HOMEWORK 7

DUE 4 MARCH 2015

SHOW ALL YOUR WORK.

- **1.** For the following pairs of polynomials f(X), g(X) indicate if f(X) | g(X) in $\mathbb{Q}[X]$ and $\mathbb{Z}[X]$.
 - (a) f(X) = 2X + 1 and g(X) = 6X + 3;
 - (b) f(X) = 4X + 2 and g(X) = 6X + 3;
 - (c) $f(X) = X^2 2$ and $g(X) = X^6 6X^4 + 12X^2 8$.
- **2.** Let $\alpha \in \mathbb{C}$. Prove that there exists at most one nonzero polynomial $m(X) \in \mathbb{Q}[X]$ with the following properties
 - $m(\alpha) = 0;$
 - m(X) is monic (i.e. the coefficient of the highest power of X is 1);
 - if $f(X) \in \mathbb{Q}[X]$ nonzero polynomial with $f(\alpha) = 0$, then deg $m \leq \deg f$.

If such an *m* exists, it is called *the minimal polynomial* of α over \mathbb{Q} .

- **3.** Prove that if $\alpha \in \mathbb{C}$ is a root of the polynomial $f(X) \in \mathbb{Q}[X]$ then the minimal polynomial of α over \mathbb{Q} divides f in $\mathbb{Q}[X]$.
- **4.** Prove that the minimal polynomial of $\alpha \in \mathbb{C}$ over \mathbb{Q} has degree 1 if and only if $\alpha \in \mathbb{Q}$.
- 5. If $\alpha \in \mathbb{C}$ is an algebraic number over \mathbb{Q} (i.e. it is the root of some polynomial with rational coefficients), prove that there exists a unique nonzero polynomial $f(X) = a_n X^n + \cdots + a_0 \in \mathbb{Z}[X]$ with the following properties
 - $f(\alpha) = 0;$
 - $gcd(a_0,\ldots,a_n)=1;$
 - $a_n > 0;$
 - if $g(X) \in \mathbb{Z}[X]$ nonzero polynomial with $g(\alpha) = 0$, then deg $f \leq \deg g$.
- **6.** If α is a quadratic irrational prove that its minimal polynomial over \mathbb{Q} is quadratic and that there exists a unique polynomial $f(X) = aX^2 + bX + c \in \mathbb{Z}[X]$ with gcd(a, b, c) = 1 and a > 0 such that $f(\alpha) = 0$.

7. If $\alpha = \sqrt{\frac{m}{n}}$ is irrational and $f(X) = aX^2 + bX + c \in \mathbb{Z}[X]$ has the property that $f(\alpha) = 0$, prove that b = 0 and am + cn = 0.