MATH 20C - MIDTERM 1
 SOLUTIONS TO PRACTICE PROBLEMS, PART 2

ALINA BUCUR

Problem 12:

(a) $\overrightarrow{A B}=\langle\cos t, \sin t\rangle$ and $\overrightarrow{O A}=\langle 10 t, 0\rangle$, so $\overrightarrow{O B}=\overrightarrow{O A}+\overrightarrow{A B}=\langle 10 t+\cos t, \sin t\rangle$.

The rear bumper is reached at time $t=\pi$ and the position of B is $(10 \pi-1,0)$.
(b) $\vec{v}(t)=\langle 10-\sin t, \cos t\rangle$, so

$$
|\vec{v}|^{2}=(10-\sin t)^{2}+\cos ^{2} t=100-20 \sin t+\sin ^{2} t+\cos ^{2} t=101-20 \sin t
$$

The speed is then given by $|\vec{v}|=\sqrt{101-20 \sin t}$.
The speed is smallest when $\sin t$ is largest i.e. $\sin t=1$. It occurs when $t=\pi / 2$. At this time, the position of the bug is $(5 \pi, 1)$.
The speed is largest when $\sin t$ is smallest; that happens at the times $t=0$ or π for which the position is then $(0,0)$ and $(10 \pi-1,0)$.

