MATH 20E Lecture 8 - Tuesday, October 22, 2013

Work and line integrals

W = (force) - (distance) = F - A7 for a small motion A7, Total work is obtained by summing these
along a trajectory C : get a “line integral”

= | F-dr|=1 F-AF .
W= [ £ g, o)

To evaluate the line integral, we observe C' is parametrized by time ¢, with a < ¢t < b and give
meaning to the notation [ F' - dr by

b —
/ﬁ-df:/ (F dr)dt.
c . dt

Example: F = —yi+ 2j and C is given by =,y = 2,0 < t < 1 (portion of parabola y = 2
from (0,0) to (1,1)). Then we substitute expressions in terms of ¢ everywhere:
- dr dx dy
F=(— 2.t =(—,— ) =(1,2t
() = (. 5 = (55 ) = .20,
s0 [o F.di = fol F- &gt = fo (1,2t)dt = fo t?dt = . (In the end things always reduce to
a one-variable integral.)

New notation for line integral: F = (M, N), and dF = (dz,dy) (this is in fact a differential:
if we divide both sides by dt we get the component formula for the velocity dr/dt). So the line

integral becomes
/ ﬁ-dF:/ Mdz + Ndy.
C C

The notation is dangerous: this is not a sum of integrals w.r.t. = and y, but really a line integral
along C. To evaluate one must express everything in terms of the chosen parameter.
In the above example, we have x = t,y = t2, so dx = dt, dy = 2tdt; then

1 1
1
/—ydm+xdy:/ —t2dt+t(2tdt):/ t2dt = —.
c 0 0 3

(same calculation as before, using different notation).

In fact, the definition of the line integral does not involve the parametrization: so the result is
the same no matter which parametrization we choose. For example we could choose to parametrize
the parabola by 2 = sinf,y = sin?6,0 < § < /2. Then we’d get fcﬁ -dr = OW/Q ...df would be
equivalent to the previous one under the substitution ¢ = sin # and would again be equal to 1/3. In
practice we always choose the simplest parametrization!

Work in 3D:

situation is similar to the one in the plane Given a vector field F="Pi+ Qj+ Rk = (P,Q, R) where
P, Q, R are functions of z,y, z and a trajectory C' in space we need to compute the work done by
the vector field along C'. This is given by the line integral

W:/F-dfz/ <* dr)dt

1



In coordinates: think of dF = (dz,dy, dz) and the line integral becomes
W = / Pdx + Qdy + Rd=.
C

Example: F = (yz,wz,2y) and C : 2z =3,y =2, 2 =t for 0 < t < 1. Then dx = 3t3dt,dy =
2tdt, dz = dt and substitute:

1
/F’-df’:/yzdx—l—:vzdy—{—xydz:/ 6t°dt = 1.
C C 0

(In general, express (z,y, z) in terms of a single parameter: 1 degree of freedom)

Geometric approach

dr  ds .
Recall on trajectory C, velocity is i dtT where s = arclength, T= unit tangent vector to

trajectory, % = speed. So d = Tds and

/ﬁ-df:/ﬁ-Tds.
C C

Sometimes the calculation is easier this way!
Example C = circle of radius a centered at origin; F' = z1 + yJ (points radially out). Then
F - T = 0 because they are perpendicular (plcture drawn), so fo F-Tds = fC Ods = 0

Example: same C; F = —yi+ zj then F points in the same direction as T so F'- T = || F|| = a.
Get that

/ F.Tds = / ads = a/ ds = a - (length of C) = a(27a) = 2ma®.
C C C

We checked that we get the same answer if we compute using parametrization x = acosf,y =
asinf.

More complicated trajectories; orientation

Example: F = yi+ zj; C = C; + Cy + C5 enclosing sector of unit disk from 0 to /4 (picture
shown). Then work = | o F'-di is the sum of the work on each of C, Ca, C3. So we need to compute
fC' ydx + xdy for i = 1,2, 3.

1) C} : z-axis from (0,0) to (1,0). Can do z =t,y = 0,dz = dt,dy = 0,0 <t < 1. So

Je, yda + zdy = fol 0dt = 0.
Equivalently, geometrically: along z-axis, y = 0 so F = zj while T = i (perpendicular). Therefore
e, F-Tds =0.

2) Cy:x=cosf,y=sinf,0 <6 < x/4. Then dx = —sinfdf, dy = cosHdf. So

O0=m/4

/4 pi/4 1 1
/ ydzr + zdy = / sin O(— sin 8df) + cos O(cos 0df) = / cos(20)do = [ sin 29] =-.
Cs 0 0 2 o0 2



_ T — 1 _ 1 -1 1
3) C3 = line segment from <\[ f) 0 (0,0) : could take x = 7 ﬁt,y— 7 ﬂt,OStS 1.

Easier: consider C3 backwards ( denoted Cj ) which is parametrized by + = y = ¢t with 0 < ¢ %
Work along C5 is opposite of work along Cj.

1/v2 _ 1 1
/ ydx+:cdy:/ tdt + tdt = [tz’]t;”‘/ﬁ:f — | ydv+ady = .
3 0 Cs

Alternatively,

0
o o 21t=0 __1
/ngdx—i-a:dy/l/ﬁtdt—ktdt ] m1/va = 5

Total work = [ ydx +ady + [, ydx + zdy + st ydr +zdy =0+ 35— 4 =0.

Gradient fields

If Fis a gradient field (i.e. F=vV f for some potential f) then we can use the fundamental
theorem of calculus for line integrals:

/ Vf-drf= f(P))— f(FPy) when C runs from Py to P;.
C

Physical interpretation: the work done by a gradient field is given by the change in potential.
Proof (in 2 variables, but works in however many):

[orar= [ (5% 450 ar= [ 4 (0000 = ez = FP)- 1)

For instance, in the last example from Monday’s lecture, we had F = (y,z) = V[ where
f(z,y) = zy. (picture shown of C, F and level curves). We could compute fCi just by evaluating
f = xy at end points. Total work is 0 because we end where we started.

Consequences:

for a gradient field, we have:

e Path independence: if C1, Cy have same endpoints then fOl Vf-dr= fCQ V f-dr (both equal
to f(P1) — f(Pp) by the theorem). So the line integral fC Vf - di depends only on the end
points, not on the actual trajectory.

e Conservativeness: if C is a closed loop then [, Vf-dif = 0(= f(P)?f(P)). (e.g. in above
example, [, =0+1/2-1/2=0.)

WARNING this is only for gradient fields!

Example: F = —yl + xj is not a gradlent field: as seen Monday, along C' = circle of radius a
counterclockwise (F is parallel to T fCF di = 2ma?. Hence F is not conservative, and not a
gradient field.



Physical interpretation

If the force field F is the gradient of a potential f, then work of F = change in value of potential.
E.g: 1) F= gravitational field, f = gravitational potential; 2) F = electrical field; f = electrical
potential (voltage). (Actually physicists use the opposite sign convention, F =-V f). Conserva-
tiveness means that energy comes from change in potential f, so no energy can be extracted from
motion along a closed trajectory (conservativeness = conservation of energy: the change in kinetic
energy equals the work of the force equals the change in potential energy).

Note: path independence is equivalent to conservativeness by considering Cq,Ce with same

endpoints, C' = C1 + €5 is a closed loop.

Surfaces in R?

1) Surface S is the graph of some function z = f(x,y) over a region R of xy-plane: tangent
plane at (xo,yo, 20) to S where zg = f(z0,yo) is given by

0 0
a(z — x0) + b(y — yo) = 2 — 20 where a = é(ﬂ?oayo) and b= 85(160,3/0)-

Example: cannot remember what example I picked.

2) Surface S is given by the implicit equation f(x,y, z) = ¢ where ¢ is a constant. We can think
of this as the level surface f = c¢. The gradient vector V f(xg, yo, z0) is normal to the tangent
plane at (xo, Yo, 20). Equation of the plane is

Vi (x—z0,y—yo,2—20) =0 <= a(x—x0)+b(y—yo)+c(z—z0) = 0 where (a,b,c) = V f(xo, yo, 20)-

Example: tangent plane to hyperboloid z? 4+ % — 22 = 4 (picture drawn) at (2,1,1) : gradient
is (2z,2y,—2z) = (4,2,—2); tangent plane is 4o + 2y — 2z = 8. (Here we could also solve for
2z = ++/22 + y? — 4 and use linear approximation formula, but in general we can’t.)

MATH 20E Lecture 9 - Thursday, October 24, 2013

Surface area and tangent planes to surfaces

area of a surface is given by [/ dS where dS is the surface area element.

urface

0) The zy coordinate plane: area element dS = dA = dzdy, normal vector n = iﬁ, tangent
plane = zy-plane itself.

1) Horizontal plane z = a : area element dS = dxdy, normal vector n = :|:1A<, tangent plane is
z = a plane itself.

2) Vertical plane x = a : area element dS = dydz, normal vector n = +1i, tangent plane is x = a
plane itself.

3) If S is the graph of some function z = f(x,y) over a region R of xy-plane: use z and y as
variables. Contribution of a small piece of S to surface area?



Consider portion of S lying above a small rectangle AzAy in zy-plane. In linear approximation it

is a parallelogram. (picture shown)
The vertices are (z,y, f(z,9)); (z + Az, y, f(z + Az,y)); (z,y + Ay, f(z,y + Ay)); etc.

Linear approximation: f(x 4+ Ax,y) ~ f(x,y) + Axfy(z,y), and f(z,y + Ay) ~ f(z,y) +
Ay fy(z,y). So the sides of the parallelogram are
(Ax70, fol') = (1707 f:}c)A:E and (0, Ay, fyAy) = (07 1, fy)Ay-

Thus the area of the parallelogram is equal to the norm of the cross product

~

k
fo| AzAy = (= fa, _fya 1)AzAy.

Jy

>
— O

(A%‘,O, szJ;)X(Oa Aya fyAy) = (17 0, fm)x(oa 1, fy)A[EAy =1
0

Therefore
dS = \/1+ f2 + f2dxdy.

Note: the shadow R on zy-plane gives the bounds for the double integral

area(S) = //R,/l + f2+ [} dxdy.

—Jxy T Jy> 1
A normal vector to the surface is (—fg, —fy, 1), hence n = iM.
I+ B+

Example: area of cone z = y/x2 + y2 with 0 < z < 1. The shadow on zy-plane is the unit disk

22 4+ y? < 1. The cone is therefore the graph of the function f(z,y) = /22 + 32 with 22 + ¢2 < 1.
: At — - _ / 2 2 _

The partial derivatives are f, = \/xnyz) and f, = T so /14 fz+ fi= V2. The area of

the graph is

// V2 dzdy = V2(area of the unit disk) = 7v/2.
z2+y2<1

4) Parametric surface S : z = x(u,v),y = y(u,v), 2 = z(u,v) with (u,v) € R some region of the
uv-plane.

Note: Since ¢, and ¢, are tangent vectors to the surface, they are contained in the tangent plane.
So a normal vector to the tangent plane (and the surface) is ®,, x ®,, which is given by

~

ik 5
Yu Zu|» Ty  Zu| 4 Tu  Yul|y (yv Z)A 8(90, Z)A 3(357:1/) 2
(0] b, = = — k= — k (1
u o i“ Z“ z" Yo 2|l |7 2 It Ty Yy 8(u,v)l 8(u,v)1+6(u, v) (1)
v v v

Example: S is parametrized by = ucosv,y = usinv, z = u? + v2. Find the tangent plane at

(UO,Uo) = (1,0)
We have (x0,90,20) = (1,0,1) is the point on S. The partial derivative vectors are ®, =

(Tw, Yu, 2u) = (cosv,sinv, 2u) and ¢, = (—usinv, ucosv,2v). At (1,0) they become ®, = (1,0,2)

and @, = (0,1,0). The normal vector is

>

1 2
0 0

0 2
10

= 1—

j+'(1) (1)'1}:—2i+1}:(—2,0,1).

d, x &, =(1,0,2) x (0,1,0) =

o N RY

— O~

1
0



The tangent plane is the plane with normal vector ®, x ®, = (—2,0,1) that passes through the
point (x,yo0,20) = (1,0,1), i.e. =2(z — 1)+ (2 — 1) = 0. Equation becomes —2z + z+ 1 = 0.

For surface area, consider portion of S that is the image via ® of a small rectangle AuAv in uv-
plane. In linear approximation it is a parallelogram (picture shown). The sides of the parallelogram
are the vectors ®,Au and ®,Av. The are of the parallelogram is given by the length/norm of the
cross product of the two vectors. That is,

AS = [[(PyAu) X (PyAV)|| = || Py X Pyl|AulAv
and therefore dS = ||®,, x ®,|dudv. Thus

area(S) = // ||y X Dyl|dudv.
R

Since ®,, X @, is given by (1), we can compute its norm and get

_ 0y, 2)\* | (0, 2)\*  (9(z.y)\*
areals) = //R\/(aw,v)) o) oy M
Example: area of cone z = /22 + y? with 0 < 2z < 1. The shadow on zy-plane is the unit

disk 22 +y2 < 1. Parametrize by * = rcosf,y = rsinf,z = r,0 < r < 1,0 < 0 < 27. Then
(Try Yr, 2r) = (cosB,sin 6, 1) and (xg, ys, z9) = (—rcosf,rsinf,0) and their cross-product is

~ ~

i j k : . )
cos 0 sind 1l = 81?9 1 i cosf 1 i cos 6 sm@ k — —rsinfi—r cos -1k,
. rsind 0 —rcosf 0 —rcosf rsinf
—rcosf rsinf 0

The norm is 7v/2 and the area of the cone is

27 1
/ / r2drdd = V2.
0 0

Note: Graphs are particular cases of parametric surfaces. That is, we can parametrize a graph
using ®(z,y) = (z,y, f(z,y)) and then ¢, = (1,0, f), ®, = (0,1, f,). Thus, we get

4S = @2 x @, |[dady = ||(~fz, —fy, Vlldady = \/1+ f2 + f3 dady.



