HOMEWORK 8

DUE 11 MARCH 2015

SHOW ALL YOUR WORK.

Solve the following problems, and turn in the solutions to seven of them.

1. These are two identities used by Euler.
(a) Prove that

$$
\left(x^{2}+n y^{2}\right)\left(s^{2}+n t^{2}\right)=(s x \pm n t y)^{2}+n(t x \mp s y)^{2} .
$$

(b) Generalize the above to find an identity of the form

$$
\left(a x^{2}+c y^{2}\right)\left(a s^{2}+c t^{2}\right)=(?)^{2}+a c(?)^{2} .
$$

2. Let n be a positive integer. Prove or disprove and salvage if possible the following statement.

Suppose $N=a^{2}+n b^{2}$ for some integers a, b with $(a, b)=1$. Assume that $q=x^{2}+n y^{2}$ is a prime divisor of N. Then there exist integers c, d with $(c, d)=1$ such that $\frac{N}{q}=c^{2}+n d^{2}$.
3. Same as above for $n=3$ and $q=4$. (Hint: you should be able to just adapt your proof from exercise 2.)
4. Prove that if an odd prime p divides $a^{2}+3 b^{2}$ for some relatively prime integers a and b, then p itself can be written as $p=x^{2}+3 y^{2}$ with $(x, y)=1$. The argument is more complicated because the descent step fails for $p=2$. Thus, if it fails for some odd prime p, you have to produce an odd prime $q<p$ for which it also fails. Hint: exercise 3 should help.
5. If p is a prime and $p \equiv 1(\bmod 3)$, prove that there exist integers $(a, b)=1$ such that $p \mid a^{2}+3 b^{2}$.

Note that Exercises 4 and 5 prove that
a prime p can be written as $p=x^{2}+3 y^{2}$ for some integers x, y
if and only if $p=3$ or $p \equiv 1(\bmod 3)$.
6. (a) Compute $\left(\frac{a}{5}\right)$ and $\left(\frac{a}{7}\right)$ for $-10 \leq a \leq 10$.
(b) Let p be a prime number. Show that for any integers a, n we have

$$
\left(\frac{a+n p}{p}\right)=\left(\frac{a}{p}\right) .
$$

7. Let p be an odd prime number. Show that every reduced residue system $(\bmod p)$ contains exactly $\frac{p-1}{2}$ quadratic residues and $\frac{p-1}{2}$ quadratic nonresidues $(\bmod p)$.
8. Determine whether the integer A is a quadratic residue or nonresidue modulo p for the following integers.
(a) $A=500, p=4219$.
(b) $A=2003, p=2011$.
(c) $A=1903, p=2011$.
9. Let p and q be distinct odd primes. Set $p^{*}=(-1)^{\frac{p-1}{2}} p$. Prove that

$$
\left(\frac{p^{*}}{q}\right)=1 \Longleftrightarrow p \equiv \pm a^{2} \quad(\bmod 4 q) \text { for some odd integer } a .
$$

10. (a) Determine whether 888 is a quadratic residue or nonresidue modulo the prime 1999 using exclusively the Legendre symbol.
(b) Determine whether 888 is a quadratic residue or nonresidue modulo 1999 by factoring $888=2 \cdot 4 \cdot 111$ and using Jacobi symbols.
(c) Same for $a=-104$ modulo the prime $p=997$.
11. Use quadratic reciprocity to determine the congruence classes in $(\mathbb{Z} / 84 \mathbb{Z})^{\times}$with $\left(\frac{-21}{p}\right)=1$. This solves the reciprocity step when $n=21$, i.e. it tells us when $p \mid a^{2}+21 b^{2}$ for some relatively prime integers a, b.
