
MATH 20C Lecture 12 - Monday, February 3, 2014

Partial derivatives

fx =
∂f

∂x
= lim

∆x→0

f(x0 + ∆x, y0)− f(x0, y0)

∆x
; same for fy.

Geometric interpretation: fx, fy are slopes of tangent lines of vertical slices of the graph of f (fixing
y = y0; fixing x = x0).
How to compute: treat x as variable, y as constant.
Example: f(x, y) = x3y + y2, then fx = 3x2y, fy = x3 + 2y.

Another example: g(x, y) = cos(x3y + y2).
Use chain rule (version I)

∂F

∂x
=
dF

du

∂u

∂x

Here F (u) = cosu and u = f , so get
∂g

∂x
= −(3x2y) sin(x3y + y2).

Linear approximation

Linear approximation formula:
∆f ≈ fx∆x+ fy∆y.

Justification: fx and fy give slopes of two lines tangent to the graph:

L1 :

{
y = y0

z = z0 + fx(x0, y0)(x− x0)
and L2 :

{
x = x0

z = z0 + fy(x0, y0)(y − y0).

We can use this to get the equation of the tangent plane to the graph:

z = z0 + fx(x0, y0)(x− x0) + fy(x0, y0)(y − y0).

Approximation formula = the graph is close to its tangent plane.

MATH 20C Lecture 13 - Wednesday, February 5, 2014

Recall chain rule I: g = F (u) and u = u(x, y), then
∂g

∂x
=
dF

du

∂u

∂x
. Used this to compute the partial

derivatives of g(x, y, z) = ln(x2 + y2 − xz). Get

∂g

∂x
=

2x− z
x2 + y2 − xz

,
∂g

∂z
=

−x
x2 + y2 − xz

.
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Higher order partial derivatives

Are computed by taking successive partial derivatives. For instance ∂2f
∂x2 = ∂

∂x

(
∂f
∂x

)
and so on.

Computed

∂2g

∂z∂x
=

∂x

∂z

(
∂g

∂x

)
=

∂

∂z

(
2x− z

x2 + y2 − xz

)
=

(−1)(x2 + y2 − xz)− (2x− z)(−x)

(x2 + y2 − xz)2

∂2g

∂x∂z
=

∂

∂x

(
∂g

∂z

)
=

∂

∂x

(
−x

x2 + y2 − xz

)
=

(−1)(x2 + y2 − xz)− (−x)(2x− z)
(x2 + y2 − xz)2

Notice that ∂2g
∂z∂x = ∂2g

∂x∂z . This is no coincidence. In general,

∂2f

∂x∂y
=

∂2f

∂y∂x

Differentials

Recall in single variable calculus: u = f(x) =⇒ du = f ′(x)dx.

Example: u = arcsin(x) =⇒ x = sinu =⇒ dx = cosudu =⇒ du

dx
=

1

cosu
=

1√
1− x2

.

Total differential of f = f(x, y, z) is

df = fxdx+ fydy + fzdz.

This is a new type of object, with its own rules for manipulating it (df is not the same as ∆f !) It
encodes how variations of f are related to variations of x, y, z. We can use it in two ways:

1. as a placeholder for approximation formulas: ∆f ≈ fx∆x+ fy∆y + fz∆z.

2. divide by dt to get the chain rule II: if x = x(t), y = y(t), z = z(t), then f becomes a

function of t and
df

dt
= fx

dx

dt
+ fy

dy

dt
+ fz

dz

dt
.

Example: w = x2y + z and x = t, y = et, z = sin t. Then dw = 2xydx + x2dy + dz. This gives
dw/dt = (2tet)1 + (t2)et + cos t, same as what we obtain by substitution into formula for w and
one-variable differentiation.

Can justify the chain rule in 2 ways:

1. dx = x′(t)dt, dy = y′(t)dt, dz = z′(t)dt, so substituting we get dw = fxdx + fydy + fzdz =
fxx

′(t)dt+ fyy
′(t)dt+ fzz

′(t)dt, hence dw/dt.

2. (more rigorous):∆f ≈ fx∆x+fy∆y+fz∆z, divide both sides by ∆t and take limit as ∆t→ 0.
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Application: chain rule with more variables

For example w = f(x, y), x = x(u, v), y = y(u, v). Then we can view f as a function of u and v.
Then

dw = fxdx+ fydy = fx(xudu+ xvdv) + fy(yudu+ yvdv) = (fxxu + fyyu)du+ (fxxv + fyyv)dv.

Identifying coefficients of du and dv we get

∂f

∂u
=
∂f

∂x

∂x

∂u
+
∂f

∂y

∂y

∂u

∂f

∂v
=
∂f

∂x

∂x

∂v
+
∂f

∂y

∂y

∂v

The idea behind each formula is that changing u causes both x and y to change, at rates ∂x/∂u
and ∂y/∂u. The change in x affects f at the rate of ∂f/∂x, for a total effect of ∂f

∂x
∂x
∂u . At the same

time, the change in y affects f at the rate of ∂f/∂y, for a total effect of ∂f
∂y

∂y
∂u . Finally, the two

effects add up to produce the change in f given by the first line in the boxed formula.

Example: polar coordinates.

x = r cos θ, y = r sin θ. Then
df

dr
= fx

∂x

∂r
+ fy

∂y

∂r
= fx cos θ + fy sin θ, and similarly

df

dθ
.

MATH 20C Lecture 14 - Friday, February 7, 2014

Recall the chain rule I for f(x, y, z) and x = x(t), y = y(t), z = z(t) :

df

dt
= fx

dx

dt
+ fy

dy

dt
+ fz

dz

dt
= ∇f ·

〈
dx

dt
,
dy

dt
,
dz

dt

〉

where ∇f =

〈
∂f

∂x
,
∂f

∂y
,
∂f

∂z

〉
is called the gradient vector of f(x, y, z). Using this notation, the chain

rule can be re-written as follows. On the path described by ~r(t) = 〈x(t), y(t)〉, we have

df

dt
= fx

dx

dt
+ fy

dy

dt
+ fz

dz

dt
= ∇f ·

〈
dx

dt
,
dy

dt
,
dz

dt

〉
.

That is,

df

dt
= ∇f · d~r

dt
= ∇f · ~v

where ~v is the velocity vector.
Note: ∇f is a vector whose value depends on the point (x, y, z) where we evaluate f.
Theorem: ∇f is perpendicular to the level surfaces f = c.
Proof: take a curve ~r = ~r(t) contained inside level surface f = c. Then velocity ~v = d~r/dt is in the
tangent plane, and by chain rule, dw/dt = ∇f · vecv = 0, so ~v ⊥ ∇f. This is true for every ~v in the
tangent plane.
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Example 1: f(x, y, z) = a1x + a2y + a3z, then ∇f = 〈a1, a2, a3〉. The level surface f = c is
a1x+ a2y + a3z = c. This is a plane with normal vector 〈a1, a2, a3〉 = ∇f, so ∇f is perpendicular
on the plane f(x, y, z) = c.
Example 2: f(x, y) = x2 +y2, then f = c are circles, ∇w = 〈2x, 2y〉 points radially out so ⊥ circles.
Application: the tangent plane to a surface f(x, y, z) = c at a point P is the plane through P
with normal vector ∇f(P ).
Example: tangent plane to x2 + y2 − z2 = 4 at (2, 1, 1) : gradient is 〈2x, 2y,−2z〉 = 〈4, 2,−2〉;
tangent plane is 4x+ 2y− 2z = 8. (Here we could also solve for z = ±

√
x2 + y2 − 4 and use linear

approximation formula, but in general we can’t.)

Directional derivatives

We want to know the rate of change of f as we move (x, y) in an arbitrary direction.
Take a unit vector û and look at the cross-section of the graph of f by the vertical plane

parallel to û and passing through the point (x, y). This is a curve passing through the point
P = (x, y, z = f(x, y)) and we want to compute the slope the tangent line to this curve at P.

Notice that ∂f
∂x is the directional derivative in the direction of ı̂ and ∂f

∂y is the directional derivative
in the direction of ̂.

Notation: Dûf(x0, y0) denotes the derivative of f in the direction of the unit vector û at the
point (x0, y0).

Shown f = x2 + y2 + 1, and rotating slices through a point of the graph.

How to compute

Say that û = 〈a, b〉. In order to computeDûf(x0, y0), look at the straight line trajectory ~r(s) through

(x0, y0) with velocity û given by x(s) = x0+as, y(s) = y0+bs. Then by definition Dûf(x0, y0) =
df

ds
.

This we can compute by chain rule to be
df

ds
= ∇f · d~r

ds
. Hence

Dûf(x0, y0) = ∇f(x0, y0) · û.

Example Compute the directional derivative of f = x2 + y3 at P = (2, 1) in the direction of
~v = 〈5, 12〉.

∇f = 〈2x, 3y2〉 so ∇f(P ) = 〈4, 3〉. The unit vector in the direction of ~v is û = ~v/|~v| = 〈5/13, 12/13〉.
So Dûf(P ) = ∇f(P ) · û = 56/13. Therefore f is increasing in the direction of ~v.

Geometric interpretation: Dûf = ∇f · û = |∇f | cos θ. Maximal for cos θ = 1, when û is in
direction of ∇f. Hence: direction of ∇f is that of fastest increase of f , and |∇f | is the directional
derivative in that direction.
It is minimal in the opposite direction.
We have Dûf = 0 when û ⊥ ∇f , i.e. when û is tangent to direction of level surface.
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