
MATH 20E Lecture 10 - Tuesday, October 29, 2013

More particular cases of parametric surfaces:
a. Sphere of radius a centered at origin: use ϕ, θ (substitute ρ = a for evaluation);

Parametrization Φ : x = a cos θ sinϕ, y = a sin θ sinϕ, z = a cosϕ with 0 ≤ ϕ ≤ π, 0 ≤ θ ≤ 2π.
Then

Φϕ × Φθ =

∣∣∣∣∣∣
ı̂ ̂ k̂

a cos θ cosϕ a sin θ cosϕ −a sinϕ
−a sin θ sinϕ a cos θ sinϕ 0

∣∣∣∣∣∣ = (a2 cos θ sin2 ϕ, a2 sin θ sin2 ϕ, a2 sinϕ cosϕ).

Get dS = a2 sinϕdϕdθ and n̂ = (cos θ sinϕ, sin θ sinϕ, cosϕ) = 1
a(x, y, z).

Example: surface area of the part of the unit sphere above the horizontal plane z = 1√
2
. (picture

shown) Then dS = sinϕdϕdθ and 0 ≤ θ ≤ 2π and 0 ≤ ϕ ≤ π/4 (as π/4 is the value of ϕ at the
intersection between the plane and the sphere). The surface area is given by

∫∫
S
dS =

∫ 2π

0

∫ π/4

0
sinϕdϕdθ =

∫ 2π

0
[− cosϕ]

ϕ=π/4
ϕ=0 dθ =

∫ 2π

0

(
1− 1√

2

)
dθ = π

(
2−
√

2
)
.

b. Cylinder of radius a centered on z-axis: use z, θ (substitute r = a for evaluation).
Parametrization Φ : x = a cos θ, y = a sin θ, z = z with 0 ≤ θ ≤ 2π.

Φθ × Φz =

∣∣∣∣∣∣
ı̂ ̂ k̂

−a sin θ a cos θ 0
0 0 1

∣∣∣∣∣∣ = (a cos θ, a sin θ, 0) = (x, y, 0).

Get dS = adzdθ and n̂ = 1
a(x, y, 0) is radially out in horizontal directions away from z-axis.

More surfaces in R3 :

5) Surface of revolution: S is obtained by taking the graph y = f(x), a ≤ x ≤ b of a function of
one variable and rotate around the x-axis (picture drawn).

area(S) = 2π

∫ b

a
|f(x)|

√
1 + (f ′(x))2 dx

A small slice is a cylinder of height ds (arc length element) and with base a circle of radius |f(x)|.
The length of the circle is 2π|f(x)| and ds =

√
1 + (f ′(x))2 dx (from MATH 20C).

Example: f(x) = x, 0 ≤ x ≤ 1. (picture drawn) Get cone of height 1, base circle of radius 1.
Then the area is 2π

∫ 1
0 x
√

2 dx = π
√

2. (Same as last time).

6) Implicit surface S : g(x, y, z) = 0

For a slanted plane ax+ by+ cz = d, the normal vector is N = (a, b, c). Picture drawn. Surface
element ∆S = ? Look at projection to xy-plane: ∆A = ∆S| cosα| = (|N · k̂|/‖N‖)∆S (where α =
angle between slanted surface element and horizontal: projection shrinks one direction by factor
| cosα| = (|N · k̂|)/‖N‖, preserves the other).
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Hence dS =
‖N‖
|N · k̂|

dxdy. For a general implicit surface S given by equation g(x, y, z) = 0 we

use linear approximation. Normal vector to the surface is N = ∇g. Thus dS =
‖∇g‖
|gz|

dxdy and

area(S) =

∫∫
S
dS =

∫∫
R

‖∇g‖
|gz|

dxdy =

∫∫
R

√
g2x + g2y + g2z

g2z
dxdy

where R is the shadow of S on the xy-plane.
Note: if S is vertical then the denominator is zero, can’t project to xy-plane any more (but one

could project e.g. to the xz-plane).

Green’s Theorem

If C is a positively oriented (i.e. counterclockwise) closed curve enclosing a region R in the plane,
then the work done by a vector field ~F = (M,N) – that is defined and differentiable everywhere in
R – along C is ∫

C

~F · d~r =

∫∫
R

(curl ~F )dA

where curl(~F ) = Nx −My is called the scalar curl of ~F .
In coordinates: ∫

C
Mdx+Ndy =

∫∫
R

(Nx −My)dA.

Note: for a gradient field ~F = ∇f = (fx, fy) we have

curl(∇f) = (fy)x − (fx)y = 0.

The scalar curl measures how far a vector field is from being a gradient.

Example (reduce a complicated line integral to an easy
∫∫

): Let C = unit circle centered at (2, 0),
counterclockwise. R = unit disk at (2, 0). Then

∫
C
ye−xdx+

(
1

2
x2 − e−x

)
dy =

∫∫
R

(Nx −My)dA =

∫∫
R

(x+ e−x)− e−xdA =

∫∫
R
xdA.

Parametrize R in polar coordinates x = 2 + r cos θ, y = r sin θ, 0 ≤ θ ≤ 2π, 0 ≤ r ≤ 1 and get∫∫
R
xdA =

∫ 2π

0

∫ 1

0
(2 + r cos θ)rdrdθ =

∫ 2π

0
1 +

cos θ

3
dθ = 2π.

(Note: direct calculation of the line integral would probably involve setting x = 2 + cos θ, y =
sin θ, but then we have exponential of trig functions and calculations get really complicated.)
Example (the condition for ~F to be defined and differentiable in R is essential): Let C = unit

circle oriented counterclockwise and ~F =
(
−y

x2+y2
, x
x2+y2

)
.
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Then

curl ~F =
∂

∂x

(
x

x2 + y2

)
− ∂

∂y

(
−y

x2 + y2

)
=

y2 − x2

(x2 + y2)2
− y2 − x2

(x2 + y2)2
= 0.

Clicker question: is the work done by ~F along the closed curve C (i.e.
∫
C
~F · d~r) equal to 0,

positive or negative?

We can compute
∫
C
~F · d~r directly. Parametrize C as usual by x = cos θ, y = sin θ with

0 ≤ θ ≤ 2π. Then dx = − sin θdθ and dy = cos θdθ. Therefore

∫
C

~F · d~r =

∫
C

−ydx+ xdy

x2 + y2
=

∫ 2π

0

− sin θ(− sin θdθ) + cos θ(cos θdθ)

cos2 θ + sin2 θ
=

∫ 2π

0
dθ = 2π 6= 0.

Green’s theorem does not apply here because the region R enclosed by C is the unit disk and
~F is not defined at the origin.

MATH 20E Lecture 11 - Thursday, October 31, 2013

More about Green’s Theorem

Example: ~F = (−y, x); have seen curl ~F = 2. Then for any closed curve C that encloses region R
and is oriented counterclockwise. Plugging into

∫
C
~Fd~r =

∫∫
R(curl ~F )dA = 2

∫∫
R dA get

area(R) =
1

2

∫
C
xdy − ydx

Example (reduce a complicated area integral to an easy line integral): example 2, section 8.1.
Example: ~G = (0, x); have seen curl ~G = 1. Then for any closed curve C that encloses region R

and is oriented counterclockwise. Plugging into
∫
C
~Gd~r =

∫∫
R(curl ~G)dA =

∫∫
R dA get

area(R) =

∫
C
xdy

Review for Midterm

Topics: functions of several variables, partial derivatives, chain rule, approximation formula, tan-
gent planes; derivative matrix;
integration in several variables, change of variables
surfaces in space: normal vector, area element, surface area; parametrization
vector fields: flow lines, work in plane and space, Fundamental Theorem of Calculus, Green’t the-
orem

Discussed problems 4 (partial derivatives, gradient, tangent plane and approximation formula),
5 (chain rule), 11 (general changes of variables) from the study guide.

3



Recall for general changes of variables: u = u(x, y), v = v(x, y). The Jacobian is J = ∂(u,v)
∂(x,y)

def
=∣∣∣∣ux uy

vx vy

∣∣∣∣ . Then dudv = |J |dxdy =
∣∣∣∂(u,v)∂(x,y)

∣∣∣ dxdy (absolute value because area is the absolute value

of the determinant).
We ran out of time at this point, so did not go over change of variables in 3D, surfaces or vector

fields.
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