
MATH 20E Lecture 14 - Tuesday, November 12, 2013

Flux in 2D

~F = (M,N) where M,N are functions of x, y,
The flux of ~F across the plane curve C is by definition by

flux =

∫
C

~F · n̂ds =

∫
C
Mdy −Ndx

where n̂ = normal vector to C, rotated 90◦ clockwise from T̂. (picture drawn; explained how the co-
ordinate formula comes from the fact that when we rotate vector (a, b) 90◦ clockwise, we get (b,−a).

Physical interpretation: if ~F is a velocity field (e.g. flow of a fluid), flux measures how much
matter passes through C per unit time, counting positively what flows towards the right of C,
negatively what flows towards the left of C, as seen from the point of view of a point traveling
along C.

Look at a small portion of C : locally ~F is constant, what passes through portion of C in unit
time is contents of a parallelogram with sides ∆s and ~F (picture shown with ~F horizontal, and
portion of curve = diagonal line segment). The area of this parallelogram is ∆s·height = ∆s(~F · n̂).
(picture shown rotated with portion of C horizontal, at base of parallelogram). Summing these
contributions along all of C, we get that

∫
C
~F · n̂ds is the total flow through C per unit time;

counting positively what flows towards the right of C, negatively what flows towards the left of C,
as seen from the point of view of a point traveling along C.

Note: in the plane, work and flux have different physical interpretations, but they are both line
integrals, so they get setup and evaluated the same way.

Example: C = circle of radius a oriented counterclockwise, ~F = x̂ı + ŷ (picture shown): along
C, ~F//n̂ , and ‖~F‖ = a, so F · n̂ = a. So∫

C

~F · n̂ds =

∫
C
ads = a length(C) = 2πa2.

Meanwhile, the flux of ~H = −yı̂ + x̂ across C is zero (field tangent to C). That was a geometric
argument. What about the general situation when calculation of the line integral is required?
Observe: d~r = T̂ds = (dx, dy), and n̂ is T̂ rotated 90◦ clockwise; so n̂ds = (dy,−dx). So, if
~F = M ı̂ +N ̂, then ∫

C

~F · n̂ds =

∫
C

(M,N) · (dy,−dx) =

∫
C
Mdy −Ndx.

So we can compute flux using the usual method, by expressing x, y, dx, dy in terms of a parameter
variable and substituting (no example given).

Green’s theorem for flux (normal form)

If C is a positively oriented (i.e. counterclockwise) closed curve enclosing a region R in the plane,
then the flux out of R for the vector field ~F = M(x, y)̂ı +N(x, y)̂ is∫

C
Mdy −Ndx =

∫∫
R

(Mx +Ny)dA.
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In vector notation, ∫
C

~F · n̂ds =

∫∫
R

(div ~F )dA,

where div ~F = Mx +Ny.
Proof:

∫
CMdy −Ndx =

∫
C Pdx+Qdy with P = −N and Q = M. Green’s theorem says that∫

C Pdx+Qdy =
∫∫
R(Qx − Py)dA =

∫∫
R(Mx +Ny)dA.

Example: in the above example (~F = x̂ı + ŷ across circle), div ~F = 2, so flux =
∫∫
R 2dA = 2

area (R) = 2πa2.
If we translate C to a different position (not centered at origin) (picture shown) then direct calcu-
lation of flux is harder, but total flux is still 2πa2.

Physical interpretation: in an incompressible fluid flow, divergence measures source/sink den-
sity/rate, i.e. how much fluid is being added to the system per unit area and per unit time.

Flux in 3D

~F = P ı̂ +Q̂ +Rk̂ where P,Q,R are functions of x, y, z. S = surface in space.
If ~F = velocity of a fluid flow, then flux = flow per unit time across surface S.

Cut S into small pieces, then over each small piece: what passes through ∆S in unit time is
the contents of a parallelepiped with base ∆S and third side given by ~F .

Volume of box = height × area of base = (~F · n̂)∆S where n̂ is a unit normal vector to S.

Remark: there are 2 choices for n̂ (choose which way is counted positively = “orientation”)

Notation: d~S = n̂dS (d~S is often easier to compute than n̂ and dS separately!).

In 3D, flux of a vector field is the double integral

Flux =

∫∫
S

~F · n̂dS =

∫∫
S

~F · d~S.

Example 1: ~F = (x, y, z) through sphere of radius a centered at 0.

n̂ = 1
a(x, y, z) (other choice: − 1

a(x, y, z); traditionally choose n̂ pointing out).
~F · n̂ = (x, y, z) · n̂ = 1

a(x2 + y2 + z2) = a, so∫∫
S
F · n̂dS =

∫∫
S
adS = a(4πa2).

Example 2: Same sphere, ~H = zk̂ Then ~H · n̂ = z2

a and∫∫
S

~H · ndS =

∫∫
S

z2

a
dS
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Parametrize S by x = a cos θ sinφ, y = a sin θ sinφ, z = a cosφ with 0 ≤ θ ≤ 2π, 0 ≤ φ ≤ π.
Then

dS =

√(
∂(y, z)

∂(θ, φ)

)2

+

(
∂(x, z)

∂(θ, φ)

)2

+

(
∂(x, y)

∂(θ, φ)

)2

dθdφ = a2 sinφ dθdφ.

Flux is given by∫∫
S

~H · ndS =

∫∫
S

z2

a
dS =

∫ π

0

∫ 2π

0

(a cosφ)2

a
a2 sinφ dθdφ = 2πa3

∫ π

0
cos2 φ sinφdφ =

4πa3

3
.

Setup. Sometimes we have an easy geometric argument, but in general we must compute the
surface integral. The setup requires the use of two parameters to describe the surface, and ~F · n̂dS
must be expressed in terms of them. How to do this depends on the type of surface.

1. S = parametric surface with parametrization Φ(u, v) = (x(u, v), y(u, v), z(u, v)) (u, v) ∈ R
some region of the uv-plane.

normal vector to the surface: Φu × Φv, so unit normal n̂ =
Φu × Φv

‖Φu × Φv‖
surface area element dS = ‖Φu × Φv‖dudv

Hence d~S = n̂dS = (Φu × Φv)dudv and

Flux =

∫∫
S

~F · d~S =

∫∫
R

~F · (Φu × Φv)dudv.

2. S = graph of a function g(x, y) with x, y in some region R of the xy-plane.

Then d~S = n̂dS = (−gx,−gy, 1)dA and

Flux =

∫∫
S

~F · d~S =

∫∫
R

~F · (−gx,−gy, 1)dA.

3. S = implicit surface given by equation f(x, y, z) = 0.

Then d~S = n̂dS = 1
∇f ·k̂
∇f dA and

Flux =

∫∫
S

~F · d~S =

∫∫
R

~F · (∇f)
1

∇f · k̂
dA,

where R is the shadow of S on the xy-plane.
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MATH 20E Lecture 15 - Thursday, November 14, 2013

Example: flux of ~F = zk̂ through S = portion of paraboloid z = x2 + y2 above the unit disk
oriented with normal pointing up (inside the paraboloid); geometrically flux should be > 0 (clicker
question). Since S is the graph of the function f(x, y) = x2 + y2, we have n̂dS == (−fx,−fy, 1) =
(−2x,−2y, 1).∫∫

S

~F · n̂dS =

∫∫
S
zdxdy =

∫∫
S

(x2 + y2)dxdy =

∫ 2π

0

∫ 1

0
r2rdrdθ =

π

2
.

Divergence Theorem (Gauss-Green Theorem)

This is the 3D analogue of Green’s theorem for flux.
Divergence theorem: If S is a closed surface bounding a region W, with normal pointing
outwards, and ~F is a vector field defined and differentiable over all of W, then∫∫

S

~F · d~S =

∫∫∫
W

div ~FdV.

In coordinates, for ~F = P (x, y, z)̂ı +Q(x, y, z)̂ +R(x, y, z)k̂ :∫∫
S

(P,Q,R) · n̂dS =

∫∫∫
W

(Px +Qy +Rz)dV

Example: flux of ~H = zk̂ out of sphere of radius a (seen last time): div ~H = 0 + 0 + 1 = 1, so∫∫
S

~H · d~S =

∫∫∫
W

1dV = vol(W ) =
4πa3

3
.

Physical interpretation: div ~F = source rate = flux generated per unit volume. Imagine
an incompressible fluid flow (i.e. a given mass occupies a fixed volume) with velocity ~F , then∫∫
W div ~FdV =

∫∫
S
~F · n̂dS says that flux through S is the net amount leaving W per unit time =

total amount of sources (minus sinks) in W.
Examples: did exercise 4 from Section 8.4 in the textbook.
Example: take S to be the upper hemisphere x2 + y2 + z2 = 1 with z ≥ 0. Compute the flux of

~F = 3xy2ı̂ + 3x2ŷ + z3k̂ upward through S.
Flux =

∫∫
S
~F ·n̂dS. In this case n̂ = (x, y, z) and ~F ·n̂ = 6x2y2+z3. So flux =

∫∫
unit circle 6x2y2+

z4dS =
∫∫

unit circle 6x2y2 + (1 − x2 − y2)2dxdy. Need to parametrize and deal with powers of trig
functions, it gets ugly.

We would like to apply Gauss-Green, but cannot do it directly. Instead take S1 = unit disk in
the xy-plane with normal pointing down. Then S + S1 enclose the upper half-ball W of radius 1
and the divergence theorem says that∫∫

S

~F · n̂dS +

∫∫
S1

~F · n̂dS =

∫∫∫
W

(div ~F )dV.

On S1 the n̂ = −k̂ so ~F · n̂ = −z3 = 0 on S1. So
∫∫
S1

~F · n̂dS = 0.
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Then div ~F = 3(x2 + y2 + z2) and∫∫
S

~F · n̂dS =

∫∫∫
W

(div ~F )dV =

∫ 2π

0

∫ π/2

0

∫ 1

0
3ρ4 sinφdρdφdθ =

6π

5
.

Del operator ∇

∇ =
(
∂
∂x ,

∂
∂y ,

∂
∂z , . . .

)
(symbolic notation!)

For instance, we have seen the notation ∇f =
(
∂f
∂x ,

∂f
∂y ,

∂f
∂z

)
, i.e. the gradient.

In 2D the del operator is ∇ =
(
∂
∂x ,

∂
∂y

)
.

For a vector space ~F = M(x, y)̂ı +N(x, y)̂, we have

∇ · ~F =

(
∂

∂x
,
∂

∂y

)
· (M,N) =

∂M

∂x
+
∂N

∂y
= div ~F .

In 3D the del operator is ∇ =
(
∂
∂x ,

∂
∂y ,

∂
∂z

)
.

For a vector space ~F = P (x, y, z)̂ı +Q(x, y, z)̂ +R(x, y, z)k̂, we have

∇ · ~F =

(
∂

∂x
,
∂

∂y
,
∂

∂z

)
· (P,Q,R) =

∂P

∂x
+
∂Q

∂y
+
∂R

∂z
= div ~F .

Also, the vector curl of ~F is defined to be

∇× ~F =

∣∣∣∣∣∣
ı̂ ̂ k̂
∂
∂x

∂
∂y

∂
∂z

P Q R

∣∣∣∣∣∣ =

(
∂(Q,R)

∂(y, z)

)
ı̂−
(
∂(P,R)

∂(x, z)

)
̂ +

(
∂(P,Q)

∂(x, y)

)
k̂

=

(
∂R

∂y
− ∂Q

∂z

)
ı̂ +

(
∂P

∂z
− ∂R

∂x

)
̂ +

(
∂Q

∂x
− ∂P

∂y

)
k̂

Note: If ~F = M(x, y)̂ı + N(x, y)̂ is a plane vector field, we can think of it in space as
~F = M ı̂ +N ̂ + 0k̂. In this case, ∇× ~F = (curl ~F )k̂.

Example: ~F = (2xyz, 3x, 5z − 2x) =⇒ ∇× ~F = (0, 2xy − 2, 3− 2xz).
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