HOMEWORK 6

DUE 18 FEBRUARY 2015

SHOW ALL YOUR WORK.

1. Exercise 9.12 from the notes.
2. Suppose $d=a^{2}$ is a perfect square. Find all the integer solutions of the Fermat-Pell equation

$$
x^{2}-d y^{2}=1
$$

3. The number

$$
\gamma=\frac{1+\sqrt{5}}{2}
$$

is called the golden ratio. For each $0 \leq y \leq 20$ find the integer x making $|x-y \gamma|$ as small as possible. Which rational number x / y with $1 \leq y \leq 20$ most closely approximates γ ? Feel free to use a computer or calculator.
4. Find the smallest positive integer solution to the following equations or show that no positive integer solutions exist.
(a) $x^{2}-31 y^{2}=1$
(b) $x^{2}-30 y^{2}=-1$
(c) $x^{2}-29 y^{2}=1$.
5. (a) Find all integer solutions, or prove that no such solutions exist, to the equation

$$
x^{2}-7 y^{2}=-1
$$

(b) Find all integer solutions, or prove that no such solutions exist, to the equation

$$
x^{2}-7 y^{2}=1
$$

6. Let d be an integer that is not a perfect square (could be negative).
(a) For any $n \in \mathbb{Z}_{>0}$ and any $x, y \in \mathbb{Z}$ show that there exist $A, B \in \mathbb{Z}$ such that $(x+y \sqrt{d})^{n}=A+B \sqrt{d}$ and $(x-y \sqrt{d})^{n}=A-B \sqrt{d}$.
(b) For any $n \in \mathbb{Z}_{>0}$ and any $x, y \in \mathbb{Q}$ show that there exist $A, B \in \mathbb{Q}$ such that $(x+y \sqrt{d})^{n}=A+B \sqrt{d}$ and $(x-y \sqrt{d})^{n}=A-B \sqrt{d}$.
(c) For any $n \in \mathbb{Z}$ and any $x, y \in \mathbb{Q}$ not both zero show that there exist $A, B \in \mathbb{Q}$ such that $(x+y \sqrt{d})^{n}=A+B \sqrt{d}$ and $(x-y \sqrt{d})^{n}=A-B \sqrt{d}$.
