HOMEWORK 7

DUE 5 JUNE 2015

SHOW ALL YOUR WORK.

1. (a) Find the projection of the affine part with $Z \neq 0$ of the projective point

$$
A=[2: 3: 5] .
$$

(b) Write the projective equation for the curve

$$
y^{2}=x^{3}+5 \text {. }
$$

(c) Write down all three affine equations for the projective curve

$$
X^{3}+Y^{3}+X Z^{2}=5 Z^{3}
$$

In each case, specify the point at infinity.
2. (a) Find the intersection of the lines

$$
2 x-3 y=7 \quad \text { and } \quad 2 x+5 y=15
$$

(b) Find the intersection of the lines from (a) in the projective plane.
(c) Find the intersection of the line

$$
2 x-4 y=7 \quad \text { and } \quad x-2 y=3 .
$$

(d) Find the intersection of the lines from (c) in the projective plane.
(e) Find the intersection of the curves

$$
x^{2}+y^{2}=1 \quad \text { and } \quad x+y=1 .
$$

(f) Find the intersection of the curves from (e) in the projective plane.
3. Consider the elliptic curve

$$
y^{2}=x^{3}+a x+b .
$$

Take two distinct points $P=\left(x_{P}, y_{P}\right)$ and $Q=\left(x_{Q}, y_{Q}\right)$ on the curve.
(a) Compute the slope of the line through P and Q. What happens if $x_{P}=x_{Q}$?

How many are there? Do you get the same number of points no matter what P and Q are?
(b) Find all the points where the line through P and Q intersects the curve.
(c) Find the slope of the tangent to the curve at P.
(d) Find all the points where the tangent at P intersects the curve. How many are there? Do you get the same number of points for all P ?
4. Take the curve from the previous problem and write it projectively. Now answer the same 4 questions as before.
5. (a) Prove that the line through two rational points is rational.
(b) Prove that the intersection of two rational lines is a rational point (in projective plane).
6. Consider the elliptic curve

$$
y^{2}=x^{3}+17 .
$$

(a) Find the point at infinity.
(b) Show that $P_{1}=(-2,3), P_{2}=(-1,4), P_{3}=(2,5), P_{4}=(4,9), P_{5}=(8,23)$ are points on the curve.
(c) Compute the points

$$
P_{6}=-P_{1}+2 P_{3} \quad \text { and } \quad P_{7}=3 P_{1}-P_{3} .
$$

(d) (Extra credit) The points P_{1}, \ldots, P_{7} have integer coordinates. There is exactly one other point P on this curve with integer coordinates and $y_{p}>0$. Find P. (You will probably need a computer, or else a lot of patience.)
7. Suppose $P=(x, y)$ is a point on the elliptic curve

$$
y^{2}=x^{3}+a x+b \text {. }
$$

(a) Show that the x-coordinate of $2 P$ is

$$
x(2 P)=\frac{x^{4}-2 a x-8 b x+a^{2}}{4 y^{2}} .
$$

(b) Derive a similar formula for $y(2 P)$.

Hint: Problems 3 and 4 will be useful.
8. Consider the elliptic curve

$$
y^{2}=x^{3}-43 x+166 .
$$

(a) Show that the point $P=(3,8)$ is on the curve.
(b) Compute $2 P, 3 P, 4 P$ and $8 P$.
(c) Comparing $8 P$ and P, what can you conclude?

