MATH 20C Lecture 7 - Tuesday, October 28, 2014

Functions of several variables

Recall: for a function of 1 variable, we can plot its graph, and the derivative is the slope of the tangent line to the graph. Plotting graphs of functions of 2 variables: examples $z=-y$, $z=1-x^{2}-y^{2}$, using slices by the coordinate planes. (derived carefully). Contour map: level curves $f(x, y)=c$. Amounts to slicing the graph by horizontal planes $z=c$.

Showed 2 examples from "real life": a topographical map, and a temperature map, then did the examples $z=-y$ and $z=1-x^{2}-y^{2}$.
Contour map gives some qualitative info about how f varies when we change x, y. (shown an example where increasing x leads f to increase, but increasing y leads f to decrease).

Limits

By substitution:

$$
\lim _{(x, y) \rightarrow(0,0)} \frac{3 x^{2}+2 y-5 \cos (4(x+y))}{x y-e^{x-y}}=\frac{0+0-5}{0-1}=5
$$

Disclaimer: limits do not always exist!
For instance, take $\lim _{(x, y) \rightarrow(0,0)} \frac{x^{2}}{x^{2}+y^{2}}$. Direct substitution does not work. Drawn contour map. We see that a bunch of level curves intersect at $(0,0)$, so the limit does not exist.

On the other hand $\lim _{(x, y) \rightarrow(0,0)} \frac{\sin (x+y)}{(x+y)}=1$.

MATH 20C Lecture 8 - Thursday, October 30, 2014

Partial derivatives

$f_{x}=\frac{\partial f}{\partial x}=\lim _{\Delta x \rightarrow 0} \frac{f\left(x_{0}+\Delta x, y_{0}\right)-f\left(x_{0}, y_{0}\right)}{\Delta x} ;$ same for f_{y}.
Geometric interpretation: f_{x}, f_{y} are slopes of tangent lines of vertical slices of the graph of f (fixing $y=y_{0}$; fixing $x=x_{0}$).
How to compute: treat x as variable, y as constant.
Example: $f(x, y)=x^{3} y+y^{2}$, then $f_{x}=3 x^{2} y, f_{y}=x^{3}+2 y$.
Another example: $g(x, y)=\cos \left(x^{3} y+y^{2}\right)$.
Use chain rule (version I)

$$
\frac{\partial F}{\partial x}=\frac{d F}{d u} \frac{\partial u}{\partial x}
$$

Here $F(u)=\cos u$ and $u=f$, so get $\frac{\partial g}{\partial x}=-\left(3 x^{2} y\right) \sin \left(x^{3} y+y^{2}\right)$.
Product rule:

$$
\frac{\partial(f g)}{\partial x}\left(x_{0}, y_{0}\right)=g\left(x_{0}, y_{0}\right) \frac{\partial f}{\partial x}+f\left(x_{0}, y_{0}\right) \frac{\partial g}{\partial x}
$$

Linear approximation

Linear approximation formula:

$$
\Delta f \approx f_{x} \Delta x+f_{y} \Delta y .
$$

Justification: f_{x} and f_{y} give slopes of two lines tangent to the graph:

$$
L_{1}:\left\{\begin{array}{l}
y=y_{0} \\
z=z_{0}+f_{x}\left(x_{0}, y_{0}\right)\left(x-x_{0}\right)
\end{array} \quad \text { and } L_{2}:\left\{\begin{array}{l}
x=x_{0} \\
z=z_{0}+f_{y}\left(x_{0}, y_{0}\right)\left(y-y_{0}\right) .
\end{array}\right.\right.
$$

We can use this to get the equation of the tangent plane to the graph:

$$
z=z_{0}+f_{x}\left(x_{0}, y_{0}\right)\left(x-x_{0}\right)+f_{y}\left(x_{0}, y_{0}\right)\left(y-y_{0}\right) .
$$

Approximation formula says that the graph is close to its tangent plane.
Recall chain rule I: $g=F(u)$ and $u=u(x, y)$, then $\frac{\partial g}{\partial x}=\frac{d F}{d u} \frac{\partial u}{\partial x}$. Used this to compute the partial derivatives of $g(x, y, z)=\ln \left(x^{2}+y^{2}-x z\right)$. Get

$$
\frac{\partial g}{\partial x}=\frac{2 x-z}{x^{2}+y^{2}-x z}, \quad \frac{\partial g}{\partial z}=\frac{-x}{x^{2}+y^{2}-x z} .
$$

Higher order partial derivatives

Are computed by taking successive partial derivatives. For instance $\frac{\partial^{2} f}{\partial x^{2}}=\frac{\partial}{\partial x}\left(\frac{\partial f}{\partial x}\right)$ and so on. Computed

$$
\begin{aligned}
\frac{\partial^{2} g}{\partial z \partial x} & =\frac{\partial x}{\partial z}\left(\frac{\partial g}{\partial x}\right)=\frac{\partial}{\partial z}\left(\frac{2 x-z}{x^{2}+y^{2}-x z}\right)=\frac{(-1)\left(x^{2}+y^{2}-x z\right)-(2 x-z)(-x)}{\left(x^{2}+y^{2}-x z\right)^{2}} \\
\frac{\partial^{2} g}{\partial x \partial z} & =\frac{\partial}{\partial x}\left(\frac{\partial g}{\partial z}\right)=\frac{\partial}{\partial x}\left(\frac{-x}{x^{2}+y^{2}-x z}\right)=\frac{(-1)\left(x^{2}+y^{2}-x z\right)-(-x)(2 x-z)}{\left(x^{2}+y^{2}-x z\right)^{2}}
\end{aligned}
$$

Notice that $\frac{\partial^{2} g}{\partial z \partial x}=\frac{\partial^{2} g}{\partial x \partial z}$. This is no coincidence. In general,

$$
\frac{\partial^{2} f}{\partial x \partial y}=\frac{\partial^{2} f}{\partial y \partial x}
$$

Chain rule with more variables

Chain rule II: For example $w=f(x, y), x=x(u, v), y=y(u, v)$. Then we can view f as a function of u and v.

$$
\begin{array}{r}
\frac{\partial f}{\partial u}=\frac{\partial f}{\partial x} \frac{\partial x}{\partial u}+\frac{\partial f}{\partial y} \frac{\partial y}{\partial u} \\
\frac{\partial f}{\partial v}=\frac{\partial f}{\partial x} \frac{\partial x}{\partial v}+\frac{\partial f}{\partial y} \frac{\partial y}{\partial v}
\end{array}
$$

The idea behind each formula is that changing u causes both x and y to change, at rates $\partial x / \partial u$ and $\partial y / \partial u$. The change in x affects f at the rate of $\partial f / \partial x$, for a total effect of $\frac{\partial f}{\partial x} \frac{\partial x}{\partial u}$. At the same time, the change in y affects f at the rate of $\partial f / \partial y$, for a total effect of $\frac{\partial f}{\partial y} \frac{\partial y}{\partial u}$. Finally, the two effects add up to produce the change in f given by the first line in the boxed formula.

Gradient vector

Chain rule III: function $f=f(x, y, z)$ and $x=x(t), y=y(t), z=z(t)$:

$$
\frac{d f}{d t}=f_{x} \frac{d x}{d t}+f_{y} \frac{d y}{d t}+f_{z} \frac{d z}{d t}=\nabla f \cdot\left\langle\frac{d x}{d t}, \frac{d y}{d t}, \frac{d z}{d t}\right\rangle
$$

where $\nabla f=\left\langle\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}\right\rangle$ is called the gradient vector of $f(x, y, z)$. Using this notation, the chain rule can be re-written as follows. On the path described by $\vec{r}(t)=\langle x(t), y(t), z(t)\rangle$, we have

$$
\frac{d f}{d t}=f_{x} \frac{d x}{d t}+f_{y} \frac{d y}{d t}+f_{z} \frac{d z}{d t}=\nabla f \cdot\left\langle\frac{d x}{d t}, \frac{d y}{d t}, \frac{d z}{d t}\right\rangle .
$$

That is,

$$
\frac{d f}{d t}=\nabla f \cdot \frac{d \vec{r}}{d t}=\nabla f \cdot \vec{v}
$$

where \vec{v} is the velocity vector.
Note: ∇f is a vector whose value depends on the point (x, y, z) where we evaluate f.

