## MATH 20E Lecture 18 - Tuesday, November 26, 2013

## Gradient fields - continued

Example: Last time we have seen that $\vec{F}=\left(2 x y, x^{2}+z^{3}, 3 y z^{2}-4 z^{3}\right)$ is a gradient field. To find its potential we can use two systematic methods:
Method I: antiderivatives. (done last time)
Method II: use path-independence
$f\left(x_{1}, y_{1}, z_{1}\right)=\int_{C} F \cdot d \vec{r}=\int_{C} 2 x y d x+\left(x^{2}+z^{3}\right) d y+\left(3 y z^{2}-4 z^{3}\right) d z$ where $C$ is a curve of your choice going from $(0,0,0)$ to $\left(x_{1}, y_{1}, z_{1}\right)$.

Use a curve that gives an easy computation, e.g. 3 segments parallel to axes. Namely, take $C=C_{1}+C_{2}+C_{3}$ where $C_{1}=$ segment from $(0,0,0)$ to $\left(x_{1}, 0,0\right) ; C_{2}=\operatorname{segment}$ from $\left(x_{1}, 0,0\right)$ to $\left(x_{1}, y_{1}, 0\right) ; C_{3}=\operatorname{segment}$ from $\left(x_{1}, y_{1}, 0\right)$ to $\left(x_{1}, y_{1}, z_{1}\right)$.

On $C_{1}: x=t, y=0, z=0,0 \leq t \leq x_{1} ; d x=d t, d y=d z=0 \quad \Longrightarrow \quad \int_{C_{1}} F \cdot d \vec{r}=$ $\int_{C_{1}} 2 x y d x+\left(x^{2}+z^{3}\right) d y+\left(3 y z^{2}-4 z^{3}\right) d z=\int_{C_{1}} 0=0$.

On $C_{2}: x=x_{1}, y=t, z=0,0 \leq t \leq y_{1} ; d x=0, d y=d t, d z=0 \quad \Longrightarrow \quad \int_{C_{2}} F \cdot d \vec{r}=$ $\int_{C_{2}} 2 x y d x+\left(x^{2}+z^{3}\right) d y+\left(3 y z^{2}-4 z^{3}\right) d z=\int_{0}^{y_{1}} x_{1}^{2} d y=x_{1}^{2} y_{1}$.

On $C_{3}: x=x_{1}, y=y_{1}, z=t, 0 \leq t \leq z_{1} ; d x=d y=0, d z=d t \quad \Longrightarrow \quad \int_{C_{3}} F \cdot d \vec{r}=$ $\int_{C_{3}} 2 x y d x+\left(x^{2}+z^{3}\right) d y+\left(3 y z^{2}-4 z^{3}\right) d z=\int_{0}^{z_{1}}\left(3 y_{1} t^{2}-4 t^{3}\right) d t=y_{1} z_{1}^{3}-z_{1}^{4}$.

So $f\left(x_{1}, y_{1}, z_{1}\right)=x_{1}^{2} y_{1}+y_{1} z_{1}^{3}-z_{1}^{4}$.
Check: $f(x, y, z)=x^{2} y+y z^{3}-z^{4} \Longrightarrow \nabla f=\left(2 x y, x^{2}+z^{3}, 3 y z^{2}-4 z^{3}\right)=\vec{F}$. ©

## Applications of div and vector curl to physics

Recall: vector curl of velocity field $=2$ angular velocity vector (of the rotation component of motion). E.g., for uniform rotation about $z$-axis, $\vec{v}=\omega(-y \hat{\mathbf{1}}+x \hat{\mathbf{j}})$ and $\nabla \times \vec{v}=2 \omega \hat{\mathbf{k}}$.
Vector curl singles out the rotation component of motion (while div singles out the stretching component).

## Interpretation of vector curl for force fields

If we have a solid in a force field (or rather an acceleration field!) $\vec{F}$ such that the force exerted on $\Delta m$ at $(x, y, z)$ is $F(x, y, z) \Delta m$ : recall the torque of the force about the origin is defined as $\tau=\vec{r} \times \vec{F}$ and measures how $\vec{F}$ imparts rotation motion.

For translation motion: $\frac{\text { Force }}{\text { mass }}=$ acceleration $=\frac{d}{d t}$ (velocity).
For rotation effects: $\frac{\text { Torque }}{\text { moment of inertia }}=$ angular acceleration $=\frac{d}{d t}$ (angular velocity).
Hence: vector curl of $\frac{\text { Force }}{\text { mass }}=2 \cdot \frac{\text { Torque }}{\text { moment of inertia }}$.
Consequence: if $\vec{F}$ derives from a potential, then $\nabla \times \vec{F}=\nabla \times(\nabla f)=0$, so $\vec{F}$ does not induce any rotation motion. E.g., gravitational attraction by itself does not affect Earth's rotation. (not strictly true: actually Earth is deformable; similarly, friction and tidal effects due to Earth's gravitational attraction explain why the Moon's rotation and revolution around Earth are synchronous).

Div and vector curl of electrical field - part of Maxwells equations for electromagnetic fields.
Gauss-Coulomb law: $\operatorname{div} \vec{E}=\frac{\rho}{\epsilon_{0}}$ ( $\rho=$ charge density and $\epsilon_{0}=$ physical constant $)$.
By divergence theorem, can reformulate as: $\iint_{S} \vec{E} \cdot \hat{\mathbf{n}} d S=\iiint_{W}(\operatorname{div} \vec{E}) d V=\frac{Q}{\varepsilon_{0}}$, where $Q=$ total charge inside the closed surface $S$.
This formula tells how charges influence the electric field; e.g., it governs the relation between voltage between the two plates of a capacitor and its electric charge.

Faraday law: $\nabla \times \vec{E}=-\frac{\partial \vec{B}}{\partial t}$ ( $\vec{B}$ is a magnetic field) So in presence of a varying magnetic field, $\vec{E}$ is no longer conservative: if we have a closed loop of wire, we get a non-zero voltage ("induction" effect). By Stokes,

$$
\int_{C} \vec{E} \cdot d \vec{r}=-\frac{d}{d t} \iint_{S} \vec{B} \cdot \hat{\mathbf{n}} d S .
$$

This principle is used e.g. in transformers in power adapters: AC runs through a wire looped around a cylinder, which creates an alternating magnetic field; the flux of this magnetic field through another output wire loop creates an output voltage between its ends.

There are two more Maxwell equations, governing div and vector curl of $\vec{B}$ :

$$
\nabla \cdot \vec{B}=0
$$

and

$$
\nabla \times \vec{B}=0=\mu_{0} \vec{J}+\epsilon_{0} \mu_{0} \frac{\partial \vec{E}}{\partial t} \text { (where } \vec{J}=\text { current density) } .
$$

