MATH 20E Lecture 14 - Tuesday, November 12, 2013

Flux in 2D

 $\vec{F} = (M, N)$ where M, N are functions of x, y,

The flux of \vec{F} across the plane curve C is by definition by

$$\mathrm{flux} = \int_C \vec{F} \cdot \hat{\mathbf{n}} ds = \int_C M dy - N dx$$

where $\hat{\mathbf{n}} = \text{normal vector to C}$, rotated 90° clockwise from $\hat{\mathbf{T}}$. (picture drawn; explained how the coordinate formula comes from the fact that when we rotate vector (a, b) 90° clockwise, we get (b, -a).

Physical interpretation: if \vec{F} is a velocity field (e.g. flow of a fluid), flux measures how much matter passes through C per unit time, counting positively what flows towards the right of C, negatively what flows towards the left of C, as seen from the point of view of a point traveling along C.

Look at a small portion of C: locally \vec{F} is constant, what passes through portion of C in unit time is contents of a parallelogram with sides Δs and \vec{F} (picture shown with \vec{F} horizontal, and portion of curve = diagonal line segment). The area of this parallelogram is Δs -height = $\Delta s(\vec{F} \cdot \hat{\mathbf{n}})$. (picture shown rotated with portion of C horizontal, at base of parallelogram). Summing these contributions along all of C, we get that $\int_C \vec{F} \cdot \hat{\mathbf{n}} ds$ is the total flow through C per unit time; counting positively what flows towards the right of C, negatively what flows towards the left of C, as seen from the point of view of a point traveling along C.

Note: in the plane, work and flux have different physical interpretations, but they are both line integrals, so they get setup and evaluated the same way.

Example: $C = \text{circle of radius } a \text{ oriented counterclockwise}, \vec{F} = x\hat{\mathbf{i}} + y\hat{\mathbf{j}} \text{ (picture shown): along } C, \vec{F}/|\hat{\mathbf{n}}| = a, \text{ so } F \cdot \hat{\mathbf{n}} = a.$ So

$$\int_C \vec{F} \cdot \hat{\mathbf{n}} ds = \int_C a ds = a \operatorname{length}(C) = 2\pi a^2.$$

Meanwhile, the flux of $\vec{H} = -y\hat{\mathbf{i}} + x\hat{\mathbf{j}}$ across C is zero (field tangent to C). That was a geometric argument. What about the general situation when calculation of the line integral is required? Observe: $d\vec{r} = \hat{\mathbf{T}}ds = (dx, dy)$, and $\hat{\mathbf{n}}$ is $\hat{\mathbf{T}}$ rotated 90° clockwise; so $\hat{\mathbf{n}}ds = (dy, -dx)$. So, if $\vec{F} = M\hat{\mathbf{i}} + N\hat{\mathbf{j}}$, then

$$\int_C \vec{F} \cdot \hat{\mathbf{n}} ds = \int_C (M, N) \cdot (dy, -dx) = \int_C M dy - N dx.$$

So we can compute flux using the usual method, by expressing x, y, dx, dy in terms of a parameter variable and substituting (no example given).

Green's theorem for flux (normal form)

If C is a positively oriented (i.e. counterclockwise) closed curve enclosing a region R in the plane, then the flux out of R for the vector field $\vec{F} = M(x, y)\hat{\mathbf{i}} + N(x, y)\hat{\mathbf{j}}$ is

$$\int_C M dy - N dx = \iint_R (M_x + N_y) dA$$

In vector notation,

$$\int_C \vec{F} \cdot \hat{\mathbf{n}} ds = \iint_R (\operatorname{div} \vec{F}) dA$$

where div $\vec{F} = M_x + N_y$.

Proof: $\int_C M dy - N dx = \int_C P dx + Q dy$ with P = -N and Q = M. Green's theorem says that $\int_C P dx + Q dy = \iint_R (Q_x - P_y) dA = \iint_R (M_x + N_y) dA$. Example: in the above example $(\vec{F} = x\hat{\mathbf{i}} + y\hat{\mathbf{j}})$ across circle), div $\vec{F} = 2$, so flux $= \iint_R 2 dA = 2$

area $(R) = 2\pi a^2$.

If we translate C to a different position (not centered at origin) (picture shown) then direct calculation of flux is harder, but total flux is still $2\pi a^2$.

Physical interpretation: in an incompressible fluid flow, divergence measures source/sink density/rate, i.e. how much fluid is being added to the system per unit area and per unit time.

Flux in 3D

 $\vec{F} = P\hat{\mathbf{i}} + Q\hat{\mathbf{j}} + R\hat{\mathbf{k}}$ where P, Q, R are functions of x, y, z. S = surface in space. If \vec{F} = velocity of a fluid flow, then flux = flow per unit time across surface S.

Cut S into small pieces, then over each small piece: what passes through ΔS in unit time is the contents of a parallelepiped with base ΔS and third side given by \vec{F} .

Volume of box = height × area of base = $(\vec{F} \cdot \hat{\mathbf{n}}) \Delta S$ where $\hat{\mathbf{n}}$ is a unit normal vector to S.

Remark: there are 2 choices for $\hat{\mathbf{n}}$ (choose which way is counted positively = "orientation")

Notation: $d\vec{S} = \hat{\mathbf{n}}dS$ ($d\vec{S}$ is often easier to compute than $\hat{\mathbf{n}}$ and dS separately!).

In 3D, flux of a vector field is the double integral

Flux =
$$\iint_{S} \vec{F} \cdot \hat{\mathbf{n}} dS = \iint_{S} \vec{F} \cdot d\vec{S}.$$

Example 1: $\vec{F} = (x, y, z)$ through sphere of radius *a* centered at 0.

 $\hat{\mathbf{n}} = \frac{1}{a}(x, y, z)$ (other choice: $-\frac{1}{a}(x, y, z)$; traditionally choose $\hat{\mathbf{n}}$ pointing out). $\vec{F} \cdot \hat{\mathbf{n}} = (x, y, z) \cdot \hat{\mathbf{n}} = \frac{1}{a}(x^2 + y^2 + z^2) = a$, so

$$\iint_{S} F \cdot \hat{\mathbf{n}} dS = \iint_{S} a dS = a(4\pi a^2).$$

Example 2: Same sphere, $\vec{H} = z\hat{\mathbf{k}}$ Then $\vec{H} \cdot \hat{\mathbf{n}} = \frac{z^2}{a}$ and

$$\iint_{S} \vec{H} \cdot ndS = \iint_{S} \frac{z^2}{a} dS$$

Parametrize S by $x = a \cos \theta \sin \phi$, $y = a \sin \theta \sin \phi$, $z = a \cos \phi$ with $0 \le \theta \le 2\pi$, $0 \le \phi \le \pi$. Then

$$dS = \sqrt{\left(\frac{\partial(y,z)}{\partial(\theta,\phi)}\right)^2 + \left(\frac{\partial(x,z)}{\partial(\theta,\phi)}\right)^2 + \left(\frac{\partial(x,y)}{\partial(\theta,\phi)}\right)^2 d\theta d\phi} = a^2 \sin\phi \ d\theta d\phi$$

Flux is given by

$$\iint_{S} \vec{H} \cdot ndS = \iint_{S} \frac{z^{2}}{a} dS = \int_{0}^{\pi} \int_{0}^{2\pi} \frac{(a\cos\phi)^{2}}{a} a^{2}\sin\phi \ d\theta d\phi = 2\pi a^{3} \int_{0}^{\pi} \cos^{2}\phi \sin\phi d\phi = \frac{4\pi a^{3}}{3}.$$

Setup. Sometimes we have an easy geometric argument, but in general we must compute the surface integral. The setup requires the use of two parameters to describe the surface, and $\vec{F} \cdot \hat{\mathbf{n}} dS$ must be expressed in terms of them. How to do this depends on the type of surface.

1. S = parametric surface with parametrization $\Phi(u, v) = (x(u, v), y(u, v), z(u, v)) (u, v) \in R$ some region of the uv-plane.

normal vector to the surface: $\Phi_u \times \Phi_v$, so unit normal $\hat{\mathbf{n}} = \frac{\Phi_u \times \Phi_v}{\|\Phi_u \times \Phi_v\|}$ surface area element $dS = \|\Phi_u \times \Phi_v\| du dv$

Hence $d\vec{S} = \hat{\mathbf{n}}dS = (\Phi_u \times \Phi_v)dudv$ and

Flux =
$$\iint_{S} \vec{F} \cdot d\vec{S} = \iint_{R} \vec{F} \cdot (\Phi_u \times \Phi_v) du dv.$$

2. S = graph of a function g(x, y) with x, y in some region R of the xy-plane.

Then $d\vec{S} = \hat{\mathbf{n}}dS = (-g_x, -g_y, 1)dA$ and

Flux =
$$\iint_{S} \vec{F} \cdot d\vec{S} = \iint_{R} \vec{F} \cdot (-g_x, -g_y, 1) dA.$$

3. S = implicit surface given by equation f(x, y, z) = 0.

Then $d\vec{S} = \hat{\mathbf{n}} dS = \frac{1}{\nabla f \cdot \hat{\mathbf{k}}} \nabla f \, dA$ and

Flux =
$$\iint_{S} \vec{F} \cdot d\vec{S} = \iint_{R} \vec{F} \cdot (\nabla f) \frac{1}{\nabla f \cdot \hat{\mathbf{k}}} dA,$$

where R is the shadow of S on the xy-plane.

MATH 20E Lecture 15 - Thursday, November 14, 2013

Example: flux of $\vec{F} = z\hat{\mathbf{k}}$ through S = portion of paraboloid $z = x^2 + y^2$ above the unit disk oriented with normal pointing up (inside the paraboloid); geometrically flux should be > 0 (clicker question). Since S is the graph of the function $f(x,y) = x^2 + y^2$, we have $\hat{\mathbf{n}} dS = (-f_x, -f_y, 1) =$ (-2x, -2y, 1).

$$\iint_{S} \vec{F} \cdot \hat{\mathbf{n}} dS = \iint_{S} z dx dy = \iint_{S} (x^{2} + y^{2}) dx dy = \int_{0}^{2\pi} \int_{0}^{1} r^{2} r dr d\theta = \frac{\pi}{2}.$$

Divergence Theorem (Gauss-Green Theorem)

This is the 3D analogue of Green's theorem for flux.

Divergence theorem: If S is a closed surface bounding a region W, with normal pointing **outwards**, and \vec{F} is a vector field defined and differentiable over all of W, then

$$\iint_{S} \vec{F} \cdot d\vec{S} = \iiint_{W} \operatorname{div} \vec{F} dV.$$

In coordinates, for $\vec{F} = P(x, y, z)\hat{\mathbf{i}} + Q(x, y, z)\hat{\mathbf{j}} + R(x, y, z)\hat{\mathbf{k}}$:

$$\iint_{S} (P, Q, R) \cdot \hat{\mathbf{n}} dS = \iiint_{W} (P_x + Q_y + R_z) dV$$

Example: flux of $\vec{H} = z\hat{\mathbf{k}}$ out of sphere of radius *a* (seen last time): div $\vec{H} = 0 + 0 + 1 = 1$, so

$$\iint_{S} \vec{H} \cdot d\vec{S} = \iiint_{W} 1 dV = \operatorname{vol}(W) = \frac{4\pi a^{3}}{3}$$

Physical interpretation: div \vec{F} = source rate = flux generated per unit volume. Imagine an incompressible fluid flow (i.e. a given mass occupies a fixed volume) with velocity \vec{F} , then $\iint_W \operatorname{div} \vec{F} dV = \iint_S \vec{F} \cdot \hat{\mathbf{n}} dS$ says that flux through S is the net amount leaving W per unit time = total amount of sources (minus sinks) in W.

Examples: did exercise 4 from Section 8.4 in the textbook.

Example: take S to be the upper hemisphere $x^2 + y^2 + z^2 = 1$ with $z \ge 0$. Compute the flux of

 $\vec{F} = 3xy^2\hat{\mathbf{i}} + 3x^2y\hat{\mathbf{j}} + z^3\hat{k} \text{ upward through } S.$ Flux = $\iint_S \vec{F} \cdot \hat{\mathbf{n}} dS$. In this case $\hat{\mathbf{n}} = (x, y, z)$ and $\vec{F} \cdot \hat{\mathbf{n}} = 6x^2y^2 + z^3$. So flux = $\iint_{\text{unit circle}} 6x^2y^2 + z^4dS = \iint_{\text{unit circle}} 6x^2y^2 + (1 - x^2 - y^2)^2dxdy$. Need to parametrize and deal with powers of trig functions, it gets ugly.

We would like to apply Gauss-Green, but cannot do it directly. Instead take $S_1 =$ unit disk in the xy-plane with normal pointing down. Then $S + S_1$ enclose the upper half-ball W of radius 1 and the divergence theorem says that

$$\iint_{S} \vec{F} \cdot \hat{\mathbf{n}} dS + \iint_{S_1} \vec{F} \cdot \hat{\mathbf{n}} dS = \iiint_{W} (\operatorname{div} \vec{F}) dV.$$

On S_1 the $\hat{\mathbf{n}} = -\hat{\mathbf{k}}$ so $\vec{F} \cdot \hat{\mathbf{n}} = -z^3 = 0$ on S_1 . So $\iint_{S_1} \vec{F} \cdot \hat{\mathbf{n}} dS = 0$.

Then div $\vec{F} = 3(x^2 + y^2 + z^2)$ and

$$\iint_{S} \vec{F} \cdot \hat{\mathbf{n}} dS = \iiint_{W} (\operatorname{div} \vec{F}) dV = \int_{0}^{2\pi} \int_{0}^{\pi/2} \int_{0}^{1} 3\rho^{4} \sin \phi d\rho d\phi d\theta = \frac{6\pi}{5}$$

Del operator ∇

 $\nabla = \left(\frac{\partial}{\partial x}, \frac{\partial}{\partial y}, \frac{\partial}{\partial z}, \dots\right)$ (symbolic notation!)

For instance, we have seen the notation $\nabla f = \left(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}\right)$, i.e. the gradient. In 2D the del operator is $\nabla = \left(\frac{\partial}{\partial x}, \frac{\partial}{\partial y}\right)$. For a vector space $\vec{F} = M(x, y)\hat{\mathbf{i}} + N(x, y)\hat{\mathbf{j}}$, we have

$$\nabla \cdot \vec{F} = \left(\frac{\partial}{\partial x}, \frac{\partial}{\partial y}\right) \cdot (M, N) = \frac{\partial M}{\partial x} + \frac{\partial N}{\partial y} = \operatorname{div} \vec{F}$$

In 3D the del operator is $\nabla = \left(\frac{\partial}{\partial x}, \frac{\partial}{\partial y}, \frac{\partial}{\partial z}\right)$.

For a vector space $\vec{F} = P(x, y, z)\hat{\mathbf{i}} + Q(x, y, z)\hat{\mathbf{j}} + R(x, y, z)\hat{\mathbf{k}}$, we have

$$\nabla \cdot \vec{F} = \left(\frac{\partial}{\partial x}, \frac{\partial}{\partial y}, \frac{\partial}{\partial z}\right) \cdot (P, Q, R) = \frac{\partial P}{\partial x} + \frac{\partial Q}{\partial y} + \frac{\partial R}{\partial z} = \operatorname{div} \vec{F}.$$

Also, the vector curl of \vec{F} is defined to be

$$\nabla \times \vec{F} = \begin{vmatrix} \hat{\mathbf{i}} & \hat{\mathbf{j}} & \hat{\mathbf{k}} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ P & Q & R \end{vmatrix} = \begin{pmatrix} \left(\frac{\partial(Q,R)}{\partial(y,z)} \right) \hat{\mathbf{i}} - \left(\frac{\partial(P,R)}{\partial(x,z)} \right) \hat{\mathbf{j}} + \left(\frac{\partial(P,Q)}{\partial(x,y)} \right) \hat{\mathbf{k}} \\ = \begin{pmatrix} \left(\frac{\partial R}{\partial y} - \frac{\partial Q}{\partial z} \right) \hat{\mathbf{i}} + \left(\frac{\partial P}{\partial z} - \frac{\partial R}{\partial x} \right) \hat{\mathbf{j}} + \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) \hat{\mathbf{k}} \end{cases}$$

Note: If $\vec{F} = M(x,y)\hat{\mathbf{i}} + N(x,y)\hat{\mathbf{j}}$ is a plane vector field, we can think of it in space as $\vec{F} = M\hat{\mathbf{i}} + N\hat{\mathbf{j}} + 0\hat{\mathbf{k}}$. In this case, $\nabla \times \vec{F} = (\operatorname{curl} \vec{F})\hat{\mathbf{k}}$.

Example: $\vec{F} = (2xyz, 3x, 5z - 2x) \implies \nabla \times \vec{F} = (0, 2xy - 2, 3 - 2xz).$