MATH 20C Lecture 20 - Monday, February 24, 2014: Second midterm

MATH 20C Lecture 21 - Wednesday, February 26, 2014

Written before lecture, material presented might be slightly different.

Applications of double integrals

Computing volumes Example: Find the volume of the region enclosed by $z=1-y^{2}$ and $z=$ $y^{2}-1$ for $0 \leq x \leq 2$.
Both surfaces look like parabola-shaped tunnels along the x-axis. They intersect at $1-y^{2}=$ $y^{2}-1 \Longrightarrow y= \pm 1$. So $z=0$ and x can be anything, therefore lines parallel to the x-axis. Draw picture, please! Get volume by integrating the difference $z_{\mathrm{top}}-z_{\mathrm{bottom}}$, i.e. take the volume under the top surface and subtract the volume under the bottom surface (same idea as in 1 variable).

$$
\begin{aligned}
\pm \mathrm{vol}=\int_{0}^{2} \int_{-1}^{1}\left(\left(1-y^{2}\right)-\left(y^{2}-1\right)\right) d y d x & =2 \int_{0}^{2} \int_{-1}^{1}\left(1-y^{2}\right) d y d x \\
& =2 \int_{0}^{2}\left[y-\frac{y^{3}}{3}\right]_{y=-1}^{y=1} d x=2 \int_{0}^{2} \frac{4}{3} d x=\frac{16}{3} .
\end{aligned}
$$

Since volume is always positive, our answer is $16 / 3$.
Area of a plane region R is

$$
\operatorname{area}(R)=\iint_{R} 1 d A
$$

Mass the total mass of a flat object in the shape of a region R with density given by $\rho(x, y)$ is

$$
\text { Mass }=\iint_{R} \rho(x, y) d A .
$$

Average the average value of a function $f(x, y)$ over the plane region R is

$$
\bar{f}=\frac{1}{\operatorname{area}(R)}=\iint_{R} f(x, y) d A .
$$

Weighted average of the function $f(x, y)$ over the plane region R with density $\rho(x, y)$ is

$$
\frac{1}{\text { Mass }} \iint_{R} f(x, y) \rho(x, y) d A .
$$

Center of mass of a plate with density $\rho(x, y)$ is the point with coordinates (\bar{x}, \bar{y}) given by weighted average

$$
\begin{aligned}
& \bar{x}=\frac{1}{\text { Mass }} \iint_{R} x \rho(x, y) d A, \\
& \bar{y}=\frac{1}{\text { Mass }} \iint_{R} y \rho(x, y) d A .
\end{aligned}
$$

Example: A plate in the shape of the region bounded by $y=x^{-1}$ and $y=0$ for $1 \leq x \leq 4$ has mass density $\rho(x, y)=y / x$. Calculate the total mass of the plate.

First, draw region. Then set limits of integration.

$$
\text { Mass }=\int_{1}^{4} \int_{0}^{x^{-1}} \frac{y}{x} d y d x=\int_{1}^{4}\left[\frac{y^{2}}{2 x}\right]_{y=0}^{y=x^{-1}} d x=\frac{1}{2} \int_{1}^{4} x^{-3} d x=-\frac{1}{4}\left[\frac{1}{x^{2}}\right]_{x=1}^{x=4}=\frac{15}{64} .
$$

For the same region, center of mass has coordinates

$$
\begin{gathered}
\bar{x}=\frac{1}{\text { Mass }} \iint_{R} x \rho(x, y) d A=\frac{64}{15} \int_{1}^{4} \int_{0}^{x^{-1}} y d y d x=\frac{64}{15} \int_{1}^{4}\left[y^{2}\right]_{y=0}^{y=x^{-1}} d x= \\
=\frac{64}{15} \int_{1}^{4} x^{-2} d x=\frac{64}{15}\left[-\frac{1}{x}\right]_{x=1}^{x=4}=\frac{16}{5}
\end{gathered}
$$

and

$$
\begin{gathered}
\bar{y}=\frac{1}{\text { Mass }} \iint_{R} y \rho(x, y) d A=\frac{64}{15} \int_{1}^{4} \int_{0}^{x^{-1}} \frac{y^{2}}{x} d y d x= \\
=\frac{64}{15} \int_{1}^{4}\left[\frac{y^{3}}{3 x}\right]_{y=0}^{y=x^{-1}} d x=\frac{64}{45} \int_{1}^{4} x^{-4} d x=\frac{64}{45}\left[-\frac{1}{3 x^{3}}\right]_{x=1}^{x=4}=\frac{64}{135} \frac{63}{64}=\frac{7}{15} .
\end{gathered}
$$

MATH 20C Lecture 22 - Friday, February 28, 2014

Written before lecture, material presented might be slightly different.

Polar coordinates

Recall: in the plane, $x=r \cos \theta, y=r \sin \theta$ where r is the distance from the origin to the (x, y) point, θ is the angle with the positive x-axis. Drawn picture.
Useful if either integrand or region have a simpler expression in polar coordinates.
Area element: $\Delta A \approx(r \Delta \theta) \Delta r$ (picture drawn of a small element with sides Δr and $r \Delta \theta$). Taking Deltar, $\Delta \theta \rightarrow 0$, we get

$$
d A=r d r d \theta
$$

Example (from way back in Lecture 18):
$\iint_{x^{2}+y^{2} \leq 1,0 \leq x \leq 1,0 \leq y \leq 1}\left(1-x^{2}-y^{2}\right) d x d y=\int_{0}^{\pi / 2} \int_{0}^{1}\left(1-r^{2}\right) r d r d \theta=\int_{0}^{\pi / 2}\left[\frac{r^{2}}{2}-\frac{r^{4}}{4}\right]_{r=0}^{r=1} d \theta=\frac{\pi}{8}$.
Once again,

$$
\iint_{R} f(x, y) d A=\iint_{R} f(r, \theta) r d r d \theta
$$

In general: when setting up $\iint f r d r d \theta$, find bounds as usual: given a fixed θ, find initial and final values of r (sweep region by rays).
Example 1 Integrate $x y+y^{2}$ over the region in plane described in polar coordinates by $1 \leq r \leq 2$, $-\pi / 2 \leq \theta \leq \pi / 2$.
This is a half annulus. In polar coordinates, $x y+y^{2}=r^{2} \cos \theta \sin \theta+r^{2} \sin ^{2} \theta$. So we have to compute

$$
\begin{aligned}
& \int_{-\pi / 2}^{\pi / 2} \int_{1}^{2} r^{2}\left(\cos \theta \sin \theta+\sin ^{2} \theta\right) r d r d \theta=\int_{-\pi / 2}^{\pi / 2}\left(\cos \theta \sin \theta+\sin ^{2} \theta\right)\left[\frac{r^{4}}{4}\right]_{r=1}^{r=2} d \theta \\
&=\frac{7}{4} \int_{-\pi / 2}^{\pi / 2}\left(\cos \theta \sin \theta+\sin ^{2} \theta\right) d \theta=\frac{7}{8} \int_{-\pi / 2}^{\pi / 2}(\sin (2 \theta)+1-\cos (2 \theta)) d \theta \\
&=\frac{7}{16}[-\cos (2 \theta)+2 \theta-\sin (2 \theta)]_{\theta=\pi / 2}^{\theta=\pi / 2}=\frac{7 \pi}{16}
\end{aligned}
$$

Example $2 \iint_{D}(x+1) y d A$, where $D: x \geq 0, y \geq 0, x^{2}+y^{2} \leq 1$.
$x=r \cos \theta, y=r \sin \theta, 0 \leq r \leq 1,0 \leq \theta \leq \pi / 2$ and the integral becomes

$$
\begin{gathered}
\int_{0}^{\pi / 2} \int_{0}^{1}(1+r \cos \theta) r \sin \theta r d r d \theta=\int_{0}^{\pi / 2} \int_{0}^{1}\left(r^{2} \sin \theta+r^{3} \sin \theta \cos \theta\right) d r d \theta= \\
=\int_{0}^{\pi / 2}\left(\frac{1}{3} \sin \theta+\frac{1}{4} \sin \theta \cos \theta\right) d \theta=\frac{1}{3}[-\cos \theta]_{\theta=0}^{\theta=\pi / 2}+\frac{1}{4}\left[\frac{\sin ^{2} \theta}{2}\right]_{\theta=0}^{\theta=\pi / 2}=\frac{1}{3}+\frac{1}{8}=\frac{11}{24} .
\end{gathered}
$$

Example $3 \int_{-\infty}^{\infty} e^{-x^{2}} d x$.
Denote by A our integral. It will be non-negative since the exponential is positive. Then

$$
A^{2}=A \cdot A=\left(\int_{-\infty}^{\infty} e^{-x^{2}} d x\right)\left(\int_{-\infty}^{\infty} e^{-y^{2}} d y\right)=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} e^{-x^{2}-y^{2}} d x d y
$$

Changing to polar coordinates, this gives $A^{2}=\int_{0}^{2 \pi} \int_{0}^{\infty} r e^{-r^{2}} d r d \theta$.
The inner integral is equal, via the change of variables $u=r^{2}$, to

$$
\frac{1}{2} \int_{0}^{\infty} e^{-u} d u=\frac{1}{2}
$$

Hence $A^{2}=\pi$, and $A=\sqrt{\pi}$.

