MATH 20E Lecture 12 - Tuesday, November 5, 2013: midterm

MATH 20E Lecture 13 - Thursday, November 7, 2013

Gradient fields in the plane

F=Mi+ Nj where M, N are functions of z,y.

curl(F) = N, — M, measures the failure of F' to be conservative.

Interpretation of curl: for a velocity field, curl = (twice) angular velocity of the rotation com-
ponent of the motion.

Equivalent properties:

1. Fis conservative, i.e. if C' is a closed loop then fc F.df=0.

2. Path independence: if C1,Cs are curves in the plane that have same endpoints, then

Vf-dr= Vf-dr.
C1 Ca

3. F is a gradient field, i.e. there exist a function f(z,y) (called the potential) such that F =
Vf = (fxa fy)

4. curl F = 0 and F F is defined everywhere, or in a simply-connected region (no holes).
Note:

e path independence is equivalent to conservativeness by considering C7,Cy with same end-
points, C' = C; + C5 is a closed loop. So (1) <= (2).

o We have already seen that for a gradient field, we have path independence and conservative-
ness.

If C1,C5 have same endpoints then fcl Vf-dr= fcz Vf - dr (both equal to f(P1) — f(FPo)
by the theorem). So the line integral fc V f - dr depends only on the end points, not on the
actual trajectory.

Also, if C' is a closed loop then [, Vf-di =0(= f(P) — f(P)).

Hence (3) = (1) and (2).

e if we have path independence, then we can get the potential f(z,y) by computing [ ((Om(’%) F-dF.
Hence (3) = (2).

e We know that (3) = (4) because fzy = fya-

e Assume F is defined and differentiable everywhere (or in a region without holes) and curl F' =
0. Then Green’s theorem says for every closed curve C' we have (after possibly changing the

orientation), that
/ﬁ-dF://(curlﬁ)dA:// 0dA = 0.
C R R

Thus (4) = (1).



Therefore curl(F) = N, — M, measures the failure of F' to be conservative.

We have seen : N, = M, < Fis a gradient field <= F is conservative (i.e. fcﬁ -dr'=10
for any closed curve C.)

(%) : = only holds if F' is defined everywhere, or in a simply-connected region (no holes).

Interpretation of curl: for a velocity field, curl = (twice) angular velocity of the rotation com-
ponent of the motion. For a force field, curl F = torque exerted on a test mass, measures how F
imparts rotation motion.

How to find the potential of a gradient field
Note: only try this if curl FF = 0.

Method I: antiderivatives

Ezample: Find a such that F = (422 + azy, 4x? + 3y?) is a gradient field.

Ny =8z, M, = ax, so a = 8.
Ezample: For the value of a found above, find a potential for F.

Then F' = (422+8xy, 42%+3y?) and we are looking for a function f(z,y) such that f, = 4z2+8xy
and f, = 4z? + 3y2.

Step 1: Since f, = 422 +8xy we integrate with respect to x and see that f(z,y) = %3:3 +4x%y +
9(y)-

Step 2: differentiate the above with respect to y and compare to N. We want f, = 422 +4'(y) =
422 + 3y2. So ¢'(y) = 3y?%, and g(y) = y>(+cst).

Step 3: substitute g(y) into f(x,y) and get f(z,y) = %m‘g + 42y + o3 (4-cst).

Method II: line integral (FTC backwards)

We know that if C' starts at (0,0) and ends at (a1,y1) then f(a1,y1) — £(0,0) = [, F - d7.

Here f(0,0) is just an integration constant (if f is a potential then so is f + cst). Can also
choose the simplest curve C' from (0,0) to (z1,41). (x1, 0) to (x1, y1) (picture drawn).

Simplest choice: take C' = C + Cy with C; = portion of z-axis from (0,0) to (z1,0), then Cy =
vertical segment from (z1,0) to (x1,y1) (picture drawn). Ezample: F = (e + zye™)i + x2e™¥j.
(Here it is hard to find the antiderivative of M with respect to x.)

Then

/ Fdf = / (€™ + zye™)dx + x*e™Vdy.
C C1+C2

OnCi:z=t,y=0,0<t <z sodr=dtand dy = 0. Therefore

— z1
/ Fdf":/ dt:$1.
Ch 0

OnCy:zx=z1,y=1t0<t <y sodr=0 and dy = dt. Therefore

Y1
= t=
/ F.dr = / zie®tdt = [azlexlt]t_gl = 11" — 1.
Co 0 -



Adding up the two integrals we get f(z1,y1) = [, F - dF = x1e™V1
So f(x,y) = xe™ is a potential for F.
Check: Vf = (fu, fy) = (™ + xye™, z%e™) = F.

Proof of Green’s Theorem

Green’s Theorem: [, Mdx+ Ndy = [[p(N, — M,)dA where C is a closed curve oriented counter-
clockwise enclosing region R of the plane.
Proof: two preliminary remarks:

1) the theorem splits into two identities, [, Mdr = — [[, M,dA and [, Ndy = [, N,dA.

2) additivity: if theorem is true for Ry and Ry then its true for the union R = R; U Ry (picture
drawn): [ = [, + [, (the line integrals along inner portions cancel out) and [[ R = [[, + [[z, -

Main step in the proof: prove [, Mdx = — [, M,dA for “vertically simple” regions: a < z <
b, fi(z) <y < fa(x). (picture drawn). This is enough because we can divide any region into such
pieces and use additivity.
LHS: break C into four sides (C; lower, Cy right vertical segment, Cs upper, Cy left vertical
segment);

f02 Mdx = fc4 Mdx = 0 since = constant on Cy and Cj.

OnCi:z=zy= fi(x),a<z <bso fCl M(z,y)dr = f;M(m,fl(x))dx

On Cs: 2z =ux,y = fa(x),b < x < a (because of the orientation) so

M(z,y)d /fog

Cs

/ /C /C / M(z, fi(x)) = M(z, f2(2))) dz

RHS: / /R _M,dA = — / / f() M, dyds = — / (M(z, fo(x)) — M(x, f1(x))) dz (= LHS).

Similarly [, Ndy = [, NydA by subdividing into horizontally simple pieces. This completes
the proof.



