MATH 20C Lecture 7 - Wednesday, January 22, 2014

The position vector of a particle moving along a trajectory in plane [or space] is $\vec{r}(t)=x(t) \hat{\mathbf{1}}+$ $y(t) \hat{\mathbf{j}}[+z(t) \hat{\mathbf{k}}]$.

The velocity vector is $\vec{v}(t)=\frac{d \vec{r}}{d t}=\vec{r}^{\prime}(t)=\left\langle\frac{d x}{d t}, \frac{d y}{d t}, \frac{d z}{d t}\right\rangle$ in space or $\vec{v}(t)=\left\langle\frac{d x}{d t}, \frac{d y}{d t}\right\rangle$ in the plane.
Note: We take derivatives, limits and integrate vectors componentwise.
The cycloid: curve traced by a point on a wheel of radius 1 that is rolling on a flat surface at unit speed. It has equation

$$
\vec{r}(t)=\langle t-\sin t, 1-\cos t\rangle .
$$

The velocity vector is $\vec{v}(t)=\langle 1-\cos t, \sin t\rangle$. At $t=0, \vec{v}=\overrightarrow{0}$: translation and rotation motions cancel out, while at $t=\pi$ they add up and $\vec{v}=\langle 2,0\rangle$.

The speed is defined as the magnitude of the velocity vector. In this case,
$|\vec{v}|=\sqrt{(1-\cos t)^{2}+\sin ^{2} t}=\sqrt{2-2 \cos t}$ (smallest at $t=0,2 \pi, \ldots$, largest at $\left.t=\pi\right)$.
Remark: The speed is $\left|\frac{d \vec{r}}{d t}\right|$ which is NOT the same as $\frac{d|\vec{r}|}{d t}$!
Acceleration: $\vec{a}(t)=\frac{d \vec{v}}{d t}=\vec{r}^{\prime \prime}(t)$. E.g., cycloid: $\vec{a}(t)=\langle\sin t, \cos t\rangle$ (at $t=0 \vec{a}=\langle 0,1\rangle$ is vertical).

Example: The circle $\vec{r}(t)=\langle\cos t, \sin t\rangle$.
The velocity vector is $\vec{v}(t)=\langle-\sin t, \cos t\rangle$, and the speed is $|\vec{v}|=1$ for any t. The acceleration vector is $\vec{a}=\langle-\cos t,-\sin t\rangle$.

Arc length

$s=$ distance travelled along trajectory. Since the rate of change of the distance is the speed, we have $\frac{d s}{d t}=$ speed $=|\vec{v}(t)|$. Can recover length of trajectory by integrating $d s / d t$. So the length of the curve starting at time t_{1} until time t_{2} is

$$
s=\int_{t_{1}}^{t_{2}}|\vec{v}(t)| d t
$$

The distance traveled by a moving point along a curve starting at time t_{1} until the current time is

$$
s(t)=\int_{t_{1}}^{t}|\vec{v}(u)| d u
$$

Computing such an integral is not always easy... Sometimes it can be done, though. Here are a few examples.

1. $\vec{r}(t)=\langle\cos t, \sin t\rangle$

Then the velocity is $\vec{v}=\langle-\sin t, \cos t\rangle$ and the speed is $|\vec{v}(t)|=1$ (contstant). Arc length starting at $t_{1}=0$ and ending at $t_{2}=2 \pi$ is

$$
s=\int_{0}^{2 \pi} 1 d t=2 \pi
$$

2. $\vec{r}(t)=2 t \hat{\mathbf{\imath}}+(\ln t) \hat{\mathbf{j}}+t^{2} \hat{\mathbf{k}}$

Then $\vec{v}(t)=2 \hat{\mathbf{i}}+\frac{1}{t} \hat{\mathbf{j}}+2 t \hat{\mathbf{k}}$, and the arc length starting at $t_{1}=1$ is

$$
s(t)=\int_{1}^{t} \sqrt{4+\frac{1}{u^{2}}+4 u^{2}} d u=\int_{1}^{t} \sqrt{\left(2 u+\frac{1}{u}\right)^{2}} d u=\int_{1}^{t}\left(2 u+\frac{1}{u}\right) d u=t^{2}-1+\ln t .
$$

Integration

$$
\int \vec{r}(t) d t=\left\langle\int x(t) d t, \int y(t) d t, \int z(t) d t\right\rangle+\vec{c}, \quad \vec{c}=\left\langle c_{1}, c_{2}, c_{3}\right\rangle
$$

Example: $\vec{a}(t)=\hat{\mathbf{k}}, \vec{v}(0)=\hat{\mathbf{1}}, \vec{r}(0)=\hat{\mathbf{j}}$. Find $\vec{r}(t)$.
Since $\vec{a}(t)=\frac{d \vec{v}}{d t}$, that means that $\vec{v}(t)=t \hat{\mathbf{k}}+\vec{c}$. And now $\vec{v}(0)=\hat{\mathbf{1}}$, tells us $\vec{c}=\hat{\mathbf{1}}$. Therefore

$$
\vec{v}(t)=t \hat{\mathbf{k}}+\hat{\mathbf{1}} .
$$

Repeating the procedure for $\vec{v}(t)=\frac{d \vec{r}}{d t}$, we get

$$
\vec{r}(t)=\frac{t^{2}}{2} \hat{\mathbf{k}}+t \hat{\mathbf{\imath}}+\hat{\mathbf{j}}=\left\langle t, 1, t^{2} / 2\right\rangle .
$$

Tangent lines

The tangent line at time t_{0} to the trajectory $\vec{r}(t)$ is the line through the point $P=\left(x\left(t_{0}\right), y\left(t_{0}\right), z\left(t_{0}\right)\right)$ in the direction given by the velocity vector at that point, $\vec{v}\left(t_{0}\right)$. It has parametric equation

$$
\vec{L}(s)=\vec{r}\left(t_{0}\right)+s \vec{v}\left(t_{0}\right) .
$$

Note: The parameter for the tangent line is different from the parameter of the curve itself.
Take for instance the previous example $\vec{r}(t)=\left\langle t, 1, t^{2} / 2\right\rangle$. Then the tangent line at time $t=0$ is the line that passes through the endpoint of $\vec{r}(0)=\langle 1,0,0\rangle$ and has direction given by the velocity vector at $t=0, \vec{v}(0)=\langle 0,1,0\rangle$.

Hence

$$
\vec{L}(\theta)=\langle 1,0,0\rangle+\theta\langle 0,1,0\rangle .
$$

Note that at $\theta=0$ the line touches the curve, and then it goes away from it.

MATH 20C Lecture 8 - Friday, January 24, 2014

Review

- vectors: length and direction, additions, subtraction, multiplication by scalars
- dot product (scalar!): definition, connection with the cosine of the angle between vectors.
- cross product (vector!): only in 3D; definition, direction $\perp \vec{A}, \vec{B}$ (and right hand rule), length = area of parallelogram with sides \vec{A}, \vec{B}; connection with the sine of the angle between vectors.
- planes: $a x+b y+c z=d$

Then $\langle a, b, c\rangle$ is a normal vector.
To write down equation of a plane need normal vector and a point in the plane.

- lines: parametric equations
- lines and planes (intersect, parallel, etc)
- parametrize curves and motions
- velocity (vector!), acceleration (vector!), speed (scalar!) of a particle moving along a trajectory $\vec{r}(t)$
- arc length (scalar or function of time!) of a trajectory $\vec{r}(t)$
- tangent line to a trajectory
- find the component of a vector in a given direction

We went through the some of the extra problems in the study guide: $2,3,7$. We also computed arc length in 7 .

Example 1 A planet is circling a star counterclockwise describing a circle of radius 5. It makes 2 complete revolutions around the star each year. Parametrize the trajectory of the planet as function of $t=$ time in years.
Since the planet rotates twice around the star in a year, that means that in a year it covers twice the circumference of the circle, that is 4π times the radius. So

$$
\vec{r}(t)=\langle 5 \cos (4 \pi t), 5 \sin (4 \pi t)\rangle .
$$

Example 2 Parametrize the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$.
Take $\frac{x}{a}=\cos t$ and $\frac{y}{b}=\sin t$. We get

$$
\vec{r}(t)=\langle a \cos t, b \sin t\rangle .
$$

