MATH 20C Lecture 23 - Monday, March 3, 2014

Triple Integrals

$$
\iiint_{R} f(x, y, z) d V \quad(R \text { is a solid in space })
$$

Note: $\Delta V=$ area(base) \cdot height $=\Delta A \Delta z$, so $d V=d A d z=d x d y d z$ or any permutation of the three.
Example $1 R$: the region between paraboloids $z=x^{2}+y^{2}$ and $z=4-x^{2}-y^{2}$. (picture drawn)
The volume of this region is $\iiint_{R} 1 d V=\iint_{D}\left[\int_{x^{2}+y^{2}}^{4-x^{2}-y^{2}} d z\right] d A$, where D is the shadow in the $x y$-plane of the region R.

To set up bounds, (1) for fixed (x, y) find bounds for z : here lower limit is $z=x^{2}+y^{2}$, upper limit is $z=4-x^{2}-y^{2}$; (2) find the shadow of R onto the $x y$-plane, i.e. set of values of (x, y) above which region lies. Here: R is widest at intersection of paraboloids, which is in plane $z=2$; general method: for which (x, y) is z on top surface $\geq z$ on bottom surface? Answer: when $4-x^{2}-y^{2} \geq x^{2}+y^{2}$, i.e. $x^{2}+y^{2} \leq 2$. So we integrate over a disk of radius $\sqrt{2}$ in the $x y$-plane. By usual method to set up double integrals, we finally get

$$
\operatorname{vol}(R)=\int_{-\sqrt{2}}^{\sqrt{2}} \int_{-\sqrt{2-x^{2}}}^{\sqrt{2-x^{2}}} \int_{x^{2}+y^{2}}^{4-x^{2}-y^{2}} d z d y d x
$$

Actual evaluation would be easier using polar coordinates:

$$
\operatorname{vol}(R)=\iint_{x^{2}+y^{2} \leq 2}\left(4-2 x^{2}-2 y^{2}\right) d A=\int_{0}^{2 \pi} \int_{0}^{\sqrt{2}}\left(4-2 r^{2}\right) r d r d \theta=\int_{0}^{2 \pi}\left[\frac{1}{8}\left(4-2 r^{2}\right)^{2}\right]_{r=0}^{r=\sqrt{2}} d \theta=4 \pi
$$

Example 2 (based on Example 5 from Section 15.3 in the book) Let R be the region in the first octant (i.e. $x \geq 0, y \geq 0, z \geq 0$) bounded by

$$
z=4-y^{2}, \quad y=2 x, \quad z=0, \quad x=0 .
$$

Consider $f(x, y, z)=x y z$. Set up the integral $\iiint_{R} f(x, y, z) d V$, in two different ways.
Showed picture of R and its projections on the various coordinate planes.
Setup \#1 Integrate first with respect to z, then with respect to y.
The surface $z=4-y^{2}$ intersects the first quadrant of the $x y$-plane in the line $y=2$. The projection of the $x y$-plane is a triangle bounded by the y-axis and the lines $y=2$ and $y=2 x$. For each point (x, y) the vertical segment above it goes from $z=0$ to $z=4-y^{2}$. Get

$$
\int_{0}^{1} \int_{2 x}^{2} \int_{0}^{4-y^{2}} x y z d z d y d x
$$

Setup \#2 Integrate first with respect to x, then with respect to z.
The projection onto the $y z$-plane is bounded by the y-axis, the z-axis and the parabola $z=4-y^{2}$. For each point (y, z) the segment in the direction of the x-axis goes from $x=0$ to $x=y / 2$. Get

$$
\int_{0}^{2} \int_{0}^{4-y^{2}} \int_{0}^{y / 2} x y z d x d z d y
$$

Calculate:

$$
\begin{aligned}
& \int_{0}^{2} \int_{0}^{4-y^{2}} \int_{0}^{y / 2} x y z d x d z d y=\int_{0}^{2} \int_{0}^{4-y^{2}}\left[\frac{x^{2} y z}{2}\right]_{x=0}^{x=y / 2} d z d y=\frac{1}{8} \int_{0}^{2} \int_{0}^{4-y^{2}} y^{3} z d z d y=\frac{1}{16} \int_{0}^{2} y^{3}\left(4-y^{2}\right)^{2} d y \\
& =\frac{1}{16} \int_{0}^{2}\left(16 y^{3}-8 y^{5}+y^{7}\right) d y=\frac{1}{16}\left[4 y^{4}-\frac{4}{3} y^{6}+\frac{1}{8} y^{8}\right]_{y=0}^{y=2}=\frac{1}{16}\left(64-\frac{256}{3}+32\right)=6-\frac{16}{3}=\frac{2}{3}
\end{aligned}
$$

The other way,

$$
\begin{aligned}
& \int_{0}^{1} \int_{2 x}^{2} \int_{0}^{4-y^{2}} x y z d z d y d x=\int_{0}^{1} \int_{2 x}^{2}\left[\frac{x y z^{2}}{2}\right]_{z=0}^{z=4-y^{2}} d y d x=\frac{1}{2} \int_{0}^{1} \int_{2 x}^{2} x y\left(4-y^{2}\right)^{2} d y d x= \\
& =\frac{1}{2} \int_{0}^{1}\left[\frac{x\left(4-y^{2}\right)^{3}}{6}\right]_{y=2 x}^{y=2}=-\frac{1}{12} \int_{0}^{1} x\left(4-4 x^{2}\right)^{3} d x=-\frac{1}{12}\left[\frac{\left(4-4 x^{2}\right)^{4}}{32}\right]_{x=0}^{x=1}=\frac{2^{8}}{2^{7} \cdot 3}=\frac{2}{3}
\end{aligned}
$$

Applications

Mass the total mass of a solid R with density given by $\rho(x, y, z)$ is

$$
\operatorname{Mass}(\mathrm{R})=\iiint_{R} \rho(x, y, z) d V
$$

Average the average value of a function $f(x, y, z)$ over the a solid R is

$$
\bar{f}=\frac{1}{\operatorname{vol}(R)}=\iiint_{R} f(x, y, z) d V
$$

Weighted average of the function $f(x, y, z)$ over the solid R with density $\rho(x, y, z)$ is

$$
\frac{1}{\operatorname{Mass}(R)} \iiint_{R} f(x, y, z) \rho(x, y, z) d V
$$

Center of mass of a solid with density $\rho(x, y, z)$ is the point with coordinates $(\bar{x}, \bar{y}, \bar{z})$ given by weighted average

$$
\begin{aligned}
\bar{x} & =\frac{1}{\operatorname{Mass}(R)} \iiint_{R} x \rho(x, y, z) d V \\
\bar{y} & =\frac{1}{\operatorname{Mass}(R)} \iiint_{R} y \rho(x, y, z) d V \\
\bar{z} & =\frac{1}{\operatorname{Mass}(R)} \iiint_{R} z \rho(x, y, z) d V
\end{aligned}
$$

Example: Let R be a solid in the shape of the first octant of the unit ball. Assume the density is given by $\rho(x, y, z)=y$. Find the z-coordinate of the center of mass of R.

Solution First drawn picture of R. The unit sphere has equation $x^{2}+y^{2}+z^{2}=1$. It intersects the $x y$-plane in the unit circle $x^{2}+y^{2}=1$. We want only the parts with $x \geq 0, y \geq 0, z \geq 0$.

$$
\begin{aligned}
\bar{z} & =\iiint_{R} z \rho(x, y, z) d V=\iint_{\text {quarter unit disk }}\left[\int_{0}^{\sqrt{1-x^{2}-y^{2}}} y z d z\right] d A \\
& =\int_{0}^{1} \int_{0}^{\sqrt{1-x^{2}}} \int_{0}^{\sqrt{1-x^{2}-y^{2}}} y z d z d y d x=\int_{0}^{1} \int_{0}^{\sqrt{1-x^{2}}}\left[y \frac{z^{2}}{2}\right]_{z=0}^{z=\sqrt{1-x^{2}-y^{2}}} d y d x=\ldots=\frac{1}{15}
\end{aligned}
$$

MATH 20C Lecture 24 - Wednesday, March 5, 2014

Cylindrical coordinates

(r, θ, z) where $x=r \cos \theta, y=r \sin \theta$. (Drawn picture.) Here r measures distance from z-axis, θ measures angle from $x z$-plane, z is still the height.
Cylinder of radius 8 centered on z-axis is $r=8$ (drawn); $\theta=\pi / 3$ is a vertical half-plane (drawn).
Volume element: $d V=d A d z$; in cylindrical coordinates, $d A=r d r d \theta$, so

$$
d V=r d r d \theta d z .
$$

Once again,

$$
\iiint_{R} f(x, y, z) d V=\iiint_{R} f(r, \theta, z) r d r d \theta d z .
$$

Example R : portion of the half-cylinder $x^{2}+y^{2} \leq 4, x \geq 0$ such that $0 \leq z \leq 3 y$. Compute the mass of the solid in the shape of R with mass-density given by $\rho(x, y, z)=z^{2}$.

Again, it's natural to set this up in cylindrical coordinates. The bounds for z are clear: $z_{\min }=0$ and $z_{\max }=3 y=3 r \sin \theta$. The shadow on the $x y$-plane is the quarter disk $x^{2}+y^{2} \leq 1, x \geq 0, y \geq 0$.

$$
\begin{aligned}
& \operatorname{Mass}(R)=\int_{0}^{\pi / 2} \int_{0}^{2} \int_{0}^{3 r \sin \theta} z^{2} r d z d r d \theta= \int_{0}^{\pi / 2} \\
& \quad \int_{0}^{2} r\left[\frac{z^{3}}{3}\right]_{z=0}^{z=3 r \sin \theta} d r d \theta \\
&=\int_{0}^{\pi / 2} \int_{0}^{2} 9 r^{4} \sin ^{3} \theta d r d \theta=9 \int_{0}^{\pi / 2} \frac{32}{5} \sin ^{3} \theta d \theta
\end{aligned}
$$

To evaluate this last integral, write $\sin ^{3} \theta=\sin \theta\left(1-\cos ^{2} \theta\right)$ and use the substitution $u=\cos \theta$. Do not forget to change the bounds of integration!

Example: The volume of the unit ball \mathbb{B} in \mathbb{R}^{3} can be computed using cylindrical coordinates ($4 \pi / 3$).

Example: Let $W: x^{2}+y^{2} \leq 1,0 \leq z \leq 1+x^{2}+y^{2}$.

$$
\iiint_{W}\left(x^{2}+y^{2}-z\right) d V=\int_{0}^{2 \pi} \int_{0}^{1} \int_{0}^{1+r^{2}}\left(r^{2}-z\right) r d z d r d \theta=\ldots
$$

MATH 20C Lecture 25 - Friday, March 7, 2014

Spherical coordinates

Spherical coordinates: (ρ, ϕ, θ).
$\rho=$ rho $=$ distance to origin; $\phi=\varphi=$ phi $=$ angle down from z-axis; $\theta=$ same as in cylindrical coordinates. Diagram drawn in space, and picture of 2D slice by vertical plane with z, r coordinates.

Formulas to remember: $z=\rho \cos \phi, r=\rho \sin \phi($ so $x=\rho \sin \phi \cos \theta, y=\rho \sin \phi \sin \theta)$.

$$
\rho=\sqrt{x^{2}+y^{2}+z^{2}}=\sqrt{r^{2}+z^{2}} .
$$

The equation $\rho=a$ defines the sphere of radius a centered at 0 .
On the surface of the sphere, ϕ is similar to latitude, except it is 0 at the north pole, $\pi / 2$ on the equator, π at the south pole.
θ is similar to longitude.
$\phi=\pi / 4$ is a cone $\left(z=r=\sqrt{x^{2}+y^{2}}\right)$.
$\phi=\pi / 2$ is the $x y$-plane.
Volume element: $d V=\rho^{2} \sin \phi d \rho d \phi d \theta$. To understand this formula, first study surface area on sphere of radius a : picture shown of a "rectangle" corresponding to $\Delta \phi, \Delta \theta$ with sides $=$ portion of circle of radius a, of length $a \Delta \phi$, and portion of circle of radius $r=a \sin \phi$, of length $r \Delta \theta=a \sin \phi \Delta \theta$. So $\Delta S \approx a^{2} \sin \phi \Delta \phi \Delta \theta$, which gives the surface element $d S=a^{2} \sin \phi d \phi d \theta$.

The volume element follows: for a small "box", $\Delta V=\Delta S \Delta \rho$, so $d V=d \rho d S=\rho^{2} \sin \phi d \rho d \phi d \theta$.
Example: volume of the unit ball.

$$
\iiint_{x^{2}+y^{2}+z^{2} \leq 1} 1 d V=\int_{0}^{2 \pi} \int_{0}^{\pi} \int_{0}^{1} \rho^{2} \sin \phi d \rho d \phi d \theta=\frac{1}{3} \int_{0}^{2 \pi} \int_{0}^{\pi} \sin \phi d \phi d \theta=\frac{1}{3} \int_{0}^{2 \pi} 2 d \theta=\frac{4 \pi}{3}
$$

Example: volume of the portion of unit ball above the plane $z=1 / \sqrt{2}$? (picture drawn). This can be set up in cylindrical or spherical coordinates. For fixed ϕ, θ we are slicing our region by rays straight out of the origin; ρ ranges from its value on the plane $z=1 / \sqrt{2}$ to its value on the sphere $\rho=1$.

Spherical coordinate equation of the plane:

$$
z=\rho \cos \phi=1 / \sqrt{2}, \text { so } \rho=\frac{1}{\sqrt{2}} \sec \phi
$$

The volume is:

$$
\int_{0}^{2 \pi} \int_{0}^{\pi / 4} \int_{\sec \phi / \sqrt{2}}^{1} \rho^{2} \sin \phi d \rho d \phi d \theta
$$

(Bound for ϕ explained by looking at a slice by vertical plane $\theta=$ constant: the edge of the region is at $z=r=1 / \sqrt{2})$. Evaluation: not done. Final answer: $\frac{2 \pi}{3}-\frac{5 \pi}{6 \sqrt{2}}$.

