
MATH 20E Lecture 2 - Tuesday, October 1, 2013

More notions from MATH 20C.

Partial derivatives

fx =
∂f

∂x
= lim

∆x→0

f(x0 + ∆x, y0)− f(x0, y0)

∆x
; same for fy.

Geometric interpretation: fx, fy are slopes of tangent lines of vertical slices of the graph of f (fixing
y = y0; fixing x = x0).
How to compute: treat x as variable, y as constant.

In vector notation, for a function of n variables

∂f

∂xj
(~a) = lim

h→0

f(~a+ h~ej)

h

where
ej = (0, . . . , 0, 1 , 0, . . . , 0).

j

Examples: Example: f(x, y) = x3y+y2. Then ∂f
∂x = 3x2y (treat y as a constant, x as a variable)

and ∂f
∂y = x3 + 2y.

We can package the partial derivatives into the gradient vector∇f(~a) =

(
∂f

∂x1
(~a), . . . ,

∂f

∂xn
(~a)

)
.

Example: g(x, y, z) = ln(x2 + y2 − xz). Then

∂g

∂x
=

2x− z
x2 + y2 − xz

,
∂g

∂y
=

2y

x2 + y2 − xz
,

∂g

∂z
=

−x
x2 + y2 − xz

.

On clicker: ∇g(1, 1, 1) = (1, 2,−1); ∇g(1, 1, 2) does not exist (cannot plug in); ∇g(1, 1, 3) does
not exist either, since the function is not defined at that point.

We can also take higher order partial derivatives. For instance,

∂2g

∂x∂z
=

∂

∂x

(
∂h

∂z

)
=

∂

∂x

(
−x

x2 + y2 − xz

)
=

(−1)(x2 + y2 − xz)− (−x)(2x− z)
(x2 + y2 − xz)2

.

Linear approximation

z = f(x, y)

Linear approximation formula: ∆f ≈ fx∆x+ fy∆y.
We can use this to get the equation of the tangent plane to the graph:

z = z0 + fx(x0, y0)(x− x0) + fy(x0, y0)(y − y0)

where z0 = f(x0, y0).
Approximation formula = the graph is close to its tangent plane.
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Example: z = cosx+e1−y2 at (x0, y0) =
(
π
2 , 1
)
. Then z0 = cos π2 +e0 = 1 and ∂z

∂x = − sinx, ∂z∂y =

−2ye1−y2 . Thus a = ∂z
∂x(x0, y0) = sin π

2 = −1 and b = ∂z
∂y (x0, y0) = −2. The tangent plane has

equation

z − 1 = −1
(
x− π

2

)
− 2(y − 1) ⇐⇒ x+ 2y + z = 3 +

π

2
.

Question (clicker): is f
(
π
2 + π

100 , 0.9
)

bigger or smaller than 1?
Answer: linear approximation says that ∆f ≈ fx∆x+ fy∆y. Plug in our values and see

f
(π

2
+

π

100
, 0.9

)
− f

(π
2
, 1
)
≈ (−1)

π

100
+ (−2) · 0.1 > 0 =⇒ f

(π
2

+
π

100
, 0.9

)
− 1 > 0.

The differential

The Jacobian matrix of f = (f1, . . . , fm) of n variables that takes values in Rm is also called the
differential (derivative) of f. At a point ~a = (a1, . . . , an) is given by

T = Df(~a) =


∂f1

∂x1
(~a) . . .

∂f1

∂xn
(~a)

...
. . .

...
∂fm
∂x1

(~a) . . .
∂fm
∂xn

(~a)


Note that it is an m× n matrix.
Example: f(x, y, z) = (sin(xyz), x2 + y2 − z) and ~a = (1, 5, 0). Then

Df =

(
yz cos(xyz) xz cos(xyz) xy cos(xyz)

2x 2y −1

)
and

Df(~a) =

(
0 0 5
2 10 −1

)
Particular case For a function f : Rn → R the differential, which is a 1 × n matrix, can be

identified with the gradient vector

∇f(~a) =

(
∂f

∂x1
(~a), . . . ,

∂f

∂xn
(~a)

)
Properties:

• f : Rn → Rm, c real number. The differential of h = cf is Dh(~a) = cDf(~a).

• f, gRn → Rm. The differential of h = f + g is Dh(~a) = Df(~a) +Dg(~a).

• (product rule) f, g : Rn → R. The differential of h = fg is Dh(~a) = g(~a)Df(~a) + f(~a)Dg(~a).

• (quotient rule) f, g : Rn → R. The differential of h = f
g is Dh(~a) =

g(~a)Df(~a)− f(~a)Dg(~a)

(g(~a))2 .
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Chain rule

Rn f−→ Rm g−→ Rp and set h = g ◦ f : Rn → Rp. Then, for ~a ∈ Rn and ~b = f(~a) ∈ Rm we have

D(g ◦ f)(~a) = Dg(~b)Df(~a) (matrix multiplication)

Special cases:

• g = F (u) and u = u(x, y, z). Then

∂g

∂x
=
dF

du

∂u

∂x

We already used this a couple of times earlier in lecture, e.g. when we computed ∇g for
g(x, y, z) = ln(x2 + y2 − xz).

• ~c : R → R3, c(t) = (x(t), y(t), z(t)) path and f : R3 → R. Then the derivative of h(t) =
f(~c(t)) = f(x(t), y(t), z(t)) is

dh

dt
=
∂f

∂x

dx

dt
+
∂f

∂y

dy

dt
+
∂f

∂z

dz

dt
= (∇f(~c(t))) ·

(
~c′(t)

)
.

Example: ~c(t) = (t, t2, t3), f(x, y, z) = x2 + y2 − cos z. Chain rule gives

dh

dt
= (2x)1 + (2y)(2t) + (sin z)(3t2) = 2t+ 4t3 + 3t2 sin(t3)

where h(t) = f(~c(t)) = t2 + t4 − cos(t3).

• R3 f−→ R3 g−→ R f(x, y, z) = (u(x, y, z), v(x, y, z), w(x, y, z)) and the composition
h(x, y, z) = g ◦ f = g (u(x, y, z), v(x, y, z), w(x, y, z)) .

∇h = ∇g Df.

i.e.
∂h

∂x
=
∂g

∂u

∂u

∂x
+
∂g

∂v

∂v

∂x
+
∂g

∂w

∂w

∂x

and so on.

Taylor’s formula for n = 1 : linear approximation. For n ≥ 2 : left to you as reading assignment.

MATH 20E Lecture 3 - Thursday, October 3, 2013

Double integrals ∫∫
R
f(x, y)dA, dA = dxdy = dydx

We compute by reducing to an iterated integral
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∫∫
R
f(x, y)dA =

∫ ymax

ymin

S(y)dy, where S(y) =

∫ xmax(y)

xmin(y)
f(x, y)dx for each y

Example 1 f(x, y) = 1− x2 − y2 and R : 0 ≤ x ≤ 1, 0 ≤ y ≤ 1.∫ 1

0

∫ 1

0

(
1− x2 − y2

)
dx dy

How to evaluate?
1) inner integral (x is constant):∫ 1

0

(
1− x2 − y2

)
dy =

[
y − x2y − y3

3

]y=1

y=0

=

(
1− x2 − 1

3

)
− 0 =

2

3
− x2.

2)outer integral:

∫ 1

0

(
2

3
− x2

)
dx =

[
2

3
x− x3

3

]x=1

x=0

=
2

3
− 1

3
=

1

3
.

Example 2 Same function over the quarter-disk R : x2 + y2 ≤ 1, 0 ≤ x ≤ 1, 0 ≤ y ≤ 1.
How to find the bounds of integration? Fix x constant and look at the slice of R parallel to y-axis.
Bounds from y = 0 to y =

√
1− x2 in the inner integral. For the outer integral: first slice is at

x = 0, last slice is at x = 1. So we get∫ 1

0

∫ √1−x2

0

(
1− x2 − y2

)
dy dx.

Note that the inner bounds depend on the outer variable x; the outer bounds are constants!
1) inner integral (x is constant):

∫ √1−x2

0

(
1− x2 − y2

)
dy =

[
(1− x2)y − y3

3

]y=
√

1−x2

y=0

= (1− x2)3/2 − (1− x2)3/2

3
=

2

3
(1− x2)3/2.

2)outer integral:∫ 1

0

2

3
(1− x2)3/2dx = . . . (trig substitution x = sin θ, double angle formulas) . . . =

π

8
.

This is complicated! It will be easier to do it in polar coordinates.

Example 3

∫ 1

0

∫ √y
y

ex

x
dx dy (Inner integral has no formula.)

To exchange order: 1) draw the region (here: y ≤ x ≤ √y for 0 ≤ y ≤ 1 – picture drawn on
blackboard).

2) figure out bounds in other direction: fixing a value of x, what are the bounds for y? Picture:
left border is y = x, right is x2 = y; first slice is x = 0, last slice is x = 1, so we get∫ 1

0

∫ x

x2

ex

x
dy dx =

∫ 1

0

ex

x
(x− x2)dx =

∫ 1

0
ex(1− x)dx

parts
= [ex(1− x)]x=1

x=0 +

∫ 1

0
exdx = e− 2.

Example 4 Find the volume of the region enclosed by z = 1− y2 and z = y2 − 1 for 0 ≤ x ≤ 2.
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Both surfaces look like parabola-shaped tunnels along the x-axis. They intersect at 1 − y2 =
y2 − 1 =⇒ y = ±1. So z = 0 and x can be anything, therefore lines parallel to the x-axis (picture
drawn). Get volume by integrating the difference ztop− zbottom, i.e. take the volume under the top
surface and subtract the volume under the bottom surface (same idea as in 1 variable).

vol =

∫ 2

0

∫ 1

−1

(
(1− y2)− (y2 − 1)

)
dy dx = 2

∫ 2

0

∫ 1

−1
(1− y2)dy dx

= 2

∫ 2

0

[
y − y3

3

]y=1

y=−1

dx = 2

∫ 2

0

4

3
dx =

16

3
.

Example 5 Did the interchange in order of integration from Example 2, page 291.
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