MATH 20E Lecture 2 - Tuesday, October 1, 2013

More notions from MATH 20C.

Partial derivatives

$f_{x}=\frac{\partial f}{\partial x}=\lim _{\Delta x \rightarrow 0} \frac{f\left(x_{0}+\Delta x, y_{0}\right)-f\left(x_{0}, y_{0}\right)}{\Delta x} ;$ same for f_{y}.
Geometric interpretation: f_{x}, f_{y} are slopes of tangent lines of vertical slices of the graph of f (fixing $y=y_{0}$; fixing $x=x_{0}$).
How to compute: treat x as variable, y as constant.
In vector notation, for a function of n variables

$$
\frac{\partial f}{\partial x_{j}}(\vec{a})=\lim _{h \rightarrow 0} \frac{f\left(\vec{a}+h \vec{e}_{j}\right)}{h}
$$

where

$$
e_{j}=\left(0, \ldots, 0, \quad \begin{array}{l}
1 \\
j
\end{array}, 0, \ldots, 0\right)
$$

Examples: Example: $f(x, y)=x^{3} y+y^{2}$. Then $\frac{\partial f}{\partial x}=3 x^{2} y$ (treat y as a constant, x as a variable) and $\frac{\partial f}{\partial y}=x^{3}+2 y$.

We can package the partial derivatives into the gradient vector $\nabla f(\vec{a})=\left(\frac{\partial f}{\partial x_{1}}(\vec{a}), \ldots \quad, \frac{\partial f}{\partial x_{n}}(\vec{a})\right)$.
Example: $g(x, y, z)=\ln \left(x^{2}+y^{2}-x z\right)$. Then

$$
\frac{\partial g}{\partial x}=\frac{2 x-z}{x^{2}+y^{2}-x z}, \quad \frac{\partial g}{\partial y}=\frac{2 y}{x^{2}+y^{2}-x z}, \quad \frac{\partial g}{\partial z}=\frac{-x}{x^{2}+y^{2}-x z} .
$$

On clicker: $\nabla g(1,1,1)=(1,2,-1) ; \nabla g(1,1,2)$ does not exist (cannot plug in); $\nabla g(1,1,3)$ does not exist either, since the function is not defined at that point.

We can also take higher order partial derivatives. For instance,

$$
\frac{\partial^{2} g}{\partial x \partial z}=\frac{\partial}{\partial x}\left(\frac{\partial h}{\partial z}\right)=\frac{\partial}{\partial x}\left(\frac{-x}{x^{2}+y^{2}-x z}\right)=\frac{(-1)\left(x^{2}+y^{2}-x z\right)-(-x)(2 x-z)}{\left(x^{2}+y^{2}-x z\right)^{2}} .
$$

Linear approximation

$$
z=f(x, y)
$$

Linear approximation formula: $\Delta f \approx f_{x} \Delta x+f_{y} \Delta y$.
We can use this to get the equation of the tangent plane to the graph:

$$
z=z_{0}+f_{x}\left(x_{0}, y_{0}\right)\left(x-x_{0}\right)+f_{y}\left(x_{0}, y_{0}\right)\left(y-y_{0}\right)
$$

where $z_{0}=f\left(x_{0}, y_{0}\right)$.
Approximation formula $=$ the graph is close to its tangent plane.

Example: $z=\cos x+e^{1-y^{2}}$ at $\left(x_{0}, y_{0}\right)=\left(\frac{\pi}{2}, 1\right)$. Then $z_{0}=\cos \frac{\pi}{2}+e^{0}=1$ and $\frac{\partial z}{\partial x}=-\sin x, \frac{\partial z}{\partial y}=$ $-2 y e^{1-y^{2}}$. Thus $a=\frac{\partial z}{\partial x}\left(x_{0}, y_{0}\right)=\sin \frac{\pi}{2}=-1$ and $b=\frac{\partial z}{\partial y}\left(x_{0}, y_{0}\right)=-2$. The tangent plane has equation

$$
z-1=-1\left(x-\frac{\pi}{2}\right)-2(y-1) \Longleftrightarrow x+2 y+z=3+\frac{\pi}{2} .
$$

Question (clicker): is $f\left(\frac{\pi}{2}+\frac{\pi}{100}, 0.9\right)$ bigger or smaller than 1 ?
Answer: linear approximation says that $\Delta f \approx f_{x} \Delta x+f_{y} \Delta y$. Plug in our values and see

$$
f\left(\frac{\pi}{2}+\frac{\pi}{100}, 0.9\right)-f\left(\frac{\pi}{2}, 1\right) \approx(-1) \frac{\pi}{100}+(-2) \cdot 0.1>0 \Longrightarrow f\left(\frac{\pi}{2}+\frac{\pi}{100}, 0.9\right)-1>0
$$

The differential

The Jacobian matrix of $f=\left(f_{1}, \ldots, f_{m}\right)$ of n variables that takes values in \mathbb{R}^{m} is also called the differential (derivative) of f. At a point $\vec{a}=\left(a_{1}, \ldots, a_{n}\right)$ is given by

$$
T=D f(\vec{a})=\left(\begin{array}{ccc}
\frac{\partial f_{1}}{\partial x_{1}}(\vec{a}) & \ldots & \frac{\partial f_{1}}{\partial x_{n}}(\vec{a}) \\
\vdots & \ddots & \vdots \\
\frac{\partial f_{m}}{\partial x_{1}}(\vec{a}) & \ldots & \frac{\partial f_{m}}{\partial x_{n}}(\vec{a})
\end{array}\right)
$$

Note that it is an $m \times n$ matrix.
Example: $f(x, y, z)=\left(\sin (x y z), x^{2}+y^{2}-z\right)$ and $\vec{a}=(1,5,0)$. Then

$$
D f=\left(\begin{array}{ccc}
y z \cos (x y z) & x z \cos (x y z) & x y \cos (x y z) \\
2 x & 2 y & -1
\end{array}\right)
$$

and

$$
D f(\vec{a})=\left(\begin{array}{ccc}
0 & 0 & 5 \\
2 & 10 & -1
\end{array}\right)
$$

Particular case For a function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ the differential, which is a $1 \times n$ matrix, can be identified with the gradient vector

$$
\nabla f(\vec{a})=\left(\begin{array}{lll}
\frac{\partial f}{\partial x_{1}}(\vec{a}), & \ldots & , \frac{\partial f}{\partial x_{n}}(\vec{a})
\end{array}\right)
$$

Properties:

- $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}, c$ real number. The differential of $h=c f$ is $D h(\vec{a})=c D f(\vec{a})$.
- $f, g \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$. The differential of $h=f+g$ is $\operatorname{Dh}(\vec{a})=D f(\vec{a})+D g(\vec{a})$.
- (product rule) $f, g: \mathbb{R}^{n} \rightarrow \mathbb{R}$. The differential of $h=f g$ is $D h(\vec{a})=g(\vec{a}) D f(\vec{a})+f(\vec{a}) D g(\vec{a})$.
- (quotient rule) $f, g: \mathbb{R}^{n} \rightarrow \mathbb{R}$. The differential of $h=\frac{f}{g}$ is $D h(\vec{a})=\frac{g(\vec{a}) D f(\vec{a})-f(\vec{a}) D g(\vec{a})}{(g(\vec{a}))^{2}}$.

Chain rule

$\mathbb{R}^{n} \xrightarrow{f} \mathbb{R}^{m} \xrightarrow{g} \mathbb{R}^{p}$ and set $h=g \circ f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{p}$. Then, for $\vec{a} \in \mathbb{R}^{n}$ and $\vec{b}=f(\vec{a}) \in \mathbb{R}^{m}$ we have

$$
D(g \circ f)(\vec{a})=D g(\vec{b}) D f(\vec{a}) \text { (matrix multiplication) }
$$

Special cases:

- $g=F(u)$ and $u=u(x, y, z)$. Then

$$
\frac{\partial g}{\partial x}=\frac{d F}{d u} \frac{\partial u}{\partial x}
$$

We already used this a couple of times earlier in lecture, e.g. when we computed ∇g for $g(x, y, z)=\ln \left(x^{2}+y^{2}-x z\right)$.

- $\vec{c}: \mathbb{R} \rightarrow \mathbb{R}^{3}, c(t)=(x(t), y(t), z(t))$ path and $f: \mathbb{R}^{3} \rightarrow \mathbb{R}$. Then the derivative of $h(t)=$ $f(\vec{c}(t))=f(x(t), y(t), z(t))$ is

$$
\frac{d h}{d t}=\frac{\partial f}{\partial x} \frac{d x}{d t}+\frac{\partial f}{\partial y} \frac{d y}{d t}+\frac{\partial f}{\partial z} \frac{d z}{d t}=(\nabla f(\vec{c}(t))) \cdot\left(\vec{c}^{\prime}(t)\right)
$$

Example: $\vec{c}(t)=\left(t, t^{2}, t^{3}\right), f(x, y, z)=x^{2}+y^{2}-\cos z$. Chain rule gives

$$
\frac{d h}{d t}=(2 x) 1+(2 y)(2 t)+(\sin z)\left(3 t^{2}\right)=2 t+4 t^{3}+3 t^{2} \sin \left(t^{3}\right)
$$

where $h(t)=f(\vec{c}(t))=t^{2}+t^{4}-\cos \left(t^{3}\right)$.

- $\mathbb{R}^{3} \xrightarrow{f} \mathbb{R}^{3} \xrightarrow{g} \mathbb{R} f(x, y, z)=(u(x, y, z), v(x, y, z), w(x, y, z))$ and the composition $h(x, y, z)=g \circ f=g(u(x, y, z), v(x, y, z), w(x, y, z))$.

$$
\nabla h=\nabla g D f
$$

i.e.

$$
\frac{\partial h}{\partial x}=\frac{\partial g}{\partial u} \frac{\partial u}{\partial x}+\frac{\partial g}{\partial v} \frac{\partial v}{\partial x}+\frac{\partial g}{\partial w} \frac{\partial w}{\partial x}
$$

and so on.
Taylor's formula for $n=1$: linear approximation. For $n \geq 2$: left to you as reading assignment.

MATH 20E Lecture 3 - Thursday, October 3, 2013

Double integrals

$$
\iint_{R} f(x, y) d A, \quad d A=d x d y=d y d x
$$

We compute by reducing to an iterated integral

$$
\iint_{R} f(x, y) d A=\int_{y_{\min }}^{y_{\max }} S(y) d y, \quad \text { where } S(y)=\int_{x_{\min }(y)}^{x_{\max }(y)} f(x, y) d x \text { for each } y
$$

Example $1 f(x, y)=1-x^{2}-y^{2}$ and $R: 0 \leq x \leq 1,0 \leq y \leq 1$.

$$
\int_{0}^{1} \int_{0}^{1}\left(1-x^{2}-y^{2}\right) d x d y
$$

How to evaluate?

1) inner integral (x is constant):

$$
\int_{0}^{1}\left(1-x^{2}-y^{2}\right) d y=\left[y-x^{2} y-\frac{y^{3}}{3}\right]_{y=0}^{y=1}=\left(1-x^{2}-\frac{1}{3}\right)-0=\frac{2}{3}-x^{2} .
$$

2)outer integral: $\int_{0}^{1}\left(\frac{2}{3}-x^{2}\right) d x=\left[\frac{2}{3} x-\frac{x^{3}}{3}\right]_{x=0}^{x=1}=\frac{2}{3}-\frac{1}{3}=\frac{1}{3}$.

Example 2 Same function over the quarter-disk R : $x^{2}+y^{2} \leq 1,0 \leq x \leq 1,0 \leq y \leq 1$. How to find the bounds of integration? Fix x constant and look at the slice of R parallel to y-axis. Bounds from $y=0$ to $y=\sqrt{1-x^{2}}$ in the inner integral. For the outer integral: first slice is at $x=0$, last slice is at $x=1$. So we get

$$
\int_{0}^{1} \int_{0}^{\sqrt{1-x^{2}}}\left(1-x^{2}-y^{2}\right) d y d x
$$

Note that the inner bounds depend on the outer variable x; the outer bounds are constants! 1) inner integral (x is constant):

$$
\int_{0}^{\sqrt{1-x^{2}}}\left(1-x^{2}-y^{2}\right) d y=\left[\left(1-x^{2}\right) y-\frac{y^{3}}{3}\right]_{y=0}^{y=\sqrt{1-x^{2}}}=\left(1-x^{2}\right)^{3 / 2}-\frac{\left(1-x^{2}\right)^{3 / 2}}{3}=\frac{2}{3}\left(1-x^{2}\right)^{3 / 2}
$$

2)outer integral:

$$
\int_{0}^{1} \frac{2}{3}\left(1-x^{2}\right)^{3 / 2} d x=\ldots(\text { trig substitution } x=\sin \theta \text {, double angle formulas }) \ldots=\frac{\pi}{8}
$$

This is complicated! It will be easier to do it in polar coordinates.
Example $3 \int_{0}^{1} \int_{y}^{\sqrt{y}} \frac{e^{x}}{x} d x d y$ (Inner integral has no formula.)
To exchange order: 1) draw the region (here: $y \leq x \leq \sqrt{y}$ for $0 \leq y \leq 1$ - picture drawn on blackboard).
2) figure out bounds in other direction: fixing a value of x, what are the bounds for y ? Picture: left border is $y=x$, right is $x^{2}=y$; first slice is $x=0$, last slice is $x=1$, so we get

$$
\int_{0}^{1} \int_{x^{2}}^{x} \frac{e^{x}}{x} d y d x=\int_{0}^{1} \frac{e^{x}}{x}\left(x-x^{2}\right) d x=\int_{0}^{1} e^{x}(1-x) d x \stackrel{\text { parts }}{=}\left[e^{x}(1-x)\right]_{x=0}^{x=1}+\int_{0}^{1} e^{x} d x=e-2 .
$$

Example 4 Find the volume of the region enclosed by $z=1-y^{2}$ and $z=y^{2}-1$ for $0 \leq x \leq 2$.

Both surfaces look like parabola-shaped tunnels along the x-axis. They intersect at $1-y^{2}=$ $y^{2}-1 \Longrightarrow y= \pm 1$. So $z=0$ and x can be anything, therefore lines parallel to the x-axis (picture drawn). Get volume by integrating the difference $z_{\mathrm{top}}-z_{\mathrm{bottom}}$, i.e. take the volume under the top surface and subtract the volume under the bottom surface (same idea as in 1 variable).

$$
\begin{aligned}
\mathrm{vol}=\int_{0}^{2} \int_{-1}^{1}\left(\left(1-y^{2}\right)-\left(y^{2}-1\right)\right) d y d x=2 \int_{0}^{2} \int_{-1}^{1} & \left(1-y^{2}\right) d y d x \\
& =2 \int_{0}^{2}\left[y-\frac{y^{3}}{3}\right]_{y=-1}^{y=1} d x=2 \int_{0}^{2} \frac{4}{3} d x=\frac{16}{3} .
\end{aligned}
$$

Example 5 Did the interchange in order of integration from Example 2, page 291.

