HOMEWORK 2

DUE 20 APRIL 2015

SHOW ALL YOUR WORK.

1. Find all the reduced forms of discriminant D and compute the class number $h(D)$ for each of the following discriminants.
(a) $D=-20$
(b) $D=-56$
(c) $D=-28$
(d) $D=-15$
2. Let p be a prime number which is represented by forms $f(x, y)$ and $g(x, y)$ of discriminant D.
(a) Show that $f(x, y)$ and $g(x, y)$ are equivalent.

Hint: use Lemma 3.15 and examine the middle coefficient modulo p.
(b) If $f(x, y)=x^{2}+n y^{2}$ and $g(x, y)$ is reduced, show that $f(x, y)=g(x, y)$.
3. Consider the binary quadratic form $f(x, y)=a x^{2}+b x y+c y^{2}$ and assume that it is primitive.
(a) Given a prime p, prove that at least one of $f(1,0), f(0,1)$ and $f(1,1)$ is relatively prime to p.
(b) Given an integer M, show that $f(x, y)$ properly represents numbers relatively prime to M.
Hint: use (a) and the Chinese Remainder Theorem.
4. Prove that if $p \neq 2,7$ is a prime number, then

$$
p=x^{2}+14 y^{2} \text { or } 2 x^{2}+7 y^{2} \Longleftrightarrow p \equiv 1,9,15,23,25,39(\bmod 56)
$$

and

$$
p=3 x^{2} \pm 2 x y+5 y^{2} \Longleftrightarrow p=3,5,13,19,27,45(\bmod 56)
$$

5. Prove that $p=x^{2}+10 y^{2} \Longleftrightarrow p \equiv 1,9,11,19(\bmod 40)$.
6. Prove that $p=x^{2}+21 y^{2} \Longleftrightarrow p \equiv 1,25,37(\bmod 84)$.
7. Work out the genus theory of Theorem 3.30 for the following discriminants.
(a) $D=-15$
(b) $D=-24$
