MATH 20C Lecture 20 - Monday, February 24, 2014: Second midterm

MATH 20C Lecture 21 - Wednesday, February 26, 2014

Written before lecture, material presented might be slightly different.

Applications of double integrals

Computing volumes *Example:* Find the volume of the region enclosed by $z = 1 - y^2$ and $z = y^2 - 1$ for $0 \le x \le 2$.

Both surfaces look like parabola-shaped tunnels along the x-axis. They intersect at $1 - y^2 = y^2 - 1 \implies y = \pm 1$. So z = 0 and x can be anything, therefore lines parallel to the x-axis. Draw picture, please! Get volume by integrating the difference $z_{\text{top}} - z_{\text{bottom}}$, i.e. take the volume under the top surface and subtract the volume under the bottom surface (same idea as in 1 variable).

$$\pm \operatorname{vol} = \int_0^2 \int_{-1}^1 \left((1 - y^2) - (y^2 - 1) \right) dy \, dx = 2 \int_0^2 \int_{-1}^1 (1 - y^2) dy \, dx$$
$$= 2 \int_0^2 \left[y - \frac{y^3}{3} \right]_{y=-1}^{y=1} dx = 2 \int_0^2 \frac{4}{3} dx = \frac{16}{3}.$$

Since volume is always positive, our answer is 16/3.

Area of a plane region R is

$$\operatorname{area}(R) = \iint_R 1 dA.$$

Mass the total mass of a flat object in the shape of a region R with density given by $\rho(x, y)$ is

Mass =
$$\iint_R \rho(x, y) dA$$
.

Average the average value of a function f(x, y) over the plane region R is

$$\bar{f} = \frac{1}{\operatorname{area}(R)} = \iint_R f(x, y) dA.$$

Weighted average of the function f(x, y) over the plane region R with density $\rho(x, y)$ is

$$\frac{1}{\text{Mass}} \iint_R f(x, y) \rho(x, y) dA.$$

Center of mass of a plate with density $\rho(x, y)$ is the point with coordinates (\bar{x}, \bar{y}) given by weighted average

$$\bar{x} = \frac{1}{\text{Mass}} \iint_R x \rho(x, y) dA,$$
$$\bar{y} = \frac{1}{\text{Mass}} \iint_R y \rho(x, y) dA.$$

Example: A plate in the shape of the region bounded by $y = x^{-1}$ and y = 0 for $1 \le x \le 4$ has mass density $\rho(x, y) = y/x$. Calculate the total mass of the plate.

First, draw region. Then set limits of integration.

$$Mass = \int_{1}^{4} \int_{0}^{x^{-1}} \frac{y}{x} dy \, dx = \int_{1}^{4} \left[\frac{y^{2}}{2x} \right]_{y=0}^{y=x^{-1}} dx = \frac{1}{2} \int_{1}^{4} x^{-3} dx = -\frac{1}{4} \left[\frac{1}{x^{2}} \right]_{x=1}^{x=4} = \frac{15}{64}$$

For the same region, center of mass has coordinates

$$\bar{x} = \frac{1}{\text{Mass}} \iint_R x \rho(x, y) dA = \frac{64}{15} \int_1^4 \int_0^{x^{-1}} y dy \, dx = \frac{64}{15} \int_1^4 \left[y^2 \right]_{y=0}^{y=x^{-1}} dx =$$
$$= \frac{64}{15} \int_1^4 x^{-2} dx = \frac{64}{15} \left[-\frac{1}{x} \right]_{x=1}^{x=4} = \frac{16}{5}$$

and

$$\bar{y} = \frac{1}{\text{Mass}} \iint_R y\rho(x,y) dA = \frac{64}{15} \int_1^4 \int_0^{x^{-1}} \frac{y^2}{x} dy \, dx =$$
$$= \frac{64}{15} \int_1^4 \left[\frac{y^3}{3x}\right]_{y=0}^{y=x^{-1}} dx = \frac{64}{45} \int_1^4 x^{-4} dx = \frac{64}{45} \left[-\frac{1}{3x^3}\right]_{x=1}^{x=4} = \frac{64}{135} \frac{63}{64} = \frac{7}{15}$$

MATH 20C Lecture 22 - Friday, February 28, 2014

Written before lecture, material presented might be slightly different.

Polar coordinates

Recall: in the plane, $x = r \cos \theta$, $y = r \sin \theta$ where r is the distance from the origin to the (x, y) point, θ is the angle with the positive x-axis. Drawn picture.

Useful if either integrand or region have a simpler expression in polar coordinates.

Area element: $\Delta A \approx (r\Delta\theta)\Delta r$ (picture drawn of a small element with sides Δr and $r\Delta\theta$). Taking *Deltar*, $\Delta\theta \to 0$, we get

$$dA = r \, dr \, d\theta.$$

Example (from way back in Lecture 18):

$$\iint_{x^2+y^2 \le 1, 0 \le x \le 1, 0 \le y \le 1} \left(1 - x^2 - y^2\right) dxdy = \int_0^{\pi/2} \int_0^1 (1 - r^2) r \, dr \, d\theta = \int_0^{\pi/2} \left[\frac{r^2}{2} - \frac{r^4}{4}\right]_{r=0}^{r=1} d\theta = \frac{\pi}{8}$$

Once again,

$$\iint_R f(x,y)dA = \iint_R f(r,\theta)r\,dr\,d\theta.$$

In general: when setting up $\iint fr \, dr \, d\theta$, find bounds as usual: given a fixed θ , find initial and final values of r (sweep region by rays).

Example 1 Integrate $xy + y^2$ over the region in plane described in polar coordinates by $1 \le r \le 2$, $-\pi/2 \le \theta \le \pi/2.$

This is a half annulus. In polar coordinates, $xy + y^2 = r^2 \cos \theta \sin \theta + r^2 \sin^2 \theta$. So we have to compute

$$\int_{-\pi/2}^{\pi/2} \int_{1}^{2} r^{2} (\cos\theta\sin\theta + \sin^{2}\theta) r \, dr \, d\theta = \int_{-\pi/2}^{\pi/2} (\cos\theta\sin\theta + \sin^{2}\theta) \left[\frac{r^{4}}{4}\right]_{r=1}^{r=2} d\theta$$
$$= \frac{7}{4} \int_{-\pi/2}^{\pi/2} (\cos\theta\sin\theta + \sin^{2}\theta) d\theta = \frac{7}{8} \int_{-\pi/2}^{\pi/2} (\sin(2\theta) + 1 - \cos(2\theta)) \, d\theta$$
$$= \frac{7}{16} \left[-\cos(2\theta) + 2\theta - \sin(2\theta)\right]_{\theta=\pi/2}^{\theta=\pi/2} = \frac{7\pi}{16}$$

Example 2 $\iint_D (x+1)y dA$, where $D: x \ge 0, y \ge 0, x^2 + y^2 \le 1$.

 $x = r \cos \theta, y = r \sin \theta, 0 \le r \le 1, 0 \le \theta \le \pi/2$ and the integral becomes

$$\int_{0}^{\pi/2} \int_{0}^{1} (1+r\cos\theta)r\sin\theta r dr d\theta = \int_{0}^{\pi/2} \int_{0}^{1} (r^{2}\sin\theta + r^{3}\sin\theta\cos\theta) dr d\theta =$$
$$= \int_{0}^{\pi/2} \left(\frac{1}{3}\sin\theta + \frac{1}{4}\sin\theta\cos\theta\right) d\theta = \frac{1}{3} \left[-\cos\theta\right]_{\theta=0}^{\theta=\pi/2} + \frac{1}{4} \left[\frac{\sin^{2}\theta}{2}\right]_{\theta=0}^{\theta=\pi/2} = \frac{1}{3} + \frac{1}{8} = \frac{11}{24}$$

Example 3 $\int_{-\infty}^{\infty} e^{-x^2} dx$.

Changing

Denote by A our integral. It will be non-negative since the exponential is positive. Then

$$A^{2} = A \cdot A = \left(\int_{-\infty}^{\infty} e^{-x^{2}} dx\right) \left(\int_{-\infty}^{\infty} e^{-y^{2}} dy\right) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} e^{-x^{2}-y^{2}} dx \, dy$$

to polar coordinates, this gives $A^{2} = \int_{0}^{2\pi} \int_{0}^{\infty} r e^{-r^{2}} dr d\theta$.

The inner integral is equal, via the change of variables $u = r^2$, to

$$\frac{1}{2}\int_0^\infty e^{-u}du = \frac{1}{2}.$$

Hence $A^2 = \pi$, and $A = \sqrt{\pi}$.