MATH 20E Lecture 18 - Tuesday, November 26, 2013

Gradient fields - continued

Example: Last time we have seen that $\vec{F} = (2xy, x^2 + z^3, 3yz^2 - 4z^3)$ is a gradient field. To find its potential we can use two systematic methods: **Method I:** antiderivatives. (done last time)

Method II: use path-independence

 $f(x_1, y_1, z_1) = \int_C F \cdot d\vec{r} = \int_C 2xy dx + (x^2 + z^3) dy + (3yz^2 - 4z^3) dz$ where C is a curve of your choice going from (0, 0, 0) to (x_1, y_1, z_1) .

Use a curve that gives an easy computation, e.g. 3 segments parallel to axes. Namely, take $C = C_1 + C_2 + C_3$ where C_1 = segment from (0, 0, 0) to $(x_1, 0, 0)$; C_2 = segment from $(x_1, 0, 0)$ to $(x_1, y_1, 0)$; C_3 = segment from $(x_1, y_1, 0)$ to (x_1, y_1, z_1) .

On C_1 : $x = t, y = 0, z = 0, 0 \le t \le x_1; dx = dt, dy = dz = 0 \implies \int_{C_1} F \cdot d\vec{r} = \int_{C_1} 2xy dx + (x^2 + z^3) dy + (3yz^2 - 4z^3) dz = \int_{C_1} 0 = 0.$

On C_2 : $x = x_1, y = t, z = 0, 0 \le t \le y_1; dx = 0, dy = dt, dz = 0 \implies \int_{C_2} F \cdot d\vec{r} = \int_{C_2} 2xy dx + (x^2 + z^3) dy + (3yz^2 - 4z^3) dz = \int_0^{y_1} x_1^2 dy = x_1^2 y_1.$

Applications of div and vector curl to physics

Recall: vector curl of velocity field = 2 angular velocity vector (of the rotation component of motion). E.g., for uniform rotation about z-axis, $\vec{v} = \omega(-y\hat{\mathbf{i}} + x\hat{\mathbf{j}})$ and $\nabla \times \vec{v} = 2\omega \hat{\mathbf{k}}$. Vector curl singles out the rotation component of motion (while div singles out the stretching component).

Interpretation of vector curl for force fields

If we have a solid in a force field (or rather an acceleration field!) \vec{F} such that the force exerted on Δm at (x, y, z) is $F(x, y, z)\Delta m$: recall the torque of the force about the origin is defined as $\tau = \vec{r} \times \vec{F}$ and measures how \vec{F} imparts rotation motion.

For translation motion:
$$\frac{\text{Force}}{\text{mass}} = \text{acceleration} = \frac{d}{dt} (\text{velocity}).$$

For rotation effects: $\frac{\text{Torque}}{\text{moment of inertia}} = \text{angular acceleration} = \frac{d}{dt} (\text{angular velocity}).$

Hence: vector curl of $\frac{\text{Force}}{\text{mass}} = 2 \cdot \frac{\text{Torque}}{\text{moment of inertia}}$.

Consequence: if \vec{F} derives from a potential, then $\nabla \times \vec{F} = \nabla \times (\nabla f) = 0$, so \vec{F} does not induce any rotation motion. E.g., gravitational attraction by itself does not affect Earth's rotation. (not strictly true: actually Earth is deformable; similarly, friction and tidal effects due to Earth's gravitational attraction explain why the Moon's rotation and revolution around Earth are synchronous).

Div and vector curl of electrical field – part of Maxwells equations for electromagnetic fields.

Gauss-Coulomb law: div $\vec{E} = \frac{\rho}{\epsilon_0}$ (ρ = charge density and ϵ_0 = physical constant).

By divergence theorem, can reformulate as: $\iint_S \vec{E} \cdot \hat{\mathbf{n}} dS = \iiint_W (\operatorname{div} \vec{E}) dV = \frac{Q}{\varepsilon_0}$, where $Q = \operatorname{total}$ charge inside the closed surface S.

This formula tells how charges influence the electric field; e.g., it governs the relation between voltage between the two plates of a capacitor and its electric charge.

Faraday law: $\nabla \times \vec{E} = -\frac{\partial \vec{B}}{\partial t}$ (\vec{B} is a magnetic field) So in presence of a varying magnetic field, \vec{E} is no longer conservative: if we have a closed loop of wire, we get a non-zero voltage ("induction" effect). By Stokes,

$$\int_C \vec{E} \cdot d\vec{r} = -\frac{d}{dt} \iint_S \vec{B} \cdot \hat{\mathbf{n}} dS.$$

This principle is used e.g. in transformers in power adapters: AC runs through a wire looped around a cylinder, which creates an alternating magnetic field; the flux of this magnetic field through another output wire loop creates an output voltage between its ends.

There are two more Maxwell equations, governing div and vector curl of \vec{B} :

$$\nabla \cdot \vec{B} = 0$$

and

$$\nabla \times \vec{B} = 0 = \mu_0 \vec{J} + \epsilon_0 \mu_0 \frac{\partial \vec{E}}{\partial t}$$
 (where $\vec{J} =$ current density).