MATH 20C Lecture 20 - Monday, February 24, 2014: Second
midterm

MATH 20C Lecture 21 - Wednesday, February 26, 2014

Written before lecture, material presented might be slightly different.

Applications of double integrals

Computing volumes FEzample: Find the volume of the region enclosed by z = 1 — 4% and z =
y?—1for0<ax<2.

Both surfaces look like parabola-shaped tunnels along the z-axis. They intersect at 1 — y? =
y> =1 = y = +1. So z = 0 and = can be anything, therefore lines parallel to the z-axis.
Draw picture, please! Get volume by integrating the difference ziop — Zbottom, i-€. take the
volume under the top surface and subtract the volume under the bottom surface (same idea
as in 1 variable).
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Since volume is always positive, our answer is 16/3.

area(R) = //R 1dA.

Mass the total mass of a flat object in the shape of a region R with density given by p(z,y) is

Mass = //Rp(af,y)dA.

Average the average value of a function f(x,y) over the plane region R is

Area of a plane region R is

Weighted average of the function f(z,y) over the plane region R with density p(z,y) is

M;ss / /R f,y)p(z, y)dA.




Center of mass of a plate with density p(z,y) is the point with coordinates (Z,y) given by

weighted average
1
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J dA.
U= Voss / /R yp(x,y)

Example: A plate in the shape of the region bounded by y = 2! and y = 0 for 1 < 2 < 4 has
mass density p(x,y) = y/z. Calculate the total mass of the plate.
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First, draw region. Then set limits of integration.
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For the same region, center of mass has coordinates
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MATH 20C Lecture 22 - Friday, February 28, 2014

Written before lecture, material presented might be slightly different.

Polar coordinates

Recall: in the plane, x = rcosf,y = rsinf where r is the distance from the origin to the (z,y)
point, 6 is the angle with the positive x-axis. Drawn picture.

Useful if either integrand or region have a simpler expression in polar coordinates.

Area element: AA ~ (rAf)Ar (picture drawn of a small element with sides Ar and rA#). Taking
Deltar, A0 — 0, we get

dA = rdrdf.



Ezample (from way back in Lecture 18):
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Once again,
//Rf(:r,y)dA: //Rf(r, O)r drdb.

In general: when setting up [[ frdrdf, find bounds as usual: given a fixed 6, find initial and
final values of r (sweep region by rays).

Example 1 Integrate zy+ y? over the region in plane described in polar coordinates by 1 < r < 2,

—m/2 <60 <m/2.
This is a half annulus. In polar coordinates, 2y + y? = r% cos #sin f + 2 sin §. So we have to
compute
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Example 2 [[,(z+ 1)ydA, where D : 2 >0,y > 0,2% +y* < 1.
x=rcosf,y=rsinf,0 <r <1,0 <60 < x/2 and the integral becomes
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Example 3 [%_ e~ dz.
Denote by A our integral. It will be non-negative since the exponential is positive. Then

A=A A= </ e_xgdx> (/ e_y2dy> :/ / e_xQ_y2dajdy.
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The inner integral is equal, via the change of variables u = r2, to
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Hence A? = 7, and A = /7.



