MATH 20C Lecture 12 - Monday, February 3, 2014

Partial derivatives

$f_{x}=\frac{\partial f}{\partial x}=\lim _{\Delta x \rightarrow 0} \frac{f\left(x_{0}+\Delta x, y_{0}\right)-f\left(x_{0}, y_{0}\right)}{\Delta x} ;$ same for f_{y}.
Geometric interpretation: f_{x}, f_{y} are slopes of tangent lines of vertical slices of the graph of f (fixing $y=y_{0}$; fixing $x=x_{0}$).
How to compute: treat x as variable, y as constant.
Example: $f(x, y)=x^{3} y+y^{2}$, then $f_{x}=3 x^{2} y, f_{y}=x^{3}+2 y$.
Another example: $g(x, y)=\cos \left(x^{3} y+y^{2}\right)$.
Use chain rule (version I)

$$
\frac{\partial F}{\partial x}=\frac{d F}{d u} \frac{\partial u}{\partial x}
$$

Here $F(u)=\cos u$ and $u=f$, so get $\frac{\partial g}{\partial x}=-\left(3 x^{2} y\right) \sin \left(x^{3} y+y^{2}\right)$.

Linear approximation

Linear approximation formula:

$$
\Delta f \approx f_{x} \Delta x+f_{y} \Delta y .
$$

Justification: f_{x} and f_{y} give slopes of two lines tangent to the graph:

$$
L_{1}:\left\{\begin{array}{l}
y=y_{0} \\
z=z_{0}+f_{x}\left(x_{0}, y_{0}\right)\left(x-x_{0}\right)
\end{array} \quad \text { and } L_{2}:\left\{\begin{array}{l}
x=x_{0} \\
z=z_{0}+f_{y}\left(x_{0}, y_{0}\right)\left(y-y_{0}\right) .
\end{array}\right.\right.
$$

We can use this to get the equation of the tangent plane to the graph:

$$
z=z_{0}+f_{x}\left(x_{0}, y_{0}\right)\left(x-x_{0}\right)+f_{y}\left(x_{0}, y_{0}\right)\left(y-y_{0}\right) .
$$

Approximation formula $=$ the graph is close to its tangent plane.

MATH 20C Lecture 13 - Wednesday, February 5, 2014

Recall chain rule I: $g=F(u)$ and $u=u(x, y)$, then $\frac{\partial g}{\partial x}=\frac{d F}{d u} \frac{\partial u}{\partial x}$. Used this to compute the partial derivatives of $g(x, y, z)=\ln \left(x^{2}+y^{2}-x z\right)$. Get

$$
\frac{\partial g}{\partial x}=\frac{2 x-z}{x^{2}+y^{2}-x z}, \quad \frac{\partial g}{\partial z}=\frac{-x}{x^{2}+y^{2}-x z} .
$$

Higher order partial derivatives

Are computed by taking successive partial derivatives. For instance $\frac{\partial^{2} f}{\partial x^{2}}=\frac{\partial}{\partial x}\left(\frac{\partial f}{\partial x}\right)$ and so on.
Computed

$$
\begin{aligned}
\frac{\partial^{2} g}{\partial z \partial x} & =\frac{\partial x}{\partial z}\left(\frac{\partial g}{\partial x}\right)=\frac{\partial}{\partial z}\left(\frac{2 x-z}{x^{2}+y^{2}-x z}\right)=\frac{(-1)\left(x^{2}+y^{2}-x z\right)-(2 x-z)(-x)}{\left(x^{2}+y^{2}-x z\right)^{2}} \\
\frac{\partial^{2} g}{\partial x \partial z} & =\frac{\partial}{\partial x}\left(\frac{\partial g}{\partial z}\right)=\frac{\partial}{\partial x}\left(\frac{-x}{x^{2}+y^{2}-x z}\right)=\frac{(-1)\left(x^{2}+y^{2}-x z\right)-(-x)(2 x-z)}{\left(x^{2}+y^{2}-x z\right)^{2}}
\end{aligned}
$$

Notice that $\frac{\partial^{2} g}{\partial z \partial x}=\frac{\partial^{2} g}{\partial x \partial z}$. This is no coincidence. In general,

$$
\frac{\partial^{2} f}{\partial x \partial y}=\frac{\partial^{2} f}{\partial y \partial x}
$$

Differentials

Recall in single variable calculus: $u=f(x) \Longrightarrow d u=f^{\prime}(x) d x$.
Example: $u=\arcsin (x) \Longrightarrow x=\sin u \Longrightarrow d x=\cos u d u \Longrightarrow \frac{d u}{d x}=\frac{1}{\cos u}=\frac{1}{\sqrt{1-x^{2}}}$.
Total differential of $f=f(x, y, z)$ is

$$
d f=f_{x} d x+f_{y} d y+f_{z} d z .
$$

This is a new type of object, with its own rules for manipulating it ($d f$ is not the same as $\Delta f!$) It encodes how variations of f are related to variations of x, y, z. We can use it in two ways:

1. as a placeholder for approximation formulas: $\Delta f \approx f_{x} \Delta x+f_{y} \Delta y+f_{z} \Delta z$.
2. divide by dt to get the chain rule II: if $x=x(t), y=y(t), z=z(t)$, then f becomes a function of t and $\frac{d f}{d t}=f_{x} \frac{d x}{d t}+f_{y} \frac{d y}{d t}+f_{z} \frac{d z}{d t}$.

Example: $w=x^{2} y+z$ and $x=t, y=e^{t}, z=\sin t$. Then $d w=2 x y d x+x 2 d y+d z$. This gives $d w / d t=(2 t e t) 1+\left(t^{2}\right) e t+\cos t$, same as what we obtain by substitution into formula for w and one-variable differentiation.

Can justify the chain rule in 2 ways:

1. $d x=x^{\prime}(t) d t, d y=y^{\prime}(t) d t, d z=z^{\prime}(t) d t$, so substituting we get $d w=f_{x} d x+f_{y} d y+f_{z} d z=$ $f_{x} x^{\prime}(t) d t+f_{y} y^{\prime}(t) d t+f_{z} z^{\prime}(t) d t$, hence $d w / d t$.
2. (more rigorous): $\Delta f \approx f_{x} \Delta x+f_{y} \Delta y+f_{z} \Delta z$, divide both sides by Δt and take limit as $\Delta t \rightarrow 0$.

Application: chain rule with more variables

For example $w=f(x, y), x=x(u, v), y=y(u, v)$. Then we can view f as a function of u and v.
Then

$$
d w=f_{x} d x+f_{y} d y=f_{x}\left(x_{u} d u+x_{v} d v\right)+f_{y}\left(y_{u} d u+y_{v} d v\right)=\left(f_{x} x_{u}+f_{y} y_{u}\right) d u+\left(f_{x} x_{v}+f_{y} y_{v}\right) d v
$$

Identifying coefficients of $d u$ and $d v$ we get

$$
\begin{aligned}
& \frac{\partial f}{\partial u}=\frac{\partial f}{\partial x} \frac{\partial x}{\partial u}+\frac{\partial f}{\partial y} \frac{\partial y}{\partial u} \\
& \frac{\partial f}{\partial v}=\frac{\partial f}{\partial x} \frac{\partial x}{\partial v}+\frac{\partial f}{\partial y} \frac{\partial y}{\partial v}
\end{aligned}
$$

The idea behind each formula is that changing u causes both x and y to change, at rates $\partial x / \partial u$ and $\partial y / \partial u$. The change in x affects f at the rate of $\partial f / \partial x$, for a total effect of $\frac{\partial f}{\partial x} \frac{\partial x}{\partial u}$. At the same time, the change in y affects f at the rate of $\partial f / \partial y$, for a total effect of $\frac{\partial f}{\partial y} \frac{\partial y}{\partial u}$. Finally, the two effects add up to produce the change in f given by the first line in the boxed formula.

Example: polar coordinates.
$x=r \cos \theta, y=r \sin \theta$. Then $\frac{d f}{d r}=f_{x} \frac{\partial x}{\partial r}+f_{y} \frac{\partial y}{\partial r}=f_{x} \cos \theta+f_{y} \sin \theta$, and similarly $\frac{d f}{d \theta}$.

MATH 20C Lecture 14 - Friday, February 7, 2014

Recall the chain rule I for $f(x, y, z)$ and $x=x(t), y=y(t), z=z(t)$:

$$
\frac{d f}{d t}=f_{x} \frac{d x}{d t}+f_{y} \frac{d y}{d t}+f_{z} \frac{d z}{d t}=\nabla f \cdot\left\langle\frac{d x}{d t}, \frac{d y}{d t}, \frac{d z}{d t}\right\rangle
$$

where $\nabla f=\left\langle\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}\right\rangle$ is called the gradient vector of $f(x, y, z)$. Using this notation, the chain rule can be re-written as follows. On the path described by $\vec{r}(t)=\langle x(t), y(t)\rangle$, we have

$$
\frac{d f}{d t}=f_{x} \frac{d x}{d t}+f_{y} \frac{d y}{d t}+f_{z} \frac{d z}{d t}=\nabla f \cdot\left\langle\frac{d x}{d t}, \frac{d y}{d t}, \frac{d z}{d t}\right\rangle .
$$

That is,

$$
\frac{d f}{d t}=\nabla f \cdot \frac{d \vec{r}}{d t}=\nabla f \cdot \vec{v}
$$

where \vec{v} is the velocity vector.
Note: ∇f is a vector whose value depends on the point (x, y, z) where we evaluate f.
Theorem: ∇f is perpendicular to the level surfaces $f=c$.
Proof: take a curve $\vec{r}=\vec{r}(t)$ contained inside level surface $f=c$. Then velocity $\vec{v}=d \vec{r} / d t$ is in the tangent plane, and by chain rule, $d w / d t=\nabla f \cdot v e c v=0$, so $\vec{v} \perp \nabla f$. This is true for every \vec{v} in the tangent plane.

Example 1: $f(x, y, z)=a_{1} x+a_{2} y+a_{3} z$, then $\nabla f=\left\langle a_{1}, a_{2}, a_{3}\right\rangle$. The level surface $f=c$ is $a_{1} x+a_{2} y+a_{3} z=c$. This is a plane with normal vector $\left\langle a_{1}, a_{2}, a_{3}\right\rangle=\nabla f$, so ∇f is perpendicular on the plane $f(x, y, z)=c$.
Example 2: $f(x, y)=x^{2}+y^{2}$, then $f=c$ are circles, $\nabla w=\langle 2 x, 2 y\rangle$ points radially out so \perp circles. Application: the tangent plane to a surface $f(x, y, z)=c$ at a point P is the plane through P with normal vector $\nabla f(P)$.
Example: tangent plane to $x^{2}+y^{2}-z^{2}=4$ at $(2,1,1)$: gradient is $\langle 2 x, 2 y,-2 z\rangle=\langle 4,2,-2\rangle$; tangent plane is $4 x+2 y-2 z=8$. (Here we could also solve for $z= \pm \sqrt{x^{2}+y^{2}-4}$ and use linear approximation formula, but in general we can't.)

Directional derivatives

We want to know the rate of change of f as we move (x, y) in an arbitrary direction.
Take a unit vector \hat{u} and look at the cross-section of the graph of f by the vertical plane parallel to \hat{u} and passing through the point (x, y). This is a curve passing through the point $P=(x, y, z=f(x, y))$ and we want to compute the slope the tangent line to this curve at P.

Notice that $\frac{\partial f}{\partial x}$ is the directional derivative in the direction of $\hat{\imath}$ and $\frac{\partial f}{\partial y}$ is the directional derivative in the direction of $\hat{\jmath}$.

Notation: $D_{\hat{u}} f\left(x_{0}, y_{0}\right)$ denotes the derivative of f in the direction of the unit vector \hat{u} at the point $\left(x_{0}, y_{0}\right)$.

Shown $f=x^{2}+y^{2}+1$, and rotating slices through a point of the graph.

How to compute

Say that $\hat{u}=\langle a, b\rangle$. In order to compute $D_{\hat{u}} f\left(x_{0}, y_{0}\right)$, look at the straight line trajectory $\vec{r}(s)$ through $\left(x_{0}, y_{0}\right)$ with velocity \hat{u} given by $x(s)=x_{0}+a s, y(s)=y_{0}+b s$. Then by definition $D_{\hat{u}} f\left(x_{0}, y_{0}\right)=\frac{d f}{d s}$. This we can compute by chain rule to be $\frac{d f}{d s}=\nabla f \cdot \frac{d \vec{r}}{d s}$. Hence

$$
D_{\hat{u}} f\left(x_{0}, y_{0}\right)=\nabla f\left(x_{0}, y_{0}\right) \cdot \hat{u} .
$$

Example Compute the directional derivative of $f=x^{2}+y^{3}$ at $P=(2,1)$ in the direction of $\vec{v}=\langle 5,12\rangle$.
$\nabla f=\left\langle 2 x, 3 y^{2}\right\rangle$ so $\nabla f(P)=\langle 4,3\rangle$. The unit vector in the direction of \vec{v} is $\hat{u}=\vec{v} /|\vec{v}|=\langle 5 / 13,12 / 13\rangle$. So $D_{\hat{u}} f(P)=\nabla f(P) \cdot \hat{u}=56 / 13$. Therefore f is increasing in the direction of \vec{v}.

Geometric interpretation: $D_{\hat{u}} f=\nabla f \cdot \hat{u}=|\nabla f| \cos \theta$. Maximal for $\cos \theta=1$, when \hat{u} is in direction of ∇f. Hence: direction of ∇f is that of fastest increase of f, and $|\nabla f|$ is the directional derivative in that direction.
It is minimal in the opposite direction.
We have $D_{\hat{u}} f=0$ when $\hat{u} \perp \nabla f$, i.e. when \hat{u} is tangent to direction of level surface.

