MATH 20E Lecture 12 - Tuesday, November 5, 2013: midterm

MATH 20E Lecture 13 - Thursday, November 7, 2013

Gradient fields in the plane

 $\vec{F} = M\hat{\mathbf{i}} + N\hat{\mathbf{j}}$ where M, N are functions of x, y.

 $\operatorname{curl}(\vec{F}) = N_x - M_y$ measures the failure of \vec{F} to be conservative.

Interpretation of curl: for a velocity field, curl = (twice) angular velocity of the rotation component of the motion.

Equivalent properties:

1. \vec{F} is conservative, i.e. if C is a closed loop then $\int_C \vec{F} \cdot d\vec{r} = 0$.

2. Path independence: if C_1, C_2 are curves in the plane that have same endpoints, then

$$\int_{C_1} \nabla f \cdot d\vec{r} = \int_{C_2} \nabla f \cdot d\vec{r}.$$

- 3. \vec{F} is a gradient field, i.e. there exist a function f(x, y) (called the *potential*) such that $\vec{F} = \nabla f = (f_x, f_y)$.
- 4. $\operatorname{curl} \vec{F} = 0$ and $\vec{F} \cdot \vec{F}$ is defined everywhere, or in a simply-connected region (no holes).

Note:

- path independence is equivalent to conservativeness by considering C_1, C_2 with same endpoints, $C = C_1 + C_2^-$ is a closed loop. So (1) \iff (2).
- We have already seen that for a gradient field, we have path independence and conservativeness.

If C_1, C_2 have same endpoints then $\int_{C_1} \nabla f \cdot d\vec{r} = \int_{C_2} \nabla f \cdot d\vec{r}$ (both equal to $f(P_1) - f(P_0)$) by the theorem). So the line integral $\int_C \nabla f \cdot d\vec{r}$ depends only on the end points, not on the actual trajectory.

Also, if C is a closed loop then $\int_C \nabla f \cdot d\vec{r} = 0 (= f(P) - f(P)).$

Hence $(3) \implies (1)$ and (2).

- if we have path independence, then we can get the potential f(x, y) by computing $\int_{(0,0)}^{(x,y)} \vec{F} \cdot d\vec{r}$. Hence (3) \implies (2).
- We know that (3) \implies (4) because $f_{xy} = f_{yx}$.
- Assume \vec{F} is defined and differentiable everywhere (or in a region without holes) and curl F = 0. Then Green's theorem says for every closed curve C we have (after possibly changing the orientation), that

$$\int_C \vec{F} \cdot d\vec{r} = \iint_R (\operatorname{curl} \vec{F}) dA = \iint_R 0 dA = 0.$$

Thus $(4) \implies (1)$.

Therefore $\operatorname{curl}(\vec{F}) = N_x - M_y$ measures the failure of \vec{F} to be conservative.

We have seen : $N_x = M_y \iff \vec{F}$ is a gradient field $\iff \vec{F}$ is conservative (i.e. $\int_C \vec{F} \cdot d\vec{r} = 0$ for any closed curve C.)

 $(*): \implies$ only holds if \vec{F} is defined everywhere, or in a simply-connected region (no holes).

Interpretation of curl: for a velocity field, curl = (twice) angular velocity of the rotation component of the motion. For a force field, curl \vec{F} = torque exerted on a test mass, measures how \vec{F} imparts rotation motion.

How to find the potential of a gradient field

Note: only try this if $\operatorname{curl} \vec{F} = 0$.

Method I: antiderivatives

Example: Find a such that $\vec{F} = (4x^2 + axy, 4x^2 + 3y^2)$ is a gradient field.

 $N_x = 8x, M_y = ax$, so a = 8.

Example: For the value of a found above, find a potential for \vec{F} .

Then $\vec{F} = (4x^2 + 8xy, 4x^2 + 3y^2)$ and we are looking for a function f(x, y) such that $f_x = 4x^2 + 8xy$ and $f_y = 4x^2 + 3y^2$.

Step 1: Since $f_x = 4x^2 + 8xy$ we integrate with respect to x and see that $f(x, y) = \frac{4}{3}x^3 + 4x^2y + g(y)$.

Step 2: differentiate the above with respect to y and compare to N. We want $f_y = 4x^2 + g'(y) = 4x^2 + 3y^2$. So $g'(y) = 3y^2$, and $g(y) = y^3(+cst)$.

Step 3: substitute g(y) into f(x, y) and get $f(x, y) = \frac{4}{3}x^3 + 4x^2y + y^3(+cst)$.

Method II: line integral (FTC backwards)

We know that if C starts at (0,0) and ends at (x_1, y_1) then $f(x_1, y_1) - f(0,0) = \int_C \vec{F} \cdot d\vec{r}$.

Here f(0,0) is just an integration constant (if f is a potential then so is f + cst). Can also choose the simplest curve C from (0,0) to (x_1, y_1) . (x1, 0) to (x1, y1) (picture drawn).

Simplest choice: take $C = C_1 + C_2$ with C_1 = portion of x-axis from (0,0) to $(x_1,0)$, then C_2 = vertical segment from $(x_1,0)$ to (x_1,y_1) (picture drawn). Example: $\vec{F} = (e^{xy} + xye^{xy})\hat{\mathbf{i}} + x^2e^{xy}\hat{\mathbf{j}}$. (Here it is hard to find the antiderivative of M with respect to x.)

Then

$$\int_{C} \vec{F} \cdot d\vec{r} = \int_{C_1 + C_2} (e^{xy} + xye^{xy}) dx + x^2 e^{xy} dy.$$

On $C_1: x = t, y = 0, 0 \le t \le x_1$ so dx = dt and dy = 0. Therefore

$$\int_{C_1} \vec{F} \cdot d\vec{r} = \int_0^{x_1} dt = x_1$$

On $C_2: x = x_1, y = t, 0 \le t \le y_1$ so dx = 0 and dy = dt. Therefore

$$\int_{C_2} \vec{F} \cdot d\vec{r} = \int_0^{y_1} x_1^2 e^{x_1 t} dt = \left[x_1 e^{x_1 t} \right]_{t=0}^{t=y_1} = x_1 e^{x_1 y_1} - x_1.$$

Adding up the two integrals we get $f(x_1, y_1) = \int_C \vec{F} \cdot d\vec{r} = x_1 e^{x_1 y_1}$. So $f(x, y) = x e^{xy}$ is a potential for \vec{F} . Check: $\nabla f = (f_x, f_y) = (e^{xy} + xy e^{xy}, x^2 e^{xy}) = \vec{F}$.

Proof of Green's Theorem

Green's Theorem: $\int_C M dx + N dy = \iint_R (N_x - M_y) dA$ where C is a closed curve oriented counterclockwise enclosing region R of the plane.

Proof: two preliminary remarks:

1) the theorem splits into two identities, $\int_C M dx = -\iint_R M_y dA$ and $\int_C N dy = \int_R N_x dA$.

2) additivity: if theorem is true for R_1 and R_2 then its true for the union $R = R_1 \cup R_2$ (picture drawn): $\int_C = \int_{C_1} + \int_{C_2} (\text{the line integrals along inner portions cancel out})$ and $\iint R = \iint_{R_1} + \iint_{R_2}$.

Main step in the proof: prove $\int_C M dx = -\iint_R M_y dA$ for "vertically simple" regions: $a < x < b, f_1(x) < y < f_2(x)$. (picture drawn). This is enough because we can divide any region into such pieces and use additivity.

LHS: break C into four sides (C_1 lower, C_2 right vertical segment, C_3 upper, C_4 left vertical segment);

 $\int_{C_2} M dx = \int_{C_4} M dx = 0 \text{ since } x = \text{ constant on } C_2 \text{ and } C_4.$ On $C_1 : x = x, y = f_1(x), a \le x \le b \text{ so } \int_{C_1} M(x, y) dx = \int_a^b M(x, f_1(x)) dx$ On $C_3 : x = x, y = f_2(x), b \le x \le a$ (because of the orientation) so

$$\int_{C_3} M(x,y)dx = -\int_a^b M(x,f_2(x))dx$$

$$\int_{C} = \int_{C_1} + \int_{C_3} = \int_{a}^{b} \left(M(x, f_1(x)) - M(x, f_2(x)) \right) dx$$

RHS: $\iint_{R} -M_{y}dA = -\int_{a}^{b} \int_{f_{1}(x)}^{f_{2}(x)} M_{y}dydx = -\int_{a}^{b} \left(M(x, f_{2}(x)) - M(x, f_{1}(x))\right)dx \ (= \text{LHS}).$

Similarly $\int_C N dy = \iint_R N_x dA$ by subdividing into horizontally simple pieces. This completes the proof.