MATH 20C Lecture 18 - Wednesday, February 19, 2014

Double integrals

Recall integral in 1-variable calculus: $\int_{a}^{b} f(x) d x=$ area below graph $y=f(x)$ over $[a, b]$.
Now: double integral $\iint_{R} f(x, y) d A=$ volume below graph $z=f(x, y)$ over region R in the $x y$ plane.

Cut R into small pieces $\Delta A_{i} \Longrightarrow$ the volume is approximately $\sum f\left(x_{i}, y_{i}\right) \Delta A_{i}$. Limit as $\Delta A \rightarrow 0$ gives $\iint f(x, y) d A$. (demo: potato cut into french fries)

How to compute the integral? By taking slices: $S(x)=$ area of the slice by a plane parallel to $y z$-plane (demo: potato chips); then

$$
\text { volume }=\int_{x_{\min }}^{x_{\max }} S(x) d x \quad \text { and for given } x, \quad S(x)=\int_{y_{\min }(x)}^{y_{\max }(x)} f(x, y) d y
$$

BEWARE! The limits of integration in y depend on x !
In the inner integral, x is a fixed parameter, y is the integration variable. We get an iterated integral.
Example $1 f(x, y)=1-x^{2}-y^{2}$ and $R: 0 \leq x \leq 1,0 \leq y \leq 1$.

$$
\int_{0}^{1} \int_{0}^{1}\left(1-x^{2}-y^{2}\right) d y d x
$$

How to evaluate?
$1)$ inner integral (x is constant):

$$
\int_{0}^{1}\left(1-x^{2}-y^{2}\right) d y=\left[y-x^{2} y-\frac{y^{3}}{3}\right]_{y=0}^{y=1}=\left(1-x^{2}-\frac{1}{3}\right)-0=\frac{2}{3}-x^{2} .
$$

2)outer integral: $\int_{0}^{1}\left(\frac{2}{3}-x^{2}\right) d x=\left[\frac{2}{3} x-\frac{x^{3}}{3}\right]_{x=0}^{x=1}=\frac{2}{3}-\frac{1}{3}=\frac{1}{3}$.

Note: $d A=d y d x=d x d y$, limit of $\Delta A=\Delta y \Delta x=\Delta x \Delta y$ for small rectangles.
Example 2 Same function over the quarter-disk $R: x^{2}+y^{2} \leq 1,0 \leq x \leq 1,0 \leq y \leq 1$. (computes volume between $x y$-plane and paraboloid in the first octant).
How to find the bounds of integration? Fix x constant and look at the slice of R parallel to y-axis. Bounds from $y=0$ to $y=\sqrt{1-x^{2}}$ in the inner integral. For the outer integral: first slice is at $x=0$, last slice is at $x=1$. So we get

$$
\int_{0}^{1} \int_{0}^{\sqrt{1-y^{2}}}\left(1-x^{2}-y^{2}\right) d x d y
$$

Note that the inner bounds depend on the outer variable x; the outer bounds are constants! 1) inner integral (x is constant):

$$
\int_{0}^{\sqrt{1-x^{2}}}\left(1-x^{2}-y^{2}\right) d y=\left[\left(1-x^{2}\right) y-\frac{y^{3}}{3}\right]_{y=0}^{y=\sqrt{1-x^{2}}}=\left(1-x^{2}\right)^{3 / 2}-\frac{\left(1-x^{2}\right)^{3 / 2}}{3}=\frac{2}{3}\left(1-x^{2}\right)^{3 / 2}
$$

2)outer integral:

$$
\int_{0}^{1} \frac{1}{3}\left(1-x^{2}\right)^{3 / 2} d x=\ldots\left(\text { trig substitution } x=\sin \theta, \text { double angle formulas) } \ldots=\frac{\pi}{8}\right.
$$

This is complicated! It will be easier to do it in polar coordinates.

Exchanging the order of integration

$\int_{0}^{1} \int_{0}^{2} f(x, y) d x d y=\int_{0}^{2} \int_{0}^{1} f(x, y) d y d x$, since region is a rectangle (drawn picture). In general, more complicated!

Example: $\int_{0}^{1} \int_{x}^{\sqrt{x}} \frac{e^{y}}{y} d y d x$ (Inner integral has no formula.)
To exchange order: 1) draw the region (here: $x \leq y \leq \sqrt{x}$ for $0 \leq x \leq 1$ - picture drawn on blackboard).
2) figure out bounds in other direction: fixing a value of y, what are the bounds for x ? Here: left border is $x=y^{2}$, right is $x=y$; first slice is $y=0$, last slice is $y=1$, so we get

$$
\int_{0}^{1} \int_{y^{2}}^{y} \frac{e^{y}}{y} d x d y=\int_{0}^{1} \frac{e^{y}}{y}\left(y-y^{2}\right) d y=\int_{0}^{1} e^{y}(1-y) d y \stackrel{\text { parts }}{=}\left[e^{y}(1-y)\right]_{y=0}^{y=1}+\int_{0}^{1} e^{y} d y=e-2 .
$$

MATH 20C Lecture 19 - Friday, February 21, 2014

Review topics

- Functions of several variables, contour plots.
- Partial derivatives, gradient; approximation formulas, tangent planes, directional derivatives.
- higher order partial derivatives
- chain rule, change of variables, implicit differentiation
- Min/max problems: critical points, second derivative test, checking boundary. (least squares won't be on the exam)
- Min/max for non-independent variables: Lagrange multipliers
- Double integrals: how to evaluate (iterated integrals) and how to choose/interchange order of integration

Went through problems $5,7,8,14,18$ from the suggested practice problems in the study guide.

