MATH 20E Lecture 14 - Tuesday, November 12, 2013

Flux in 2D
$\vec{F}=(M, N)$ where M, N are functions of x, y,
The flux of \vec{F} across the plane curve C is by definition by

$$
\text { flux }=\int_{C} \vec{F} \cdot \hat{\mathbf{n}} d s=\int_{C} M d y-N d x
$$

where $\hat{\mathbf{n}}=$ normal vector to C , rotated 90° clockwise from $\hat{\mathbf{T}}$. (picture drawn; explained how the coordinate formula comes from the fact that when we rotate vector $(a, b) 90^{\circ}$ clockwise, we get $(b,-a)$.

Physical interpretation: if \vec{F} is a velocity field (e.g. flow of a fluid), flux measures how much matter passes through C per unit time, counting positively what flows towards the right of C, negatively what flows towards the left of C, as seen from the point of view of a point traveling along C.

Look at a small portion of C : locally \vec{F} is constant, what passes through portion of C in unit time is contents of a parallelogram with sides Δs and \vec{F} (picture shown with \vec{F} horizontal, and portion of curve $=$ diagonal line segment $)$. The area of this parallelogram is $\Delta s \cdot$ height $=\Delta s(\vec{F} \cdot \hat{\mathbf{n}})$. (picture shown rotated with portion of C horizontal, at base of parallelogram). Summing these contributions along all of C, we get that $\int_{C} \vec{F} \cdot \hat{\mathbf{n}} d s$ is the total flow through C per unit time; counting positively what flows towards the right of C, negatively what flows towards the left of C, as seen from the point of view of a point traveling along C.

Note: in the plane, work and flux have different physical interpretations, but they are both line integrals, so they get setup and evaluated the same way.

Example: $C=$ circle of radius a oriented counterclockwise, $\vec{F}=x \hat{\mathbf{\imath}}+y \hat{\mathbf{j}}$ (picture shown): along $C, \vec{F} / / \hat{\mathbf{n}}$, and $\|\vec{F}\|=a$, so $F \cdot \hat{\mathbf{n}}=a$. So

$$
\int_{C} \vec{F} \cdot \hat{\mathbf{n}} d s=\int_{C} a d s=a \text { length }(C)=2 \pi a^{2}
$$

Meanwhile, the flux of $\vec{H}=-y \hat{\mathbf{\imath}}+x \hat{\mathbf{\jmath}}$ across C is zero (field tangent to C). That was a geometric argument. What about the general situation when calculation of the line integral is required? Observe: $d \vec{r}=\hat{\mathbf{T}} d s=(d x, d y)$, and $\hat{\mathbf{n}}$ is $\hat{\mathbf{T}}$ rotated 90° clockwise; so $\hat{\mathbf{n}} d s=(d y,-d x)$. So, if $\vec{F}=M \hat{\mathbf{\imath}}+N \hat{\mathbf{j}}$, then

$$
\int_{C} \vec{F} \cdot \hat{\mathbf{n}} d s=\int_{C}(M, N) \cdot(d y,-d x)=\int_{C} M d y-N d x
$$

So we can compute flux using the usual method, by expressing $x, y, d x, d y$ in terms of a parameter variable and substituting (no example given).

Green's theorem for flux (normal form)

If C is a positively oriented (i.e. counterclockwise) closed curve enclosing a region R in the plane, then the flux out of R for the vector field $\vec{F}=M(x, y) \hat{\mathbf{i}}+N(x, y) \hat{\mathbf{j}}$ is

$$
\int_{C} M d y-N d x=\iint_{R}\left(M_{x}+N_{y}\right) d A .
$$

In vector notation,

$$
\int_{C} \vec{F} \cdot \hat{\mathbf{n}} d s=\iint_{R}(\operatorname{div} \vec{F}) d A,
$$

where $\operatorname{div} \vec{F}=M_{x}+N_{y}$.
Proof: $\int_{C} M d y-N d x=\int_{C} P d x+Q d y$ with $P=-N$ and $Q=M$. Green's theorem says that $\int_{C} P d x+Q d y=\iint_{R}\left(Q_{x}-P_{y}\right) d A=\iint_{R}\left(M_{x}+N_{y}\right) d A$.

Example: in the above example ($\vec{F}=x \hat{\mathbf{\imath}}+y \hat{\mathbf{\jmath}}$ across circle), $\operatorname{div} \vec{F}=2$, so flux $=\iint_{R} 2 d A=2$ area $(R)=2 \pi a^{2}$.
If we translate C to a different position (not centered at origin) (picture shown) then direct calculation of flux is harder, but total flux is still $2 \pi a^{2}$.

Physical interpretation: in an incompressible fluid flow, divergence measures source/sink density/rate, i.e. how much fluid is being added to the system per unit area and per unit time.

Flux in 3D

$\vec{F}=P \hat{\mathbf{1}}+Q \hat{\mathbf{j}}+R \hat{\mathbf{k}}$ where P, Q, R are functions of $x, y, z . S=$ surface in space.
If $\vec{F}=$ velocity of a fluid flow, then flux $=$ flow per unit time across surface S.
Cut S into small pieces, then over each small piece: what passes through ΔS in unit time is the contents of a parallelepiped with base ΔS and third side given by \vec{F}.

Volume of box $=$ height \times area of base $=(\vec{F} \cdot \hat{\mathbf{n}}) \Delta S$ where $\hat{\mathbf{n}}$ is a unit normal vector to S.
Remark: there are 2 choices for $\hat{\mathbf{n}}$ (choose which way is counted positively $=$ "orientation")
Notation: $d \vec{S}=\hat{\mathbf{n}} d S$ ($d \vec{S}$ is often easier to compute than $\hat{\mathbf{n}}$ and $d S$ separately!).
In 3D, flux of a vector field is the double integral

$$
\text { Flux }=\iint_{S} \vec{F} \cdot \hat{\mathbf{n}} d S=\iint_{S} \vec{F} \cdot d \vec{S}
$$

Example 1: $\vec{F}=(x, y, z)$ through sphere of radius a centered at 0 .
$\hat{\mathbf{n}}=\frac{1}{a}(x, y, z)$ (other choice: $-\frac{1}{a}(x, y, z)$; traditionally choose $\hat{\mathbf{n}}$ pointing out).
$\vec{F} \cdot \hat{\mathbf{n}}=(x, y, z) \cdot \hat{\mathbf{n}}=\frac{1}{a}\left(x^{2}+y^{2}+z^{2}\right)=a$, so

$$
\iint_{S} F \cdot \hat{\mathbf{n}} d S=\iint_{S} a d S=a\left(4 \pi a^{2}\right)
$$

Example 2: Same sphere, $\vec{H}=z \hat{\mathbf{k}}$ Then $\vec{H} \cdot \hat{\mathbf{n}}=\frac{z^{2}}{a}$ and

$$
\iint_{S} \vec{H} \cdot n d S=\iint_{S} \frac{z^{2}}{a} d S
$$

Parametrize S by $x=a \cos \theta \sin \phi, y=a \sin \theta \sin \phi, z=a \cos \phi$ with $0 \leq \theta \leq 2 \pi, 0 \leq \phi \leq \pi$. Then

$$
d S=\sqrt{\left(\frac{\partial(y, z)}{\partial(\theta, \phi)}\right)^{2}+\left(\frac{\partial(x, z)}{\partial(\theta, \phi)}\right)^{2}+\left(\frac{\partial(x, y)}{\partial(\theta, \phi)}\right)^{2}} d \theta d \phi=a^{2} \sin \phi d \theta d \phi
$$

Flux is given by

$$
\iint_{S} \vec{H} \cdot n d S=\iint_{S} \frac{z^{2}}{a} d S=\int_{0}^{\pi} \int_{0}^{2 \pi} \frac{(a \cos \phi)^{2}}{a} a^{2} \sin \phi d \theta d \phi=2 \pi a^{3} \int_{0}^{\pi} \cos ^{2} \phi \sin \phi d \phi=\frac{4 \pi a^{3}}{3}
$$

Setup. Sometimes we have an easy geometric argument, but in general we must compute the surface integral. The setup requires the use of two parameters to describe the surface, and $\vec{F} \cdot \hat{\mathbf{n}} d S$ must be expressed in terms of them. How to do this depends on the type of surface.

1. $S=$ parametric surface with parametrization $\Phi(u, v)=(x(u, v), y(u, v), z(u, v))(u, v) \in R$ some region of the $u v$-plane.
normal vector to the surface: $\Phi_{u} \times \Phi_{v}$, so unit normal $\hat{\mathbf{n}}=\frac{\Phi_{u} \times \Phi_{v}}{\left\|\Phi_{u} \times \Phi_{v}\right\|}$ surface area element $d S=\left\|\Phi_{u} \times \Phi_{v}\right\| d u d v$

Hence $d \vec{S}=\hat{\mathbf{n}} d S=\left(\Phi_{u} \times \Phi_{v}\right) d u d v$ and

$$
\text { Flux }=\iint_{S} \vec{F} \cdot d \vec{S}=\iint_{R} \vec{F} \cdot\left(\Phi_{u} \times \Phi_{v}\right) d u d v
$$

2. $S=$ graph of a function $g(x, y)$ with x, y in some region R of the $x y$-plane.

Then $d \vec{S}=\hat{\mathbf{n}} d S=\left(-g_{x},-g_{y}, 1\right) d A$ and

$$
\text { Flux }=\iint_{S} \vec{F} \cdot d \vec{S}=\iint_{R} \vec{F} \cdot\left(-g_{x},-g_{y}, 1\right) d A
$$

3. $S=$ implicit surface given by equation $f(x, y, z)=0$.

Then $d \vec{S}=\hat{\mathbf{n}} d S=\frac{1}{\nabla f \cdot \hat{\mathbf{k}}} \nabla f d A$ and

$$
\text { Flux }=\iint_{S} \vec{F} \cdot d \vec{S}=\iint_{R} \vec{F} \cdot(\nabla f) \frac{1}{\nabla f \cdot \hat{\mathbf{k}}} d A
$$

where R is the shadow of S on the $x y$-plane.

MATH 20E Lecture 15 - Thursday, November 14, 2013

Example: flux of $\vec{F}=z \hat{\mathbf{k}}$ through $S=$ portion of paraboloid $z=x^{2}+y^{2}$ above the unit disk oriented with normal pointing up (inside the paraboloid); geometrically flux should be >0 (clicker question). Since S is the graph of the function $f(x, y)=x^{2}+y^{2}$, we have $\hat{\mathbf{n}} d S==\left(-f_{x},-f_{y}, 1\right)=$ $(-2 x,-2 y, 1)$.

$$
\iint_{S} \vec{F} \cdot \hat{\mathbf{n}} d S=\iint_{S} z d x d y=\iint_{S}\left(x^{2}+y^{2}\right) d x d y=\int_{0}^{2 \pi} \int_{0}^{1} r^{2} r d r d \theta=\frac{\pi}{2}
$$

Divergence Theorem (Gauss-Green Theorem)

This is the 3D analogue of Green's theorem for flux.
Divergence theorem: If S is a closed surface bounding a region W, with normal pointing outwards, and \vec{F} is a vector field defined and differentiable over all of W, then

$$
\iint_{S} \vec{F} \cdot d \vec{S}=\iiint_{W} \operatorname{div} \vec{F} d V
$$

In coordinates, for $\vec{F}=P(x, y, z) \hat{\mathbf{\imath}}+Q(x, y, z) \hat{\mathbf{j}}+R(x, y, z) \hat{\mathbf{k}}$:

$$
\iint_{S}(P, Q, R) \cdot \hat{\mathbf{n}} d S=\iiint_{W}\left(P_{x}+Q_{y}+R_{z}\right) d V
$$

Example: flux of $\vec{H}=z \hat{\mathbf{k}}$ out of sphere of radius a (seen last time): $\operatorname{div} \vec{H}=0+0+1=1$, so

$$
\iint_{S} \vec{H} \cdot d \vec{S}=\iiint_{W} 1 d V=\operatorname{vol}(W)=\frac{4 \pi a^{3}}{3} .
$$

Physical interpretation: $\operatorname{div} \vec{F}=$ source rate $=$ flux generated per unit volume. Imagine an incompressible fluid flow (i.e. a given mass occupies a fixed volume) with velocity \vec{F}, then $\iint_{W} \operatorname{div} \vec{F} d V=\iint_{S} \vec{F} \cdot \hat{\mathbf{n}} d S$ says that flux through S is the net amount leaving W per unit time $=$ total amount of sources (minus sinks) in W.

Examples: did exercise 4 from Section 8.4 in the textbook.
Example: take S to be the upper hemisphere $x^{2}+y^{2}+z^{2}=1$ with $z \geq 0$. Compute the flux of $\vec{F}=3 x y^{2} \hat{\mathbf{\imath}}+3 x^{2} y \hat{\mathbf{j}}+z^{3} \hat{k}$ upward through S.

Flux $=\iint_{S} \vec{F} \cdot \hat{\mathbf{n}} d S$. In this case $\hat{\mathbf{n}}=(x, y, z)$ and $\vec{F} \cdot \hat{\mathbf{n}}=6 x^{2} y^{2}+z^{3}$. So flux $=\iint_{\text {unit circle }} 6 x^{2} y^{2}+$ $z^{4} d S=\iint_{\text {unit circle }} 6 x^{2} y^{2}+\left(1-x^{2}-y^{2}\right)^{2} d x d y$. Need to parametrize and deal with powers of trig functions, it gets ugly.

We would like to apply Gauss-Green, but cannot do it directly. Instead take $S_{1}=$ unit disk in the $x y$-plane with normal pointing down. Then $S+S_{1}$ enclose the upper half-ball W of radius 1 and the divergence theorem says that

$$
\iint_{S} \vec{F} \cdot \hat{\mathbf{n}} d S+\iint_{S_{1}} \vec{F} \cdot \hat{\mathbf{n}} d S=\iiint_{W}(\operatorname{div} \vec{F}) d V
$$

On S_{1} the $\hat{\mathbf{n}}=-\hat{\mathbf{k}}$ so $\vec{F} \cdot \hat{\mathbf{n}}=-z^{3}=0$ on S_{1}. So $\iint_{S_{1}} \vec{F} \cdot \hat{\mathbf{n}} d S=0$.

Then $\operatorname{div} \vec{F}=3\left(x^{2}+y^{2}+z^{2}\right)$ and

$$
\iint_{S} \vec{F} \cdot \hat{\mathbf{n}} d S=\iiint_{W}(\operatorname{div} \vec{F}) d V=\int_{0}^{2 \pi} \int_{0}^{\pi / 2} \int_{0}^{1} 3 \rho^{4} \sin \phi d \rho d \phi d \theta=\frac{6 \pi}{5}
$$

Del operator ∇

$\nabla=\left(\frac{\partial}{\partial x}, \frac{\partial}{\partial y}, \frac{\partial}{\partial z}, \ldots\right)$ (symbolic notation!)
For instance, we have seen the notation $\nabla f=\left(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}\right)$, i.e. the gradient.
In 2D the del operator is $\nabla=\left(\frac{\partial}{\partial x}, \frac{\partial}{\partial y}\right)$.
For a vector space $\vec{F}=M(x, y) \hat{\mathbf{\imath}}+N(x, y) \hat{\mathbf{j}}$, we have

$$
\nabla \cdot \vec{F}=\left(\frac{\partial}{\partial x}, \frac{\partial}{\partial y}\right) \cdot(M, N)=\frac{\partial M}{\partial x}+\frac{\partial N}{\partial y}=\operatorname{div} \vec{F}
$$

In 3D the del operator is $\nabla=\left(\frac{\partial}{\partial x}, \frac{\partial}{\partial y}, \frac{\partial}{\partial z}\right)$.
For a vector space $\vec{F}=P(x, y, z) \hat{\mathbf{\imath}}+Q(x, y, z) \hat{\mathbf{j}}+R(x, y, z) \hat{\mathbf{k}}$, we have

$$
\nabla \cdot \vec{F}=\left(\frac{\partial}{\partial x}, \frac{\partial}{\partial y}, \frac{\partial}{\partial z}\right) \cdot(P, Q, R)=\frac{\partial P}{\partial x}+\frac{\partial Q}{\partial y}+\frac{\partial R}{\partial z}=\operatorname{div} \vec{F}
$$

Also, the vector curl of \vec{F} is defined to be

$$
\begin{aligned}
\nabla \times \vec{F}=\left|\begin{array}{ccc}
\hat{\mathbf{1}} & \hat{\mathbf{j}} & \hat{\mathbf{k}} \\
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\
P & Q & R
\end{array}\right| & =\quad\left(\frac{\partial(Q, R)}{\partial(y, z)}\right) \hat{\mathbf{1}}-\left(\frac{\partial(P, R)}{\partial(x, z)}\right) \hat{\mathbf{j}}+\left(\frac{\partial(P, Q)}{\partial(x, y)}\right) \hat{\mathbf{k}} \\
& =\left(\frac{\partial R}{\partial y}-\frac{\partial Q}{\partial z}\right) \hat{\mathbf{i}}+\left(\frac{\partial P}{\partial z}-\frac{\partial R}{\partial x}\right) \hat{\mathbf{j}}+\left(\frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y}\right) \hat{\mathbf{k}}
\end{aligned}
$$

Note: If $\vec{F}=M(x, y) \hat{\mathbf{\imath}}+N(x, y) \hat{\mathbf{\jmath}}$ is a plane vector field, we can think of it in space as $\vec{F}=M \hat{\mathbf{i}}+N \hat{\mathbf{j}}+0 \hat{\mathbf{k}}$. In this case, $\nabla \times \vec{F}=(\operatorname{curl} \vec{F}) \hat{\mathbf{k}}$.

Example: $\vec{F}=(2 x y z, 3 x, 5 z-2 x) \Longrightarrow \nabla \times \vec{F}=(0,2 x y-2,3-2 x z)$.

