MATH 20E Lecture 12 - Tuesday, November 5, 2013: midterm

MATH 20E Lecture 13 - Thursday, November 7, 2013

Gradient fields in the plane

$\vec{F}=M \hat{\mathbf{\imath}}+N \hat{\mathbf{\jmath}}$ where M, N are functions of x, y.
$\operatorname{curl}(\vec{F})=N_{x}-M_{y}$ measures the failure of \vec{F} to be conservative.
Interpretation of curl: for a velocity field, curl $=$ (twice) angular velocity of the rotation component of the motion.

Equivalent properties:

1. \vec{F} is conservative, i.e. if C is a closed loop then $\int_{C} \vec{F} \cdot d \vec{r}=0$.
2. Path independence: if C_{1}, C_{2} are curves in the plane that have same endpoints, then

$$
\int_{C_{1}} \nabla f \cdot d \vec{r}=\int_{C_{2}} \nabla f \cdot d \vec{r} .
$$

3. \vec{F} is a gradient field, i.e. there exist a function $f(x, y)$ (called the potential) such that $\vec{F}=$ $\nabla f=\left(f_{x}, f_{y}\right)$.
4. curl $\vec{F}=0$ and $\vec{F} \vec{F}$ is defined everywhere, or in a simply-connected region (no holes).

Note:

- path independence is equivalent to conservativeness by considering C_{1}, C_{2} with same endpoints, $C=C_{1}+C_{2}^{-}$is a closed loop. So (1) $\Longleftrightarrow(2)$.
- We have already seen that for a gradient field, we have path independence and conservativeness.
If C_{1}, C_{2} have same endpoints then $\int_{C_{1}} \nabla f \cdot d \vec{r}=\int_{C_{2}} \nabla f \cdot d \vec{r}$ (both equal to $f\left(P_{1}\right)-f\left(P_{0}\right)$ by the theorem). So the line integral $\int_{C} \nabla f \cdot d \vec{r}$ depends only on the end points, not on the actual trajectory.
Also, if C is a closed loop then $\int_{C} \nabla f \cdot d \vec{r}=0(=f(P)-f(P))$.
Hence (3) \Longrightarrow (1) and (2).
- if we have path independence, then we can get the potential $f(x, y)$ by computing $\int_{(0,0)}^{(x, y)} \vec{F} \cdot d \vec{r}$. Hence (3) \Longrightarrow (2).
- We know that $(3) \Longrightarrow(4)$ because $f_{x y}=f_{y x}$.
- Assume \vec{F} is defined and differentiable everywhere (or in a region without holes) and curl $F=$ 0 . Then Green's theorem says for every closed curve C we have (after possibly changing the orientation), that

$$
\int_{C} \vec{F} \cdot d \vec{r}=\iint_{R}(\operatorname{curl} \vec{F}) d A=\iint_{R} 0 d A=0 .
$$

Thus (4) \Longrightarrow (1).

Therefore $\operatorname{curl}(\vec{F})=N_{x}-M_{y}$ measures the failure of \vec{F} to be conservative.
We have seen : $N_{x}=M_{y} \stackrel{*}{\Longleftrightarrow} \vec{F}$ is a gradient field $\Longleftrightarrow \vec{F}$ is conservative (i.e. $\int_{C} \vec{F} \cdot d \vec{r}=0$ for any closed curve C.)
$(*): \Longrightarrow$ only holds if \vec{F} is defined everywhere, or in a simply-connected region (no holes).
Interpretation of curl: for a velocity field, curl $=$ (twice) angular velocity of the rotation component of the motion. For a force field, curl $\vec{F}=$ torque exerted on a test mass, measures how \vec{F} imparts rotation motion.

How to find the potential of a gradient field

Note: only try this if curl $\vec{F}=0$.

Method I: antiderivatives

Example: Find a such that $\vec{F}=\left(4 x^{2}+a x y, 4 x^{2}+3 y^{2}\right)$ is a gradient field.

$$
N_{x}=8 x, M_{y}=a x, \text { so } a=8 .
$$

Example: For the value of a found above, find a potential for \vec{F}.
Then $\vec{F}=\left(4 x^{2}+8 x y, 4 x^{2}+3 y^{2}\right)$ and we are looking for a function $f(x, y)$ such that $f_{x}=4 x^{2}+8 x y$ and $f_{y}=4 x^{2}+3 y^{2}$.

Step 1: Since $f_{x}=4 x^{2}+8 x y$ we integrate with respect to x and see that $f(x, y)=\frac{4}{3} x^{3}+4 x^{2} y+$ $g(y)$.

Step 2: differentiate the above with respect to y and compare to N. We want $f_{y}=4 x^{2}+g^{\prime}(y)=$ $4 x^{2}+3 y^{2}$. So $g^{\prime}(y)=3 y^{2}$, and $g(y)=y^{3}(+c s t)$.

Step 3: substitute $g(y)$ into $f(x, y)$ and get $f(x, y)=\frac{4}{3} x^{3}+4 x^{2} y+y^{3}(+c s t)$.

Method II: line integral (FTC backwards)

We know that if C starts at $(0,0)$ and ends at $\left(x_{1}, y_{1}\right)$ then $f\left(x_{1}, y_{1}\right)-f(0,0)=\int_{C} \vec{F} \cdot d \vec{r}$.
Here $f(0,0)$ is just an integration constant (if f is a potential then so is $f+c s t$). Can also choose the simplest curve C from $(0,0)$ to $\left(x_{1}, y_{1}\right)$. ($\left.\mathrm{x} 1,0\right)$ to ($\mathrm{x} 1, \mathrm{y} 1$) (picture drawn).

Simplest choice: take $C=C_{1}+C_{2}$ with $C_{1}=$ portion of x-axis from $(0,0)$ to $\left(x_{1}, 0\right)$, then $C_{2}=$ vertical segment from $\left(x_{1}, 0\right)$ to $\left(x_{1}, y_{1}\right)$ (picture drawn). Example: $\vec{F}=\left(e^{x y}+x y e^{x y}\right) \hat{\mathbf{\imath}}+x^{2} e^{x y} \hat{\mathbf{j}}$. (Here it is hard to find the antiderivative of M with respect to x.)

Then

$$
\int_{C} \vec{F} \cdot d \vec{r}=\int_{C_{1}+C_{2}}\left(e^{x y}+x y e^{x y}\right) d x+x^{2} e^{x y} d y .
$$

On $C_{1}: x=t, y=0,0 \leq t \leq x_{1}$ so $d x=d t$ and $d y=0$. Therefore

$$
\int_{C_{1}} \vec{F} \cdot d \vec{r}=\int_{0}^{x_{1}} d t=x_{1} .
$$

On $C_{2}: x=x_{1}, y=t, 0 \leq t \leq y_{1}$ so $d x=0$ and $d y=d t$. Therefore

$$
\int_{C_{2}} \vec{F} \cdot d \vec{r}=\int_{0}^{y_{1}} x_{1}^{2} e^{x_{1} t} d t=\left[x_{1} e^{x_{1} t}\right]_{t=0}^{t=y_{1}}=x_{1} e^{x_{1} y_{1}}-x_{1} .
$$

Adding up the two integrals we get $f\left(x_{1}, y_{1}\right)=\int_{C} \vec{F} \cdot d \vec{r}=x_{1} e^{x_{1} y_{1}}$.
So $f(x, y)=x e^{x y}$ is a potential for \vec{F}.
Check: $\nabla f=\left(f_{x}, f_{y}\right)=\left(e^{x y}+x y e^{x y}, x^{2} e^{x y}\right)=\vec{F}$.

Proof of Green's Theorem

Green's Theorem: $\int_{C} M d x+N d y=\iint_{R}\left(N_{x}-M_{y}\right) d A$ where C is a closed curve oriented counterclockwise enclosing region R of the plane.
Proof: two preliminary remarks:

1) the theorem splits into two identities, $\int_{C} M d x=-\iint_{R} M_{y} d A$ and $\int_{C} N d y=\int_{R} N_{x} d A$.
2) additivity: if theorem is true for R_{1} and R_{2} then its true for the union $R=R_{1} \cup R_{2}$ (picture drawn): $\int_{C}=\int_{C_{1}}+\int_{C_{2}}$ (the line integrals along inner portions cancel out) and $\iint R=\iint_{R_{1}}+\iint_{R_{2}}$.

Main step in the proof: prove $\int_{C} M d x=-\iint_{R} M_{y} d A$ for "vertically simple" regions: $a<x<$ $b, f_{1}(x)<y<f_{2}(x)$. (picture drawn). This is enough because we can divide any region into such pieces and use additivity.
LHS: break C into four sides (C_{1} lower, C_{2} right vertical segment, C_{3} upper, C_{4} left vertical segment);
$\int_{C_{2}} M d x=\int_{C_{4}} M d x=0$ since $x=$ constant on C_{2} and C_{4}.
On $C_{1}: x=x, y=f_{1}(x), a \leq x \leq b$ so $\int_{C_{1}} M(x, y) d x=\int_{a}^{b} M\left(x, f_{1}(x)\right) d x$
On $C_{3}: x=x, y=f_{2}(x), b \leq x \leq a$ (because of the orientation) so

$$
\begin{gathered}
\int_{C_{3}} M(x, y) d x=-\int_{a}^{b} M\left(x, f_{2}(x)\right) d x \\
\int_{C}=\int_{C_{1}}+\int_{C_{3}}=\int_{a}^{b}\left(M\left(x, f_{1}(x)\right)-M\left(x, f_{2}(x)\right)\right) d x
\end{gathered}
$$

RHS: $\iint_{R}-M_{y} d A=-\int_{a}^{b} \int_{f_{1}(x)}^{f_{2}(x)} M_{y} d y d x=-\int_{a}^{b}\left(M\left(x, f_{2}(x)\right)-M\left(x, f_{1}(x)\right)\right) d x(=\mathrm{LHS})$.
Similarly $\int_{C} N d y=\iint_{R} N_{x} d A$ by subdividing into horizontally simple pieces. This completes the proof.

