MATH 20E Lecture 19 - Tuesday, December 3, 2013

Review for final exam - part I

vectors: dot product $\left(\vec{v} \cdot \vec{w}=\sum v_{i} w_{i}=\|\vec{v}\|\|\vec{w}\| \cos \theta\right)$, cross product $(\|\vec{v} \times \vec{w}\|=\|\vec{v}\|\|\vec{w}\| \sin \theta=$ areaparalelogram
functions of several variables
$f: \mathbb{R}^{n} \rightarrow \mathbb{R} f(x, y, z, \ldots)$
partial derivatives: $f_{x}=\frac{\partial f}{\partial x}, f_{y}=\frac{\partial f}{\partial y}, f_{z}=\frac{\partial f}{\partial z} \ldots$
gradient vector: $\nabla f=\left(f_{x}, f_{y}, f_{z}, \ldots\right)$
one example of chain rule:

- if $g=F(u)$ and $u=u(x, y, z)$ then $\frac{\partial g}{\partial x}=\frac{d F}{d u} \frac{\partial u}{\partial x}$

Example: Let $w=f(u, v)$, where $u=x y$ and $v=x / y$. Using the chain rule, express $\frac{\partial w}{\partial x}$ and $\frac{\partial w}{\partial y}$ in terms of x, y, f_{u} and f_{v}.
The chain rule says that $\frac{\partial w}{\partial x}=f_{u} u_{x}+f_{v} v_{x}=y f_{u}+\frac{1}{y} f_{v}$ and $\frac{\partial w}{\partial y}=f_{u} u_{y}+f_{v} v_{y}=x f_{u}-\frac{x}{y^{2}} f_{v}$.
More generally, the Jacobian matrix of $f=\left(f_{1}, \ldots, f_{m}\right): \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ of n variables that takes values in \mathbb{R}^{m} is given by

$$
T=D f(\vec{a})=\left(\begin{array}{ccc}
\frac{\partial f_{1}}{\partial x_{1}}(\vec{a}) & \cdots & \frac{\partial f_{1}}{\partial x_{n}}(\vec{a}) \\
\vdots & \ddots & \vdots \\
\frac{\partial f_{m}}{\partial x_{1}}(\vec{a}) & \cdots & \frac{\partial f_{m}}{\partial x_{n}}(\vec{a})
\end{array}\right)
$$

chain rule: $\mathbb{R}^{n} \xrightarrow{f} \mathbb{R}^{m} \xrightarrow{g} \mathbb{R}^{p}$ and set $h=g \circ f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{p}$. Then, for $\vec{a} \in \mathbb{R}^{n}$ and $\vec{b}=f(\vec{a}) \in \mathbb{R}^{m}$ we have $D(g \circ f)(\vec{a})=D g(\vec{b}) D f(\vec{a})$ (matrix multiplication)

Special cases:

- $\vec{c}: \mathbb{R} \rightarrow \mathbb{R}^{3}, c(t)=(x(t), y(t), z(t))$ path and $f: \mathbb{R}^{3} \rightarrow R$. Then the derivative of $h(t)=$ $f(\vec{c}(t))=f(x(t), y(t), z(t))$ is

$$
\frac{d h}{d t}=\frac{\partial f}{\partial x} \frac{d x}{d t}+\frac{\partial f}{\partial y} \frac{d y}{d t}+\frac{\partial f}{\partial z} \frac{d z}{d t}=(\nabla f(\vec{c}(t))) \cdot(\vec{c}(t)) .
$$

- $\mathbb{R}^{3} \xrightarrow{f} \mathbb{R}^{3} \xrightarrow{g} \mathbb{R} f(x, y, z)=(u(x, y, z), v(x, y, z), w(x, y, z))$, then $h(x, y, z)=g \circ f=$ $g(u(x, y, z), v(x, y, z), w(x, y, z))$.
linear approximation formula for $f(x, y, z, \ldots): \Delta f \approx f_{x} \Delta x+f_{y} \Delta y+\ldots$
Did problem 1 from the study guide.
tangent planes to surfaces
- S is $z=f(x, y)$ the graph of $f(x, y)$

Tangent plane at $\left(x_{0}, y_{0}, z_{0}\right)$ where $z_{0}=f\left(x_{0}, y_{0}\right)$ ihas equation $f_{x}\left(x-x_{0}\right)+f_{y}\left(y-y_{0}\right)=z-z_{0}$.
In the example above, $f(x, y)=x y-x^{4}$ and the tangent plane at $(1,1)$ is $z-f(1,1)=-3(x-1)+(y-1)$, i.e. $z+3 x-y=2$.

- S is the level surface $g(x, y, z)=0$, then the tangent plane at $\left(x_{0}, y_{0}, z_{0}\right)$ has equation $\nabla g\left(x_{0}, y_{0}, z_{0}\right) \cdot\left(x-x_{0}, y-y_{0}, z-z_{0}\right)=0$.
Example: tangent plane to $S: x^{2}+3 y^{2} z-z^{4}=-26$ at the point $(1,3,2)$ The gradient of $g(x, y, z)=x^{2}+3 y^{2} z-z^{4}+26$ is $\nabla g=\left(2 x, 6 y z, 3 y^{2}-4 z^{3}\right)=(2,36,-5)$. The tangent plane is given by

$$
2(x-1)+36(y-3)-5(z-2)=0 \Longleftrightarrow 2 x+36 y-5 z=100
$$

- S is parametrized by $\Phi(u, v)$
normal vector: $\Phi_{u} \times \Phi_{v}$
Did problem 5 from the study guide.
double integrals: draw the region!
setup: need bounds of integration, then evaluate first inner integral and then outer.

$$
\iint_{R} f(x, y) d A=\int_{x_{\min }}^{x_{\max }} \int_{y_{\mathrm{bottom}}(x)}^{y_{\mathrm{top}}(x)} f(x, y) d y d x
$$

polar coordinates: $x=r \cos \theta, y=r \sin \theta \Longrightarrow d A=r d r d \theta$
Did problem 7 from the study guide.
general change of variables: $x=x(u, v), y=y(u, v) \Longrightarrow d x d y=\left|\frac{\partial(x, y)}{\partial(u, v)}\right| d u d v$ (absolute value!)
Example: Find the area of the ellipse $x^{2} / 4+y^{2} / 9 \leq 1$.
The area is given by $\iint_{x^{2} / 4+y^{2} / 9 \leq 1} 1 d x d y$
Change $x=2 u, y=3 v$ and get

$$
\frac{\partial(x, y)}{\partial(u, v)}=\left|\begin{array}{ll}
x_{u} & y_{u} \\
x_{v} & y_{v}
\end{array}\right|=\left|\begin{array}{ll}
2 & 0 \\
0 & 3
\end{array}\right|=6 \Longrightarrow d x d y=|6| d u d v=6 d u d v
$$

Therefore the area of the ellipse is

$$
\iint_{x^{2} / 4+y^{2} / 9 \leq 1} 1 d x d y=\iint_{u^{2}+v^{2} \leq 1} 6 d u d v=6 \cdot \text { area }(\text { unit disk })=6 \pi .
$$

triple integrals: setup: need bounds of integration then evaluate innermost integral and get a double integral; now do the double integral

$$
\iiint_{W} f(x, y, z) d V=\iint_{\text {shadow in the } x y \text {-plane }}\left[\int_{z_{\text {bottom }}(x, y)}^{z_{\mathrm{top}}(x, y)} f(x, y, z) d z\right] d A
$$

Did problem 6 from the study guide.
rectangular coordinates: $d V=d x d y d z$
cylindrical coordinates: $x=r \cos \theta, y=r \sin \theta, z=z \Longrightarrow d V=d z r d r d \theta$ spherical coordinates: $x=\rho \sin \phi \cos \theta, y=\rho \sin \phi \sin \theta, z=\rho \cos \phi \Longrightarrow d V=\rho^{2} \sin \phi d \rho d \phi d \theta$ general change of variables: $x=x(u, v, w), y=y(u, v, w), z=z(u, v, w) \Longrightarrow d x d y d z=\left|\frac{\partial(x, y, z)}{\partial(u, v, w)}\right| d u d v d w$ (absolute value again!)

MATH 20E Lecture 20 - Thursday, December 5, 2013

Review for final exam - part II

vector fields: recall flow lines, how to sketch vector fields
work and line integrals: work $=\int_{C} \vec{F} \cdot d \vec{r}$ where C is a curve in plane, space, etc...
in 2D: $\vec{F}=(M, N) \Longrightarrow \int_{C} \vec{F} \cdot d \vec{r}=\int_{C} M d x+N d y$ (to evaluate: express everything in terms of a single parameter)
in 3D: $\vec{F}=(P, Q, R) \Longrightarrow \int_{C} \vec{F} \cdot d \vec{r}=\int_{C} P d x+Q d y+R d z$ (to evaluate: express everything in terms of a single parameter)
gradient fields and path independence:
If \vec{F} is defined in a simply connected region (in plane or space) and $\nabla \times \vec{F}=0$, then \vec{F} is a gradient fields, i.e. $\vec{F}=\nabla g$ for some function $g(x, y)$ or $g(x, y, z)$.

To find potential: 2 methods
A. compute a line integral, e.g. $(0,0)$ to $\left(x_{1}, 0\right)$ to $\left(x_{1}, y_{1}\right)$
B. antiderivatives

For gradient fields, work is given by the Fundamental Theorem of Calculus

$$
\int_{C} \nabla g \cdot d \vec{r}=g(\text { end point })-g(\text { start point }) .
$$

flux in plane: flux of $\vec{F}=(M, N)$ across a curve C in the plane is given by

$$
\text { flux }=\int_{C} \vec{F} \cdot \hat{\mathbf{n}} d s
$$

where $\hat{\mathbf{n}}$ is the unit normal pointing to the right of the curve (i.e. $\hat{\mathbf{T}}$ rotated 90° clockwise)
in coordinates $\int_{C} \vec{F} \cdot \hat{\mathbf{n}} d s=\int_{C} M d y-N d x=\int_{C}-N d x+M d y$ (to evaluate: same as before, since it is a line integral)
flux in space: flux of $\vec{F}=(P, Q, R)$ across a surface S in space is given by

$$
\text { flux }=\iint_{S} \vec{F} \cdot \hat{\mathbf{n}} d S=\iint_{S} \vec{F} \cdot d \vec{S}
$$

where $\hat{\mathbf{n}}$ is a unit normal (orientation might be specified or left to you to choose).

- S is $z=f(x, y)$ the graph of $f(x, y) \Longrightarrow \hat{\mathbf{n}} d S= \pm\left(-f_{x},-f_{y}, 1\right) d x d y$
- S is parametrized by $\Phi(u, v) \Longrightarrow \hat{\mathbf{n}} d S= \pm \Phi_{u} \times \Phi_{v} d u d v$
- if we know that \vec{N} is a normal vector to the surface S, then $\hat{\mathbf{n}} d S= \pm \frac{\vec{N}}{\vec{N} \cdot \hat{\mathbf{k}}} d A$ (e.g. slanted plane; level surface $g(x, y, z)=0$ and $\vec{N}=\nabla g$.)

	$\begin{aligned} & 2 \mathrm{D} \\ & \vec{F}=(M, N) \end{aligned}$	$\begin{aligned} & 3 \mathrm{D} \\ & \vec{F}=(P, Q, R) \end{aligned}$
work	Green's Theorem: $C=$ closed curve oriented counterclockwise enclosing region R $\int_{C} \vec{F} \cdot d \vec{r}=\iint_{R}(\operatorname{curl} \vec{F}) d A$ in coordinates: $\int_{C} M d x+N d y=\iint_{R}\left(N_{x}-M_{y}\right) d A$ Application to area: $\text { area }(\mathrm{R})=\frac{1}{2} \int_{C} x d y-y d x$ or $\operatorname{area}(\mathrm{R})=\int_{C} x d y$	Stokes' Theorem: $C=$ curve in space $S=$ any surface bounded by C with compatible orientation $\int_{C} \vec{F} \cdot d \vec{r}=\iint_{S}(\nabla \times \vec{F}) \cdot \hat{\mathbf{n}} d S$ where $\nabla \times \vec{F}=\left\|\begin{array}{ccc}\hat{\mathbf{1}} & \hat{\mathbf{j}} & \hat{\mathbf{k}} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ P & Q & R\end{array}\right\|$ Special case: if S is a closed surface (e.g. sphere, torus) then it has no boundary and the LHS of Stokes is 0 . In this case, $\iint_{S} \nabla \times \vec{F}=0$ Note that this is true for vector curl of \vec{F}, not \vec{F} itself!
flux	Green's theorem (normal form): C and R as above n pointing outwards from R $\int_{C} \vec{F} \cdot \hat{\mathbf{n}} d s=\iint_{R}(\operatorname{div} \vec{F}) d A$ in coordinates: $\int_{C} M d y-N d x=\iint_{R}\left(M_{x}+N_{y}\right) d A$	Divergence theorem: $S=$ closed surface enclosing solid W n pointing outwards from R $\iint_{S} \vec{F} \cdot \hat{\mathbf{n}} d S=\iiint_{W}(\operatorname{div} \vec{F}) d V$ where $\operatorname{div} \vec{F}=P_{x}+Q_{y}+R_{z}$

Have a nice winter break!

