
MATH 20E Lecture 12 - Tuesday, November 5, 2013: midterm

MATH 20E Lecture 13 - Thursday, November 7, 2013

Gradient fields in the plane

~F = M ı̂ + N ̂ where M,N are functions of x, y.
curl(~F ) = Nx −My measures the failure of ~F to be conservative.
Interpretation of curl: for a velocity field, curl = (twice) angular velocity of the rotation com-

ponent of the motion.
Equivalent properties:

1. ~F is conservative, i.e. if C is a closed loop then
∫
C

~F · d~r = 0.

2. Path independence: if C1, C2 are curves in the plane that have same endpoints, then∫
C1

∇f · d~r =
∫

C2

∇f · d~r.

3. ~F is a gradient field, i.e. there exist a function f(x, y) (called the potential) such that ~F =
∇f = (fx, fy).

4. curl ~F = 0 and ~F ~F is defined everywhere, or in a simply-connected region (no holes).

Note:

• path independence is equivalent to conservativeness by considering C1, C2 with same end-
points, C = C1 + C−

2 is a closed loop. So (1) ⇐⇒ (2).

• We have already seen that for a gradient field, we have path independence and conservative-
ness.

If C1, C2 have same endpoints then
∫
C1
∇f · d~r =

∫
C2
∇f · d~r (both equal to f(P1) − f(P0)

by the theorem). So the line integral
∫
C ∇f · d~r depends only on the end points, not on the

actual trajectory.
Also, if C is a closed loop then

∫
C ∇f · d~r = 0(= f(P )− f(P )).

Hence (3) =⇒ (1) and (2).

• if we have path independence, then we can get the potential f(x, y) by computing
∫ (x,y)
(0,0)

~F ·d~r.
Hence (3) =⇒ (2).

• We know that (3) =⇒ (4) because fxy = fyx.

• Assume ~F is defined and differentiable everywhere (or in a region without holes) and curl F =
0. Then Green’s theorem says for every closed curve C we have (after possibly changing the
orientation), that ∫

C

~F · d~r =
∫∫

R
(curl ~F )dA =

∫∫
R

0dA = 0.

Thus (4) =⇒ (1).
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Therefore curl(~F ) = Nx −My measures the failure of ~F to be conservative.
We have seen : Nx = My

∗⇐⇒ ~F is a gradient field ⇐⇒ ~F is conservative (i.e.
∫
C

~F · d~r = 0
for any closed curve C.)

(∗) : =⇒ only holds if ~F is defined everywhere, or in a simply-connected region (no holes).
Interpretation of curl: for a velocity field, curl = (twice) angular velocity of the rotation com-

ponent of the motion. For a force field, curl ~F = torque exerted on a test mass, measures how ~F
imparts rotation motion.

How to find the potential of a gradient field

Note: only try this if curl ~F = 0.

Method I: antiderivatives

Example: Find a such that ~F = (4x2 + axy, 4x2 + 3y2) is a gradient field.
Nx = 8x,My = ax, so a = 8.

Example: For the value of a found above, find a potential for ~F .
Then ~F = (4x2+8xy, 4x2+3y2) and we are looking for a function f(x, y) such that fx = 4x2+8xy

and fy = 4x2 + 3y2.
Step 1: Since fx = 4x2 +8xy we integrate with respect to x and see that f(x, y) = 4

3x3 +4x2y+
g(y).

Step 2: differentiate the above with respect to y and compare to N. We want fy = 4x2 +g′(y) =
4x2 + 3y2. So g′(y) = 3y2, and g(y) = y3(+cst).

Step 3: substitute g(y) into f(x, y) and get f(x, y) = 4
3x3 + 4x2y + y3(+cst).

Method II: line integral (FTC backwards)

We know that if C starts at (0, 0) and ends at (x1, y1) then f(x1, y1)− f(0, 0) =
∫
C

~F · d~r.
Here f(0, 0) is just an integration constant (if f is a potential then so is f + cst). Can also

choose the simplest curve C from (0, 0) to (x1, y1). (x1, 0) to (x1, y1) (picture drawn).
Simplest choice: take C = C1 +C2 with C1 = portion of x-axis from (0, 0) to (x1, 0), then C2 =

vertical segment from (x1, 0) to (x1, y1) (picture drawn). Example: ~F = (exy + xyexy )̂ı + x2exy ̂.
(Here it is hard to find the antiderivative of M with respect to x.)

Then ∫
C

~F · d~r =
∫

C1+C2

(exy + xyexy)dx + x2exydy.

On C1 : x = t, y = 0, 0 ≤ t ≤ x1 so dx = dt and dy = 0. Therefore∫
C1

~F · d~r =
∫ x1

0
dt = x1.

On C2 : x = x1, y = t, 0 ≤ t ≤ y1 so dx = 0 and dy = dt. Therefore∫
C2

~F · d~r =
∫ y1

0
x2

1e
x1tdt =

[
x1e

x1t
]t=y1

t=0
= x1e

x1y1 − x1.
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Adding up the two integrals we get f(x1, y1) =
∫
C

~F · d~r = x1e
x1y1 .

So f(x, y) = xexy is a potential for ~F .
Check: ∇f = (fx, fy) = (exy + xyexy, x2exy) = ~F .

Proof of Green’s Theorem

Green’s Theorem:
∫
C Mdx + Ndy =

∫∫
R(Nx −My)dA where C is a closed curve oriented counter-

clockwise enclosing region R of the plane.
Proof: two preliminary remarks:

1) the theorem splits into two identities,
∫
C Mdx = −

∫∫
R MydA and

∫
C Ndy =

∫
R NxdA.

2) additivity: if theorem is true for R1 and R2 then its true for the union R = R1 ∪R2 (picture
drawn):

∫
C =

∫
C1

+
∫
C2

(the line integrals along inner portions cancel out) and
∫∫

R =
∫∫

R1
+

∫∫
R2

.

Main step in the proof: prove
∫
C Mdx = −

∫∫
R MydA for “vertically simple” regions: a < x <

b, f1(x) < y < f2(x). (picture drawn). This is enough because we can divide any region into such
pieces and use additivity.
LHS: break C into four sides (C1 lower, C2 right vertical segment, C3 upper, C4 left vertical
segment);∫

C2
Mdx =

∫
C4

Mdx = 0 since x = constant on C2 and C4.

On C1 : x = x, y = f1(x), a ≤ x ≤ b so
∫
C1

M(x, y)dx =
∫ b
a M(x, f1(x))dx

On C3 : x = x, y = f2(x), b ≤ x ≤ a (because of the orientation) so∫
C3

M(x, y)dx = −
∫ b

a
M(x, f2(x))dx

∫
C

=
∫

C1

+
∫

C3

=
∫ b

a
(M(x, f1(x))−M(x, f2(x))) dx

RHS:
∫∫

R
−MydA = −

∫ b

a

∫ f2(x)

f1(x)
Mydydx = −

∫ b

a
(M(x, f2(x))−M(x, f1(x))) dx (= LHS).

Similarly
∫
C Ndy =

∫∫
R NxdA by subdividing into horizontally simple pieces. This completes

the proof.
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