
MATH 20E Lecture 8 - Tuesday, October 22, 2013

Work and line integrals

W = (force) · (distance) = ~F ·∆~r for a small motion ∆~r. Total work is obtained by summing these
along a trajectory C : get a “line integral”

W =

∫
C

~F · d~r

(
= lim

∆~r→0

∑
i

~F ·∆~ri

)
.

To evaluate the line integral, we observe C is parametrized by time t, with a ≤ t ≤ b and give
meaning to the notation

∫
C
~F · d~r by∫

C

~F · d~r =

∫ b

a

(
~F · d~r

dt

)
dt.

Example: ~F = −yı̂ + x̂ and C is given by x = t, y = t2, 0 ≤ t ≤ 1 (portion of parabola y = x2

from (0, 0) to (1, 1)). Then we substitute expressions in terms of t everywhere:

~F = (−y, x) = (−t2, t), d~r
dt

=

(
dx

dt
,
dy

dt

)
= (1, 2t),

so
∫
C
~F · d~r =

∫ 1
0
~F · d~rdtdt =

∫ 1
0 (−t2, t) · (1, 2t)dt =

∫ 1
0 t

2dt = 1
3 . (In the end things always reduce to

a one-variable integral.)
New notation for line integral: ~F = (M,N), and d~r = (dx, dy) (this is in fact a differential:

if we divide both sides by dt we get the component formula for the velocity d~r/dt). So the line
integral becomes ∫

C

~F · d~r =

∫
C
Mdx+Ndy.

The notation is dangerous: this is not a sum of integrals w.r.t. x and y, but really a line integral
along C. To evaluate one must express everything in terms of the chosen parameter.

In the above example, we have x = t, y = t2, so dx = dt, dy = 2tdt; then∫
C
−ydx+ xdy =

∫ 1

0
−t2dt+ t(2tdt) =

∫ 1

0
t2dt =

1

3
.

(same calculation as before, using different notation).
In fact, the definition of the line integral does not involve the parametrization: so the result is

the same no matter which parametrization we choose. For example we could choose to parametrize

the parabola by x = sin θ, y = sin2 θ, 0 ≤ θ ≤ π/2. Then we’d get
∫
C
~F · d~r =

∫ π/2
0 . . . dθ would be

equivalent to the previous one under the substitution t = sin θ and would again be equal to 1/3. In
practice we always choose the simplest parametrization!

Work in 3D:

situation is similar to the one in the plane Given a vector field ~F = P ı̂+Q̂+Rk̂ = (P,Q,R) where
P,Q,R are functions of x, y, z and a trajectory C in space we need to compute the work done by
the vector field along C. This is given by the line integral

W =

∫
C

~F · d~r =

∫
C

(
~F · d~r

dt

)
dt.
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In coordinates: think of d~r = (dx, dy, dz) and the line integral becomes

W =

∫
C
Pdx+Qdy +Rdz.

Example: ~F = (yz, xz, xy) and C : x = t3, y = t2, z = t for 0 ≤ t ≤ 1. Then dx = 3t2dt, dy =
2tdt, dz = dt and substitute:∫

C

~F · d~r =

∫
C
yzdx+ xzdy + xydz =

∫ 1

0
6t5dt = 1.

(In general, express (x, y, z) in terms of a single parameter: 1 degree of freedom)

Geometric approach

Recall on trajectory C, velocity is
d~r

dt
=

ds

dt
T̂ where s = arclength, T̂= unit tangent vector to

trajectory, ds
dt = speed. So d~r = T̂ds and∫

C

~F · d~r =

∫
C

~F · T̂ds.

Sometimes the calculation is easier this way!
Example: C = circle of radius a centered at origin; ~F = x̂ı + y̂ (points radially out). Then

~F · T̂ = 0 because they are perpendicular (picture drawn), so
∫
C
~F · T̂ds =

∫
C 0ds = 0.

Example: same C; ~F = −yı̂ + x̂ then ~F points in the same direction as T̂ so ~F · T̂ = ‖~F‖ = a.
Get that ∫

C

~F · T̂ds =

∫
C
ads = a

∫
C
ds = a · (length of C) = a(2πa) = 2πa2.

We checked that we get the same answer if we compute using parametrization x = a cos θ, y =
a sin θ.

More complicated trajectories; orientation

Example: ~F = yı̂ + x̂; C = C1 + C2 + C3 enclosing sector of unit disk from 0 to π/4 (picture
shown). Then work =

∫
C
~F ·d~r is the sum of the work on each of C1, C2, C3. So we need to compute∫

Ci
ydx+ xdy for i = 1, 2, 3.

1) C1 : x-axis from (0, 0) to (1, 0). Can do x = t, y = 0, dx = dt, dy = 0, 0 ≤ t ≤ 1. So∫
C1
ydx+ xdy =

∫ 1
0 0dt = 0.

Equivalently, geometrically: along x-axis, y = 0 so ~F = x̂ while T̂ = î (perpendicular). Therefore∫
C1

~F · T̂ds = 0.

2) C2 : x = cos θ, y = sin θ, 0 ≤ θ ≤ π/4. Then dx = − sin θdθ, dy = cos θdθ. So∫
C2

ydx+ xdy =

∫ π/4

0
sin θ(− sin θdθ) + cos θ(cos θdθ) =

∫ pi/4

0
cos(2θ)dθ =

[
1

2
sin 2θ

]θ=π/4
θ=0

=
1

2
.
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3) C3 = line segment from
(

1√
2
, 1√

2

)
to (0, 0) : could take x = 1√

2
− 1√

2
t, y = 1√

2
− 1√

2
t, 0 ≤ t ≤ 1.

Easier: consider C3 backwards ( denoted C−3 ) which is parametrized by x = y = t with 0 ≤ t ≤ 1√
2
.

Work along C−3 is opposite of work along C3.∫
C−

3

ydx+ xdy =

∫ 1/
√

2

0
tdt+ tdt =

[
t2
]t=1/

√
2

t=0
=

1

2
=⇒

∫
C3

ydx+ xdy = −1

2
.

Alternatively, ∫
C3

ydx+ xdy =

∫ 0

1/
√

2
tdt+ tdt =

[
t2
]t=0

t=1/
√

2
= −1

2
.

Total work =
∫
C1
ydx+ xdy +

∫
C2
ydx+ xdy +

∫
C3
ydx+ xdy = 0 + 1

2 −
1
2 = 0.

Gradient fields

If ~F is a gradient field (i.e. ~F = ∇f for some potential f) then we can use the fundamental
theorem of calculus for line integrals:∫

C
∇f · d~r = f(P1)− f(P0) when C runs from P0 to P1.

Physical interpretation: the work done by a gradient field is given by the change in potential.
Proof (in 2 variables, but works in however many):∫

C
∇f ·d~r =

∫ t1

t0

(
fx
dx

dt
+ fy

dy

dt

)
dt =

∫ t1

t0

d

dt
(f(x(t), y(t))) dt = [f(x(t), y(t))]t=t1t=t0

= f(P1)−f(P0).

For instance, in the last example from Monday’s lecture, we had ~F = (y, x) = ∇f where
f(x, y) = xy. (picture shown of C, ~F and level curves). We could compute

∫
Ci

just by evaluating
f = xy at end points. Total work is 0 because we end where we started.

Consequences:

for a gradient field, we have:

• Path independence: if C1, C2 have same endpoints then
∫
C1
∇f · d~r =

∫
C2
∇f · d~r (both equal

to f(P1) − f(P0) by the theorem). So the line integral
∫
C ∇f · d~r depends only on the end

points, not on the actual trajectory.

• Conservativeness: if C is a closed loop then
∫
C ∇f · d~r = 0(= f(P )?f(P )). (e.g. in above

example,
∫
C = 0 + 1/2− 1/2 = 0.)

WARNING: this is only for gradient fields!
Example: ~F = −yı̂ + x̂ is not a gradient field: as seen Monday, along C = circle of radius a

counterclockwise (~F is parallel to T̂),
∫
C
~F · d~r = 2πa2. Hence ~F is not conservative, and not a

gradient field.
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Physical interpretation

If the force field ~F is the gradient of a potential f, then work of ~F = change in value of potential.
E.g.: 1) ~F = gravitational field, f = gravitational potential; 2) ~F = electrical field; f = electrical
potential (voltage). (Actually physicists use the opposite sign convention, ~F = −∇f). Conserva-
tiveness means that energy comes from change in potential f , so no energy can be extracted from
motion along a closed trajectory (conservativeness = conservation of energy: the change in kinetic
energy equals the work of the force equals the change in potential energy).

Note: path independence is equivalent to conservativeness by considering C1, C2 with same
endpoints, C = C1 + C−2 is a closed loop.

Surfaces in R3

1) Surface S is the graph of some function z = f(x, y) over a region R of xy-plane: tangent
plane at (x0, y0, z0) to S where z0 = f(x0, y0) is given by

a(x− x0) + b(y − y0) = z − z0 where a =
∂f

∂x
(x0, y0) and b =

∂f

∂y
(x0, y0).

Example: cannot remember what example I picked.

2) Surface S is given by the implicit equation f(x, y, z) = c where c is a constant. We can think
of this as the level surface f = c. The gradient vector ∇f(x0, y0, z0) is normal to the tangent
plane at (x0, y0, z0). Equation of the plane is

∇f ·(x−x0, y−y0, z−z0) = 0 ⇐⇒ a(x−x0)+b(y−y0)+c(z−z0) = 0 where (a, b, c) = ∇f(x0, y0, z0).

Example: tangent plane to hyperboloid x2 + y2 − z2 = 4 (picture drawn) at (2, 1, 1) : gradient
is (2x, 2y,−2z) = (4, 2,−2); tangent plane is 4x + 2y − 2z = 8. (Here we could also solve for
z = ±

√
x2 + y2 − 4 and use linear approximation formula, but in general we can’t.)

MATH 20E Lecture 9 - Thursday, October 24, 2013

Surface area and tangent planes to surfaces

area of a surface is given by
∫∫

surface dS where dS is the surface area element.

0) The xy coordinate plane: area element dS = dA = dxdy, normal vector n̂ = ±k̂, tangent
plane = xy-plane itself.

1) Horizontal plane z = a : area element dS = dxdy, normal vector n̂ = ±k̂, tangent plane is
z = a plane itself.

2) Vertical plane x = a : area element dS = dydz, normal vector n̂ = ±ı̂, tangent plane is x = a
plane itself.

3) If S is the graph of some function z = f(x, y) over a region R of xy-plane: use x and y as
variables. Contribution of a small piece of S to surface area?
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Consider portion of S lying above a small rectangle ∆x∆y in xy-plane. In linear approximation it
is a parallelogram. (picture shown)

The vertices are (x, y, f(x, y)); (x+ ∆x, y, f(x+ ∆x, y)); (x, y + ∆y, f(x, y + ∆y)); etc.
Linear approximation: f(x + ∆x, y) ≈ f(x, y) + ∆xfx(x, y), and f(x, y + ∆y) ≈ f(x, y) +

∆yfy(x, y). So the sides of the parallelogram are

(∆x, 0, fx∆x) = (1, 0, fx)∆x and (0,∆y, fy∆y) = (0, 1, fy)∆y.

Thus the area of the parallelogram is equal to the norm of the cross product

(∆x, 0, fx∆x)×(0,∆y, fy∆y) = (1, 0, fx)×(0, 1, fy)∆x∆y =

∣∣∣∣∣∣
ı̂ ̂ k̂
1 0 fx
0 1 fy

∣∣∣∣∣∣∆x∆y = (−fx,−fy, 1)∆x∆y.

Therefore
dS =

√
1 + f2

x + f2
y dxdy.

Note: the shadow R on xy-plane gives the bounds for the double integral

area(S) =

∫∫
R

√
1 + f2

x + f2
y dxdy.

A normal vector to the surface is (−fx,−fy, 1), hence n̂ = ± (−fx,−fy, 1)√
1 + f2

x + f2
y

.

Example: area of cone z =
√
x2 + y2 with 0 ≤ z ≤ 1. The shadow on xy-plane is the unit disk

x2 + y2 ≤ 1. The cone is therefore the graph of the function f(x, y) =
√
x2 + y2 with x2 + y2 ≤ 1.

The partial derivatives are fx = x√
x2+y2

and fy = y√
x2+y2

so
√

1 + f2
x + f2

y =
√

2. The area of

the graph is ∫∫
x2+y2≤1

√
2 dxdy =

√
2(area of the unit disk) = π

√
2.

4) Parametric surface S : x = x(u, v), y = y(u, v), z = z(u, v) with (u, v) ∈ R some region of the
uv-plane.

Note: Since Φu and Φv are tangent vectors to the surface, they are contained in the tangent plane.
So a normal vector to the tangent plane (and the surface) is Φu × Φv, which is given by

Φu×Φv =

∣∣∣∣∣∣
ı̂ ̂ k̂
xu yu zu
xv yv zv

∣∣∣∣∣∣ =

∣∣∣∣yu zu
yv zv

∣∣∣∣ ı̂− ∣∣∣∣xu zu
xv zv

∣∣∣∣ ̂ +

∣∣∣∣xu yu
xv yv

∣∣∣∣ k̂ =
∂(y, z)

∂(u, v)
ı̂− ∂(x, z)

∂(u, v)
ı̂ +

∂(x, y)

∂(u, v)
k̂ (1)

Example: S is parametrized by x = u cos v, y = u sin v, z = u2 + v2. Find the tangent plane at
(u0, v0) = (1, 0).

We have (x0, y0, z0) = (1, 0, 1) is the point on S. The partial derivative vectors are Φu =
(xu, yu, zu) = (cos v, sin v, 2u) and Φv = (−u sin v, u cos v, 2v). At (1, 0) they become Φu = (1, 0, 2)
and Φv = (0, 1, 0). The normal vector is

Φu × Φv = (1, 0, 2)× (0, 1, 0) =

∣∣∣∣∣∣
ı̂ ̂ k̂
1 0 2
0 1 0

∣∣∣∣∣∣ =

∣∣∣∣0 2
1 0

∣∣∣∣ ı̂− ∣∣∣∣1 2
0 0

∣∣∣∣ ̂ +

∣∣∣∣1 0
0 1

∣∣∣∣ k̂ = −2̂ı + k̂ = (−2, 0, 1).

5



The tangent plane is the plane with normal vector Φu × Φv = (−2, 0, 1) that passes through the
point (x0, y0, z0) = (1, 0, 1), i.e. −2(x− 1) + (z − 1) = 0. Equation becomes −2x+ z + 1 = 0.

For surface area, consider portion of S that is the image via Φ of a small rectangle ∆u∆v in uv-
plane. In linear approximation it is a parallelogram (picture shown). The sides of the parallelogram
are the vectors Φu∆u and Φv∆v. The are of the parallelogram is given by the length/norm of the
cross product of the two vectors. That is,

∆S = ‖(Φu∆u)× (Φv∆v)‖ = ‖Φu × Φv‖∆u∆v

and therefore dS = ‖Φu × Φv‖dudv. Thus

area(S) =

∫∫
R
‖Φu × Φv‖dudv.

Since Φu × Φv is given by (1), we can compute its norm and get

area(S) =

∫∫
R

√(
∂(y, z)

∂(u, v)

)2

+

(
∂(x, z)

∂(u, v)

)2

+

(
∂(x, y)

∂(u, v)

)2

dudv.

Example: area of cone z =
√
x2 + y2 with 0 ≤ z ≤ 1. The shadow on xy-plane is the unit

disk x2 + y2 ≤ 1. Parametrize by x = r cos θ, y = r sin θ, z = r, 0 ≤ r ≤ 1, 0 ≤ θ ≤ 2π. Then
(xr, yr, zr) = (cos θ, sin θ, 1) and (xθ, yθ, zθ) = (−r cos θ, r sin θ, 0) and their cross-product is∣∣∣∣∣∣

ı̂ ̂ k̂
cos θ sin θ 1
−r cos θ r sin θ 0

∣∣∣∣∣∣ =

∣∣∣∣ sin θ 1
r sin θ 0

∣∣∣∣ ı̂−∣∣∣∣ cos θ 1
−r cos θ 0

∣∣∣∣ ̂+

∣∣∣∣ cos θ sin θ
−r cos θ r sin θ

∣∣∣∣ k̂ = −r sin θı̂−r cos θ̂+rk̂.

The norm is r
√

2 and the area of the cone is∫ 2π

0

∫ 1

0
r
√

2drdθ = π
√

2.

Note: Graphs are particular cases of parametric surfaces. That is, we can parametrize a graph
using Φ(x, y) = (x, y, f(x, y)) and then Φx = (1, 0, fx),Φy = (0, 1, fy). Thus, we get

dS = ‖Φx × Φy‖dxdy = ‖(−fx,−fy, 1)‖dxdy =
√

1 + f2
x + f2

y dxdy.
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