HOMEWORK 4

DUE 4 FEBRUARY 2015

SHOW ALL YOUR WORK.

- **1.** Let d be a nonzero integer (could be negative!).
 - (a) Prove that

$$\mathbb{Z}[\sqrt{d}] = \{a + b\sqrt{d}; a, b \in \mathbb{Z}\}\$$

is a ring and that

$$\mathbb{Q}(\sqrt{d}) = \{x + y\sqrt{d} \, ; x, y \in \mathbb{Q}\}$$

is a field.

- (b) Show that if d is a perfect square, then $\mathbb{Z}[\sqrt{d}] = \mathbb{Z}$ and $\mathbb{Q}(\sqrt{d}) = \mathbb{Q}$.
- (c) Furthermore, if $d = d_1 d_2^2$ then $\mathbb{Q}(\sqrt{d}) = \mathbb{Q}(\sqrt{d_1})$.
- (d) If d is not a perfect square, show that for each element $\alpha \in \mathbb{Q}(\sqrt{d})$ there exist unique $x, y \in \mathbb{Q}$ such that $\alpha = x + y\sqrt{d}$.
- **2.** Find
 - (a) the inverse of $5 + 4\sqrt{3}$ in $\mathbb{Q}(\sqrt{3})$;

(b)
$$\frac{7+4i}{9+16i}$$
 in $\mathbb{Q}(i)$;
(c) $\frac{9+4\sqrt{5}}{3-2\sqrt{5}}$ in $\mathbb{Q}(\sqrt{5})$;
(d) $\frac{9+4\sqrt{-5}}{3-2\sqrt{-5}}$ in $\mathbb{Q}(\sqrt{-5})$.

- **3.** Find the prime factorization of the following integers in $\mathbb{Z}[i]$.
 - (a) 23
 - (b) 13
 - (c) 17
 - (d) 296
 - (e) 415

- 4. Find the prime factorization of the following gaussian integers in $\mathbb{Z}[i]$.
 - (a) 2 + 12i
 - (b) 3 + 4i
 - (c) 7 + 3i
 - (d) 10 + 9i
 - (e) 10 + 91i
- 5. Can 35 be written as the sum of two squares? How about 45? How about 245?
- 6. Find an integer that can be written as sum of two squares in 3 different ways.
- 7. Find an integer that can be written as sum of two squares in 4 different ways.
- 8. Find an integer that can be written as sum of two squares in 5 different ways.