MATH 20C Lecture 26 - Monday, March 10, 2014

More triple integrals. Discussed problems 32, 34, 35 from the study guide.

MATH 20C Lecture 27 - Wednesday, March 12, 2014

Review - part I

Topics:

- vectors: quantities that have length and direction
- operation with vectors (addition, subtraction, multiplication by scalars, dot product, cross product);
- determinants, area, volume;
- equations of lines and planes in 3 -space (normal vectors)
- decomposing a vector into a components along specified direction (projection, $\vec{v}_{\|}$and \vec{v}_{\perp})
- parametric equations
- calculus with vectors: limits, differentiation (product rules, chain rule), integration;
- velocity and acceleration vectors; speed and arc length
- tangent line to a trajectory
- Functions of several variables, contour plots.
- Partial derivatives, gradient; approximation formulas, tangent planes, directional derivatives.
- higher order partial derivatives
- chain rule, change of variables, implicit differentiation

MATH 20C Lecture 28 - Friday, March 14, 2014

Review - part II

- Min/max problems: critical points, second derivative test, checking boundary. (least squares won't be on the exam)
- Min/max for non-independent variables: Lagrange multipliers. Second derivative test does NOT work! Plug in values or use geometry.
- Double integrals: drawing picture of region, taking slices to set up the iterated integral
- Same in polar coordinates (recall that $d A=d x d y=r d r d \theta$).

Example: Write in polar coordinates $\iint_{R} f(x, y) d A$ for R the disk of radius 1 centered at $(1,0)$. (Picture drawn)
Since we are at the right of the y-axis, get $-\pi / 2 \leq \theta \leq \pi / 2$. For each, theta can use geometry to see $0 \leq r \leq 2 \cos \theta$. Or can deduce the same with algebra, as follows. The equation of the circle is $(x-1)^{2}+y^{2}=1$. Substitute polar coordinates $(x=r \cos \theta, y=r \sin \theta)$ and get $r(r-2 \cos \theta)=0$. Hence $r=0$ and $r=2 \cos \theta$ are the two endpoints of the ray at θ. Get

$$
\int_{-\pi / 2}^{\pi / 2} \int_{0}^{2 \cos \theta} f(r, \theta) r d r d \theta
$$

- Triple integrals in rectangular and cylindrical coordinates $(d V=d A d z)$: setup, pictures.
- Triple integrals in spherical coordinates $\left(d V=\rho^{2} \sin \phi d \rho d \phi d \theta\right)$: setup, pictures.
- For evaluation, need to know: usual basic integrals (e.g. $\int \frac{d x}{x}$); integration by substitution (e.g. $\int_{0}^{1} \frac{2 t d t}{\sqrt{1+t^{2}}}=\int_{1}^{2} \frac{d u}{\sqrt{u}}$ by setting $u=1+t^{2}$), integration by parts. DO NOT need to know: complicated trigonometric integrals (e.g. $\int \cos ^{4} \theta d \theta$).
- Applications: area, volume, mass, average and weighted average of a function, center of mass.

We have not discussed all the topics in class due to lack of time. They are all equally important.

This is it. Good luck on the exam!

