C into four sides (C_{1} lower, C_{2} right vertical segment, C_{3} upper, C_{4} left vertical segment);
$\int_{C_{2}} M d x=\int_{C_{4}} M d x=0$ since $x=$ constant on C_{2} and C_{4}.
On $C_{1}: x=x, y=f_{1}(x), a \leq x \leq b$ so $\int_{C_{1}} M(x, y) d x=\int_{a}^{b} M\left(x, f_{1}(x)\right) d x$
On $C_{3}: x=x, y=f_{2}(x), b \leq x \leq a$ (because of the orientation) so

$$
\begin{gathered}
\int_{C_{3}} M(x, y) d x=-\int_{a}^{b} M\left(x, f_{2}(x)\right) d x \\
\int_{C}=\int_{C_{1}}+\int_{C_{3}}=\int_{a}^{b}\left(M\left(x, f_{1}(x)\right)-M\left(x, f_{2}(x)\right)\right) d x
\end{gathered}
$$

RHS: $\iint_{R}-M_{y} d A=-\int_{a}^{b} \int_{f_{1}(x)}^{f_{2}(x)} M_{y} d y d x=-\int_{a}^{b}\left(M\left(x, f_{2}(x)\right)-M\left(x, f_{1}(x)\right)\right) d x$ (= LHS).
Similarly $\int_{C} N d y=\iint_{R} N_{x} d A$ by subdividing into horizontally simple pieces. This completes the proof.

