MATH 20E Lecture 2 - Tuesday, October 1, 2013

More notions from MATH 20C.

Partial derivatives

_of . flwo+ Az,y0) — f(z0,Y0)
fe =5 = Aim, Au

; same for f,.

Geometric interpretation: f,, f, are slopes of tangent lines of vertical slices of the graph of f (fixing
y = yo; fixing z = xo).
How to compute: treat x as variable, y as constant.

In vector notation, for a function of n variables

of f(a+ he;)
(@) =1 JAT T
8563' (CL) hli% h
where
e;=(0,...,0, 1 ,0,...,0).
J
Examples: Example: f(z,y) = 23y+y?. Then g—i = 322y (treat y as a constant, x as a variable)

and %g]; =23 + 2.

0 0
We can package the partial derivatives into the gradient vector V f(@) = <af(c_i), cee af(&')> .
X1 Tn
Example: g(x,v,2) = In(2? + y? — x2). Then
dg 2¢ — z dg _ 2y dg _ —x

or 22+ —xz Oy 22+y2—wz 0z 22+yR—az
On clicker: Vg(1,1,1) = (1,2,—1); Vg(1,1,2) does not exist (cannot plug in); Vg(1,1,3) does
not exist either, since the function is not defined at that point.
We can also take higher order partial derivatives. For instance,

%9 a(am) a< - ) (~1)@® +y* —w2) = (~a)(20 — 2)

920z 0z \0z) Or\2+y2—az) (2 +y? —x2)?

Linear approximation

z:f(x,y)

Linear approximation formula: Af ~ f,Ax + f,Ay.
We can use this to get the equation of the tangent plane to the graph:

z2=2z9+ fx(xo,yo)(l‘ - 900) + fy(x07y0)(y — %)

where zo = f(zo, yo)-
Approximation formula = the graph is close to its tangent plane.



Example: z = cos z+el=Y at (xo,y0) = (g, 1) . Then zy = cos g—keo =land % = —sinx, g—z =

—2ye!¥*. Thus a = %(xo,yo) =sin§ = -1 and b = g—;(xo,yo) = —2. The tangent plane has
equation

z—1:—1(x—g)—2(y—1) = x+2y+z:3+g.

Question (clicker): is f (g + 100+ 0.9) bigger or smaller than 17
Answer: linear approximation says that Af =~ f; Az + f,Ay. Plug in our values and see

s

f(g+17rﬁ,o.9) —f(g,1) z(—l)lﬂm—k(—2)~0.1>0 — f<g+ﬁ’0'9> —1>0

The differential
The Jacobian matriz of f = (f1,..., fm) of n variables that takes values in R™ is also called the
differential (derivative) of f. At a point @ = (a1, ...,a,) is given by

8f1 — afl —
871( ) - 8771( )
T=Df@=| : .
Ofm - Ofm -
87331( ) ... oz, (@)

Note that it is an m x n matrix.
Example: f(z,y,z) = (sin(zyz),2? + y* — 2) and @ = (1,5,0). Then

Df — yzcos(xyz) xzcos(zryz) wxycos(zyz)
N 2x 2y -1

and
Df(a):(g 100 —51>

Particular case For a function f : R™ — R the differential, which is a 1 X n matrix, can be

identified with the gradient vector

Properties:

e f:R"™ — R™, ¢real number. The differential of h = cf is Dh(@) = c¢D f(a).

o f,gR™ — R™. The differential of h = f + g is Dh(a) = Df(a) + Dg(a).

e (product rule) f,g:R™ — R. The differential of h = fg is Dh(d@) = g(@)Df(a) + f(@)Dg(a).

ND (@) — £(3)\Dald
e (quotient rule) f,g: R™ — R. The differential of h = 5 is Dh(a) = 9(@) f(?)(_‘);;( ) g(a).
g(a




Chain rule

A N and set h = go f: R®™ — RP. Then, for @ € R" andl;:f(d’)E]Rm we have

D(g o f)(a@) = Dg(b) Df(@) | (matrix multiplication)

Special cases:
e g=F(u) and u = u(z,y, z). Then
dg dFOu
or  du oz

We already used this a couple of times earlier in lecture, e.g. when we computed Vg for
g(:[],y, Z) - 11’1(.1‘2 =+ y2 - I'Z)

e ¢:R — R3c(t) = (z(t),y(t),2(t)) path and f : R® — R. Then the derivative of h(t) =
f(E()) Flalt),ylt), (1) s

dh 0fd of d of d
_Ofdx  Ofdy  Ofdz

T oodt Taydt Tosd s (Vf(E®)) - (@) -

Example: &(t) = (¢,t2,t%), f(z,y,2) = 2% + y* — cos z. Chain rule gives

dh
dt

where h(t) = f(&(t)) = t2 + t* — cos(t3).

= (22)1 + (2y)(2t) + (sin 2)(3t%) = 2t 4 413 + 3% sin(t®)

e R3 LR3I R f(zyy,2) = (u(z,y, 2),v(z,y, 2), w(z,y, z)) and the composition
h(z,y,z) =go f=g(u(z,y,2),v(z,y,2),w(z,y,=2)).

Vh=VgDf.
l.e.
Oh _ dg du +@@+ dg Ow
dr  Oudr  Ovdr  Ow dx
and so on.

Taylor’s formula for n = 1 : linear approximation. For n > 2 : left to you as reading assignment.

MATH 20E Lecture 3 - Thursday, October 3, 2013

Double integrals
/ f(z,y)dA, dA = dzxdy = dydx
R

We compute by reducing to an iterated integral



Ymax xmax(y)
/ f(z,y)dA = / S(y)dy, where S(y) = / f(z,y)dz for each y
R min x

min(y)
Example 1 f(z,y)=1—-22 -y?and R: 0<2<1,0<y < 1.

1,1
/0/0 (1—332—y2)d1’dy

How to evaluate?
1) inner integral (z is constant):

1 37y=1 1 9
lm2?— D dy= |ly—a2y—L| =(1-22-2)—0=2_22
/0( z® —y°) dy [y Ty - 3 2’ =3 S

Lo R R R
2)outer integral: /0 <3 = x2> de = [31‘ — ,563:| » =373 3

Example 2 Same function over the quarter-disk R : 2% + y2 <1,0<2x<1,0<y < 1.

How to find the bounds of integration? Fix x constant and look at the slice of R parallel to y-axis.
Bounds from y = 0 to y = v/1 — 22 in the inner integral. For the outer integral: first slice is at
x = 0, last slice is at x = 1. So we get

1 pvV1—22
/ / (1 — a2 - y2) dy dz.
0Jo

Note that the inner bounds depend on the outer variable x; the outer bounds are constants!
1) inner integral (z is constant):

Vi—2? 37 y=v1-a? 1— 2232 9
/ (1-2® —y?)dy = [(1:62)3/%] =(1$2)3/2(3)=3(1w2)3/2-
0 y:()

2)outer integral:

1
2
/ 5(1 — x2)3/2d$ = ... (trig substitution x = sinf, double angle formulas)... =
0

This is complicated‘ It will be easier to do it in polar coordinates.
Example 3 / / —daz dy (Inner integral has no formula.)

To exchange order ) draw the region (here: y < x < /y for 0 < y < 1 — picture drawn on
blackboard).

2) figure out bounds in other direction: fixing a value of z, what are the bounds for y? Picture:
left border is y = x, right is 22 = y; first slice is & = 0, last slice is z = 1, so we get

1 rx e’ 1 e’ 1 parts 1 1
/ —dydx = / —(z — 2%)dz = / e"(1—a)de "="[e"(1 —2)]j—y + / efdr =e— 2.
0 oz 0 0

2 X

Example 4 Find the volume of the region enclosed by z =1 —gy? and z =y> —1for 0 <z < 2.



Both surfaces look like parabola-shaped tunnels along the z-axis. They intersect at 1 — y? =
y> —1 = y = +1. So z = 0 and « can be anything, therefore lines parallel to the z-axis (picture
drawn). Get volume by integrating the difference ziop — Zbottom, i-€. take the volume under the top
surface and subtract the volume under the bottom surface (same idea as in 1 variable).

2 rl

2 1
vol :/0/_1 ((17y2)7(y271)) dydr =2 (1 —y?)dy dz

0J-1
2 3qy=1 2y 16
:2/ [y—y] d:U:Z/ —dr = —.
0 3 y=—1 0 3 3

Example 5 Did the interchange in order of integration from Example 2, page 291.



