MATH 20E Lecture 14 - Tuesday, November 12, 2013

Flux in 2D

F= (M, N) where M, N are functions of x,y,
The flux of F' across the plane curve C' is by definition by

ﬂuxz/ﬁ-ﬁds:/Mdy—Ndx
C C

where n = normal vector to C, rotated 90° clockwise from T. (picture drawn; explained how the co-
ordinate formula comes from the fact that when we rotate vector (a, b) 90° clockwise, we get (b, —a).

Physical interpretation: if Fisa velocity field (e.g. flow of a fluid), flux measures how much
matter passes through C' per unit time, counting positively what flows towards the right of C,
negatively what flows towards the left of C, as seen from the point of view of a point traveling
along C.

Look at a small portion of C' : locally Fis constant, what passes through portion of C' in unit
time is contents of a parallelogram with sides As and F (picture shown with F horizontal, and
portion of curve = diagonal line segment). The area of this parallelogram is As-height = As(ﬁ -n).
(picture shown rotated with portion of C' horizontal, at base of parallelogram). Summing these
contributions along all of C, we get that fcﬁ -nds is the total flow through C' per unit time;
counting positively what flows towards the right of C, negatively what flows towards the left of C,
as seen from the point of view of a point traveling along C.

Note: in the plane, work and flux have different physical interpretations, but they are both line
integrals, so they get setup and evaluated the same way.

Example: C' = circle of radius a oriented counterclockwise, F =i+ yj (picture shown): along
C,F//i, and ||F|| = a,so F-h = a. So

/ F-fds = / ads = alength(C) = 27a’.
C C

Meanwhile, the flux of H = —yl+ zj across C is zero (field tangent to C'). That was a geometric
argument. What about the general situation when calculation of the line integral is required?
Observe: dif = Tds = (dz,dy), and n is T rotated 90° clockwise; so nds = (dy,—dz). So, if
F = Mi+ Nj, then
/ F - ids = / (M,N) - (dy, —dz) = / Mdy — Ndz.
C C C

So we can compute flux using the usual method, by expressing x, y, dz, dy in terms of a parameter
variable and substituting (no example given).
Green’s theorem for flux (normal form)

If C is a positively oriented (i.e. counterclockwise) closed curve enclosing a region R in the plane,
then the flux out of R for the vector field F' = M (x,y)1+ N(z,y)] is

/ Mdy — Ndz = // (M, + N,)dA.
C R
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In vector notation,

/ F-fds = // (div F)dA,
C R
where div F = M, + Ny.

Proof: [, Mdy — Ndx = [, Pdx + Qdy with P = —N and Q = M. Green’s theorem says that
Jo Pde 4+ Qdy = [[p(Qe — Py)dA = [[(M, + N,)dA.

Ezample: in the above example (F = zi + yj across circle), div F = 2, so flux = [[p2dA =2
area (R) = 2ma?.
If we translate C' to a different position (not centered at origin) (picture shown) then direct calcu-
lation of flux is harder, but total flux is still 27a?.

Physical interpretation: in an incompressible fluid flow, divergence measures source/sink den-
sity/rate, i.e. how much fluid is being added to the system per unit area and per unit time.

Flux in 3D

F=Pi+ Q]+ Rk where P,Q, R are functions of z,y, z. S = surface in space.
If F' = velocity of a fluid flow, then flux = flow per unit time across surface S.

Cut S into small pieces, then over each small piece: what passes through AS in unit time is
the contents of a parallelepiped with base AS and third side given by F.

Volume of box = height x area of base = (F' - i) AS where fi is a unit normal vector to S.
Remark: there are 2 choices for n (choose which way is counted positively = “orientation”)
Notation: dS = ndS (dS is often easier to compute than fi and dS separately!).

In 3D, flux of a vector field is the double integral

Flux://ﬁ-ﬁdS://ﬁ-dg.
S S

Ezample 1: F = (z,y, z) through sphere of radius a centered at 0.

n= é(az, y,z) (other choice: —%(m, y, z); traditionally choose n pointing out).
F-h=(zy2) h= L@ +y?+2%) =a, so

//SF-ﬁdS://SadS:a(zlmﬁ).

Example 2: Same sphere, H =zk Then H - = Z and

a

— 22
// H-ndS = // —dS
S s a



Parametrize S by = acosfsin¢,y = asinfsing,z = acos¢ with 0 < 0 < 27,0 < ¢ < 7.
Then
a(y,z>>2 <a<x,z>>2 <6<x,y>>2 2
= + + dfd¢ = a* sin ¢ dfde.
\/<8<9, 1) T\owe) T\awg) V0T smed
Flux is given by

. 2 T 2w 2 ™ 4 3
// H-ndS = // Z—dS = / / Mcﬁ sin ¢ dfd¢ = 27m3/ cos? ¢ sin ¢pdep = e
s s a 0 Jo a 0 3

Setup. Sometimes we have an easy geometric argument, but in general we must compute the
surface integral. The setup requires the use of two parameters to describe the surface, and F' - ndS
must be expressed in terms of them. How to do this depends on the type of surface.

1. S = parametric surface with parametrization ®(u,v) = (z(u,v),y(u,v), z(u,v)) (u,v) € R

some region of the uv-plane.
b, x d,

normal vector to the surface: ®, x ®,, so unit normal n = W
X
u v

surface area element dS = || ®, X @, ||dudv

Hence dS = adS = (®, x ®,)dudv and

Flux—//F dS = // (®y, X Dy)dudv.

2. S = graph of a function g(z,y) with z,y in some region R of the zy-plane.

Then dS = 1dS = (—g., —gy,, 1)dA and

Flux = // F.dS = // F. (—9z, —gy, 1)dA.
S R

3. S = implicit surface given by equation f(x,y,z) = 0.

Then dS = ndS = —L-V f dA and

ka
FluX:/
S

where R is the shadow of S on the zy-plane.




MATH 20E Lecture 15 - Thursday, November 14, 2013

Example: flux of F = zk through S = portion of paraboloid z = z? 4 y? above the unit disk
oriented with normal pointing up (inside the paraboloid); geometrically flux should be > 0 (clicker
question). Since S is the graph of the function f(z,y) = 2% + y?, we have AdS == (—f,, —f,,1) =
(—2z,—2y,1).

2 pl
// F-ndS = // zdzxdy = // (2% 4 y?)dxdy = / / r2rdrdf = .
s s s o Jo 2

Divergence Theorem (Gauss-Green Theorem)

This is the 3D analogue of Green’s theorem for flux.
Divergence theorem: If S is a closed surface bounding a region W, with normal pointing
outwards, and F' is a vector field defined and differentiable over all of W, then

//Sﬁ-dgz///wdivﬁdv.

In coordinates, for F' = P(z,y, 2)i+ Q(z,y,2)j + R(z,y, 2)k :

//S(P’ Q. R) - hdS = ///W(Px +Q, + RV

Example: flux of H = zk out of sphere of radius a (seen last time): divH=040+1=1, so

//Sﬁ.dgz///wmvzvol(W):47;"’3.

Physical interpretation: div F = source rate = flux generated per unit volume. Imagine
an incompressible fluid flow (i.e. a given mass occupies a fixed volume) with velocity ﬁ, then
ffW div FdV = ffs F-adsS says that flux through S is the net amount leaving W per unit time =
total amount of sources (minus sinks) in W.

Examples: did exercise 4 from Section 8.4 in the textbook.

Example: take S to be the upper hemisphere z? 4+ 42 + 22 = 1 with z > 0. Compute the flux of
F= 3xy?i 4 322yj + 2k upward through S.

Flux = [/ F-ndS. In this case i = (z,y, 2z) and F-A = 622y%+23. So flux = IS it cirele 62297+
24dS = [ — 62%y% + (1 — 22 — y?)?dady. Need to parametrize and deal with powers of trig
functions, it gets ugly.

We would like to apply Gauss-Green, but cannot do it directly. Instead take S; = unit disk in
the zy-plane with normal pointing down. Then S + S; enclose the upper half-ball W of radius 1
and the divergence theorem says that

//Sﬁ-ﬁd5+//51ﬁ-ﬁdb’:///W(divﬁ)dV.

On51thefl:—f{soﬁ-ﬁ:—z?’:()onSl.Soffslﬁ-ﬁdS:O.




Then div F = 3(z2 + 32 + 22) and
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//Sﬁ-ﬁdS—///W(divF)dV—/0277/0”/2/013p4sin¢dpd¢d0_5

Del operator V
V= (%, 8%7 %, .. ) (symbolic notation!)
For instance, we have seen the notation Vf = <g—£, %’ %) , i.e. the gradient.
In 2D the del operator is V = (a%, 3%) .
For a vector space F = M(x,y)i+ N(x,y)j, we have
V.F= <§x,§y> -(M,N):aaijr%];[:divﬁ.

In 3D the del operator is V = (a%, 8%> %)

For a vector space F = P(x,y,2)1+ Q(z,y,2)] + R(z, vy, Z)R, we have
ﬁ o 0 0 oP 0Q OR R

Also, the vector curl of F is defined to be

ool hEl- (el (e ()

L (9R_0Q\,, (9P OR\. (0@ 0P\,
B <6y 8z>1+<82 8x>‘]+<8x 8y>k

Note: If F = M(z,y)i + N(z,y)j is a plane vector field, we can think of it in space as
F = Mi+ Nj+ 0k. In this case, V x F' = (curl F)k.

Example: F = (2zyz,3%,52 — 22) = V x F = (0,2zy — 2,3 — 2x2).



