
MATH 20E Lecture 19 - Tuesday, December 3, 2013

Review for final exam - part I

vectors: dot product (~v · ~w =
∑
viwi = ‖~v‖‖~w‖ cos θ), cross product (‖~v × ~w‖ = ‖~v‖‖~w‖ sin θ =

areaparalelogram
functions of several variables
f : Rn → R f(x, y, z, . . .)
partial derivatives: fx = ∂f

∂x , fy = ∂f
∂y , fz = ∂f

∂z . . .
gradient vector: ∇f = (fx, fy, fz, . . .)
one example of chain rule:

• if g = F (u) and u = u(x, y, z) then ∂g
∂x = dF

du
∂u
∂x

Example: Let w = f(u, v), where u = xy and v = x/y. Using the chain rule, express ∂w
∂x and ∂w

∂y in
terms of x, y, fu and fv.

The chain rule says that
∂w

∂x
= fuux + fvvx = yfu +

1

y
fv and

∂w

∂y
= fuuy + fvvy = xfu −

x

y2
fv.

More generally, the Jacobian matrix of f = (f1, . . . , fm) : Rn → Rm of n variables that takes
values in Rm is given by

T = Df(~a) =


∂f1
∂x1

(~a) . . .
∂f1
∂xn

(~a)

...
. . .

...
∂fm
∂x1

(~a) . . .
∂fm
∂xn

(~a)

 .

chain rule: Rn f−→ Rm g−→ Rp and set h = g◦f : Rn → Rp. Then, for ~a ∈ Rn and~b = f(~a) ∈ Rm

we have D(g ◦ f)(~a) = Dg(~b)Df(~a) (matrix multiplication)
Special cases:

• ~c : R → R3, c(t) = (x(t), y(t), z(t)) path and f : R3 → R. Then the derivative of h(t) =
f(~c(t)) = f(x(t), y(t), z(t)) is

dh

dt
=
∂f

∂x

dx

dt
+
∂f

∂y

dy

dt
+
∂f

∂z

dz

dt
= (∇f(~c(t))) ·

(
~c′(t)

)
.

• R3 f−→ R3 g−→ R f(x, y, z) = (u(x, y, z), v(x, y, z), w(x, y, z)) , then h(x, y, z) = g ◦ f =
g (u(x, y, z), v(x, y, z), w(x, y, z)) .

linear approximation formula for f(x, y, z, . . .) : ∆f ≈ fx∆x+ fy∆y + . . .
Did problem 1 from the study guide.
tangent planes to surfaces

• S is z = f(x, y) the graph of f(x, y)
Tangent plane at (x0, y0, z0) where z0 = f(x0, y0) ihas equation fx(x−x0)+fy(y−y0) = z−z0.
In the example above, f(x, y) = xy − x4 and the tangent plane at (1, 1) is
z − f(1, 1) = −3(x− 1) + (y − 1), i.e. z + 3x− y = 2.
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• S is the level surface g(x, y, z) = 0, then the tangent plane at (x0, y0, z0) has equation
∇g(x0, y0, z0) · (x− x0, y − y0, z − z0) = 0.

Example: tangent plane to S : x2 + 3y2z − z4 = −26 at the point (1, 3, 2) The gradient of
g(x, y, z) = x2 + 3y2z − z4 + 26 is ∇g = (2x, 6yz, 3y2 − 4z3) = (2, 36,−5). The tangent plane
is given by

2(x− 1) + 36(y − 3)− 5(z − 2) = 0 ⇐⇒ 2x+ 36y − 5z = 100.

• S is parametrized by Φ(u, v)
normal vector: Φu × Φv

Did problem 5 from the study guide.

double integrals: draw the region!
setup: need bounds of integration, then evaluate first inner integral and then outer.∫∫

R
f(x, y)dA =

∫ xmax

xmin

∫ ytop(x)

ybottom(x)
f(x, y)dydx

polar coordinates: x = r cos θ, y = r sin θ =⇒ dA = rdrdθ
Did problem 7 from the study guide.

general change of variables: x = x(u, v), y = y(u, v) =⇒ dxdy =
∣∣∣∂(x,y)∂(u,v)

∣∣∣ dudv (absolute value!)

Example: Find the area of the ellipse x2/4 + y2/9 ≤ 1.
The area is given by

∫∫
x2/4+y2/9≤1 1dxdy

Change x = 2u, y = 3v and get

∂(x, y)

∂(u, v)
=

∣∣∣∣xu yu
xv yv

∣∣∣∣ =

∣∣∣∣2 0
0 3

∣∣∣∣ = 6 =⇒ dxdy = |6|dudv = 6dudv.

Therefore the area of the ellipse is∫∫
x2/4+y2/9≤1

1dxdy =

∫∫
u2+v2≤1

6dudv = 6 · area(unit disk) = 6π.

triple integrals: setup: need bounds of integration then evaluate innermost integral and get
a double integral; now do the double integral∫∫∫

W
f(x, y, z)dV =

∫∫
shadow in the xy-plane

[∫ ztop(x,y)

zbottom(x,y)
f(x, y, z)dz

]
dA

Did problem 6 from the study guide.
rectangular coordinates: dV = dxdydz
cylindrical coordinates: x = r cos θ, y = r sin θ, z = z =⇒ dV = dzrdrdθ
spherical coordinates: x = ρ sinφ cos θ, y = ρ sinφ sin θ, z = ρ cosφ =⇒ dV = ρ2 sinφdρdφdθ

general change of variables: x = x(u, v, w), y = y(u, v, w), z = z(u, v, w) =⇒ dxdydz =
∣∣∣ ∂(x,y,z)∂(u,v,w)

∣∣∣ dudvdw
(absolute value again!)
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MATH 20E Lecture 20 - Thursday, December 5, 2013

Review for final exam - part II

vector fields: recall flow lines, how to sketch vector fields

work and line integrals: work =
∫
C
~F · d~r where C is a curve in plane, space, etc. . .

in 2D: ~F = (M,N) =⇒
∫
C
~F · d~r =

∫
C Mdx+Ndy (to evaluate: express everything in terms

of a single parameter)

in 3D: ~F = (P,Q,R) =⇒
∫
C
~F · d~r =

∫
C Pdx+Qdy+Rdz (to evaluate: express everything in

terms of a single parameter)

gradient fields and path independence:
If ~F is defined in a simply connected region (in plane or space) and ∇ × ~F = 0, then ~F is a

gradient fields, i.e. ~F = ∇g for some function g(x, y) or g(x, y, z).
To find potential: 2 methods
A. compute a line integral, e.g. (0, 0) to (x1, 0) to (x1, y1)
B. antiderivatives
For gradient fields, work is given by the Fundamental Theorem of Calculus∫

C
∇g · d~r = g(end point)− g(start point).

flux in plane: flux of ~F = (M,N) across a curve C in the plane is given by

flux =

∫
C

~F · n̂ds

where n̂ is the unit normal pointing to the right of the curve (i.e. T̂ rotated 90◦ clockwise)
in coordinates

∫
C
~F · n̂ds =

∫
C Mdy − Ndx =

∫
C −Ndx + Mdy (to evaluate: same as before,

since it is a line integral)
flux in space: flux of ~F = (P,Q,R) across a surface S in space is given by

flux =

∫∫
S

~F · n̂dS =

∫∫
S

~F · d~S

where n̂ is a unit normal (orientation might be specified or left to you to choose).

• S is z = f(x, y) the graph of f(x, y) =⇒ n̂dS = ±(−fx,−fy, 1)dxdy

• S is parametrized by Φ(u, v) =⇒ n̂dS = ±Φu × Φvdudv

• if we know that ~N is a normal vector to the surface S, then n̂dS = ±
~N

~N · k̂
dA (e.g. slanted

plane; level surface g(x, y, z) = 0 and ~N = ∇g.)
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2D 3D
~F = (M,N) ~F = (P,Q,R)

work Green’s Theorem: Stokes’ Theorem:
C = closed curve oriented counterclockwise C = curve in space
enclosing region R S = any surface bounded by C

with compatible orientation∫
C
~F · d~r =

∫∫
R(curl ~F )dA ∫

C
~F · d~r =

∫∫
S(∇× ~F ) · n̂dS

in coordinates:∫
C Mdx+Ndy =

∫∫
R(Nx −My)dA where ∇× ~F =

∣∣∣∣∣∣
ı̂ ̂ k̂
∂
∂x

∂
∂y

∂
∂z

P Q R

∣∣∣∣∣∣
Application to area: Special case: if S is a closed surface
area (R) = 1

2

∫
C xdy − ydx (e.g. sphere, torus) then it has no boundary

and the LHS of Stokes is 0.

or In this case,
∫∫

S ∇× ~F = 0

area (R) =
∫
C xdy Note that this is true for vector curl of ~F ,

not ~F itself!

flux Green’s theorem (normal form): Divergence theorem:
C and R as above S = closed surface enclosing solid W
n̂ pointing outwards from R n̂ pointing outwards from R∫
C
~F · n̂ds =

∫∫
R(div ~F )dA

∫∫
S
~F · n̂dS =

∫∫∫
W (div ~F )dV

in coordinates:∫
C Mdy −Ndx =

∫∫
R(Mx +Ny)dA where div ~F = Px +Qy +Rz

Have a nice winter break!
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