HOMEWORK 7

DUE 4 MARCH 2015

SHOW ALL YOUR WORK.

1. For the following pairs of polynomials $f(X), g(X)$ indicate if $f(X) \mid g(X)$ in $\mathbb{Q}[X]$ and $\mathbb{Z}[X]$.
(a) $f(X)=2 X+1$ and $g(X)=6 X+3$;
(b) $f(X)=4 X+2$ and $g(X)=6 X+3$;
(c) $f(X)=X^{2}-2$ and $g(X)=X^{6}-6 X^{4}+12 X^{2}-8$.
2. Let $\alpha \in \mathbb{C}$. Prove that there exists at most one nonzero polynomial $m(X) \in \mathbb{Q}[X]$ with the following properties

- $m(\alpha)=0$;
- $m(X)$ is monic (i.e. the coefficient of the highest power of X is 1);
- if $f(X) \in \mathbb{Q}[X]$ nonzero polynomial with $f(\alpha)=0$, then $\operatorname{deg} m \leq \operatorname{deg} f$.

If such an m exists, it is called the minimal polynomial of α over \mathbb{Q}.
3. Prove that if $\alpha \in \mathbb{C}$ is a root of the polynomial $f(X) \in \mathbb{Q}[X]$ then the minimal polynomial of α over \mathbb{Q} divides f in $\mathbb{Q}[X]$.
4. Prove that the minimal polynomial of $\alpha \in \mathbb{C}$ over \mathbb{Q} has degree 1 if and only if $\alpha \in \mathbb{Q}$.
5. If $\alpha \in \mathbb{C}$ is an algebraic number over \mathbb{Q} (i.e. it is the root of some polynomial with rational coefficients), prove that there exists a unique nonzero polynomial $f(X)=a_{n} X^{n}+\cdots+a_{0} \in \mathbb{Z}[X]$ with the following properties

- $f(\alpha)=0$;
- $\operatorname{gcd}\left(a_{0}, \ldots, a_{n}\right)=1$;
- $a_{n}>0$;
- if $g(X) \in \mathbb{Z}[X]$ nonzero polynomial with $g(\alpha)=0$, then $\operatorname{deg} f \leq \operatorname{deg} g$.

6. If α is a quadratic irrational prove that its minimal polynomial over \mathbb{Q} is quadratic and that there exists a unique polynomial $f(X)=a X^{2}+b X+c \in \mathbb{Z}[X]$ with $\operatorname{gcd}(a, b, c)=1$ and $a>0$ such that $f(\alpha)=0$.
7. If $\alpha=\sqrt{\frac{m}{n}}$ is irrational and $f(X)=a X^{2}+b X+c \in \mathbb{Z}[X]$ has the property that $f(\alpha)=0$, prove that $b=0$ and $a m+c n=0$.
