HOMEWORK 4

DUE 4 FEBRUARY 2015

SHOW ALL YOUR WORK.

1. Let d be a nonzero integer (could be negative!).
(a) Prove that

$$
\mathbb{Z}[\sqrt{d}]=\{a+b \sqrt{d} ; a, b \in \mathbb{Z}\}
$$

is a ring and that

$$
\mathbb{Q}(\sqrt{d})=\{x+y \sqrt{d} ; x, y \in \mathbb{Q}\}
$$

is a field.
(b) Show that if d is a perfect square, then $\mathbb{Z}[\sqrt{d}]=\mathbb{Z}$ and $\mathbb{Q}(\sqrt{d})=\mathbb{Q}$.
(c) Furthermore, if $d=d_{1} d_{2}^{2}$ then $\mathbb{Q}(\sqrt{d})=\mathbb{Q}\left(\sqrt{d_{1}}\right)$.
(d) If d is not a perfect square, show that for each element $\alpha \in \mathbb{Q}(\sqrt{d})$ there exist unique $x, y \in \mathbb{Q}$ such that $\alpha=x+y \sqrt{d}$.
2. Find
(a) the inverse of $5+4 \sqrt{3}$ in $\mathbb{Q}(\sqrt{3})$;
(b) $\frac{7+4 i}{9+16 i}$ in $\mathbb{Q}(i)$;
(c) $\frac{9+4 \sqrt{5}}{3-2 \sqrt{5}}$ in $\mathbb{Q}(\sqrt{5})$;
(d) $\frac{9+4 \sqrt{-5}}{3-2 \sqrt{-5}}$ in $\mathbb{Q}(\sqrt{-5})$.
3. Find the prime factorization of the following integers in $\mathbb{Z}[i]$.
(a) 23
(b) 13
(c) 17
(d) 296
(e) 415
4. Find the prime factorization of the following gaussian integers in $\mathbb{Z}[i]$.
(a) $2+12 i$
(b) $3+4 i$
(c) $7+3 i$
(d) $10+9 i$
(e) $10+91 i$
5. Can 35 be written as the sum of two squares? How about 45 ? How about 245?
6. Find an integer that can be written as sum of two squares in 3 different ways.
7. Find an integer that can be written as sum of two squares in 4 different ways.
8. Find an integer that can be written as sum of two squares in 5 different ways.

