
MATH 20C Lecture 9 - Tuesday, November 4, 2014

Gradient vector

Recall: the gradient vector of f(x, y, z) is ∇f =

〈
∂f

∂x
,
∂f

∂y
,
∂f

∂z

〉
.

Theorem: ∇f is perpendicular to the level surfaces f = c.

Proof: take a curve ~r = ~r(t) contained inside level surface f = c. Then velocity ~v = d~r/dt is in
the tangent plane, and by chain rule, dw/dt = ∇f · ~v = 0, so ~v ⊥ ∇f. This is true for every ~v in
the tangent plane.

Example 1: f(x, y, z) = a1x + a2y + a3z, then ∇f = 〈a1, a2, a3〉. The level surface f = c is
a1x+ a2y + a3z = c. This is a plane with normal vector 〈a1, a2, a3〉 = ∇f, so ∇f is perpendicular
on the plane f(x, y, z) = c.

Example 2: f(x, y) = x2 +y2, then f = c are circles, ∇w = 〈2x, 2y〉 points radially out so ⊥ circles.

Application: the tangent plane to a surface f(x, y, z) = c at a point P is the plane through P
with normal vector ∇f(P ).

Example: tangent plane to x2 + y2 − z2 = 4 at (2, 1, 1) : gradient is 〈2x, 2y,−2z〉 = 〈4, 2,−2〉;
tangent plane is 4x+ 2y− 2z = 8. (Here we could also solve for z = ±

√
x2 + y2 − 4 and use linear

approximation formula, but in general we can’t.)
Another way to get the tangent plane: ∆f ≈ 4∆x+ 2∆y − 2∆z. On the level surface we have

∆f = 0, so its tangent plane approximation is 4∆x+2∆y−2∆z = 0, i.e. 4(x−2)+2(y−1)−2(z−1) =
0, same as above.

Directional derivatives

We want to know the rate of change of f as we move (x, y) in an arbitrary direction.

Take a unit vector û and look at the cross-section of the graph of f by the vertical plane
parallel to û and passing through the point (x, y). This is a curve passing through the point
P = (x, y, z = f(x, y)) and we want to compute the slope the tangent line to this curve at P.

Notice that ∂f
∂x is the directional derivative in the direction of ı̂ and ∂f

∂y is the directional deriva-
tive in the direction of ̂.

Notation: Dûf(x0, y0) denotes the derivative of f in the direction of the unit vector û at the
point (x0, y0).

Shown f = x2 + y2 + 1, and rotating slices through a point of the graph.
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How to compute

Say that û = 〈a, b〉. In order to computeDûf(x0, y0), look at the straight line trajectory ~r(s) through

(x0, y0) with velocity û given by x(s) = x0+as, y(s) = y0+bs. Then by definition Dûf(x0, y0) =
df

ds
.

This we can compute by chain rule to be
df

ds
= ∇f · d~r

ds
. Hence

Dûf(x0, y0) = ∇f(x0, y0) · û.

Example Compute the directional derivative of f = x2 + y2 − z2 at P = (2, 1, 1) in the direction of
û = 〈 1√

2
, 1√

2
, 0〉.

so ∇f(P ) = 〈4, 2,−2〉.
The unit vector in the direction of û is û itself. So Dûf(P ) = ∇f(P ) · û = 3

√
2. Therefore f is

increasing in the direction of û.

Geometric interpretation: Dûf = ∇f · û = |∇f | cos θ. Maximal for cos θ = 1, when û is in
direction of ∇f. Hence: direction of ∇f is that of fastest increase of f , and |∇f | is the directional
derivative in that direction.

It is minimal in the opposite direction.

We have Dûf = 0 when û ⊥ ∇f , i.e. when û is tangent to direction of level surface.

Implicit differentiation

Example: x2 + yz + z3 = 8. Viewing z = z(x, y), compute
∂z

∂x
and

∂z

∂y
.

Take ∂
∂x of both sides of x2 + yz+ z3 = 8. Get 2x+ y ∂z

∂x + 3z2 ∂z
∂x = 0, hence ∂z

∂x = − 2x
y+3z2

= −2
3 .

In general, consider a surface F (x, y, z) = c. The we can view z = z(x, y) as a function of two

independent variables x, y and compute
∂z

∂x
and

∂z

∂y
. To do so, we take the partial derivative with

respect to x of both sides of the equation F (x, y, z) = c and get (by the chain rule)

∂F

∂x

∂x

∂x
+
∂F

∂y

∂y

∂x
+
∂F

∂z

∂z

∂x
= 0.

But ∂x/∂x = 1 and, since x and y are independent, ∂y/∂x = 0 (changing x does not affect y).
Hence the equation above really says that Fx + Fz

∂z
∂x = 0 which implies

∂z

∂x
= −Fx

Fz
.

Similarly,

∂z

∂y
= −Fy

Fz
.
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Changing gears, let’s see how we can recover f from its gradient. Say ∇f = 〈3x2y, x3 +2z, 2y+
cos z〉.

We proceed by successive integration.

We are given that fx = 3x2y. Integrating with respect to x (view y, z as constants), we see that
f = x3y + g(y, z). Therefore

fy = x3 +
∂g

∂y
.

But we know from the gradient that fy = x3 + 2z, hence gy = 2z.

Integrate with respect to y and get g = 2yz + h(z), hence f = x3y + 2yz + h(z).

Since fz = 2y+ cos z we get that dh
dz = cos z, so h(z) = sin z+C. Substituting in the expression

of f gives f = x3y + 2yz + sin z + C.

MATH 20C Lecture 10 - Thursday, November 6, 2014

Min/max in several variables

At a local max or min, fx = 0 and fy = 0 (since (x0, y0) is a local max or min of the slice). Because
2 lines determine tangent plane, this is enough to ensure that the tangent plane is horizontal.

Definition A critical point of f is a point (x0, y0) where fx = 0 and fy = 0. A critical point may
be a local min, local max, or saddle. Or degenerate. Pictures shown of each type. To decide, apply
second derivative test.

Example: f(x, y) = x2 − 2xy + 3y2 + 2x− 2y.
Critical point: fx = 2x − 2y + 2 = 0, fy = −2x + 6y − 2 = 0, gives (x0, y0) = (−1, 0) (only one
critical point).
Definition The hessian matrix of f is

H(x, y) =


∂2f

∂x2
∂2f

∂y∂x

∂2f

∂x∂y

∂2f

∂y2

 .

Second derivative test

Let (x0, y0) be a critical point of f.

Case 1 detH > 0, fxx > 0: (x0, y0) is a local minimum

Case 2 detH > 0, fxx < 0: (x0, y0) is a local maximum

Case 3 detH < 0: (x0, y0) is a saddle point
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Case 4 detH = 0: cannot tell (need higher order derivatives)

Example 1 Find the local min/max of f(x, y) = x+ y + 1
xy , x, y > 0.

Step 1 Find critical points by solving the 2× 2 system of equations{
fx = 0

fy = 0

In this case, the system is {
1

x2y
= 1

1
xy2

= 1.

Divide the first equation by the second and get x = y, plug back into the first equation and
get x3 = 1. So the only critical point is (1, 1).

Showed slide asking students if this point is a local max/min or saddle. Most got it right
(local min). Now let’s do it rigorously.

Step 2 Compute the Hessian matrix

H(x, y) =

[
fxx fxy
fyx fyy

]
.

Recall that fxy = fyx.

In our case, get H(x, y) =

[
2

x3y
1

x2y2
1

x2y2
2

xy3

]
.

Step 2 Compute the Hessian matrix at each of the critical points.

H(1, 1) =

[
2 1
1 2

]
.

Step 4 Apply the second derivative test for each critical point.

detH(1, 1) = 4− 1 = 3 > 0 and fxx = 2 > 0, so (1, 1) is a local minimum.

Attention! We can also infer the nature of a critical point from the contour plot. Showed picture
and discussed possibilities. Most students got the right answer.

Max: f →∞ when x→∞ or y →∞ or x→ 0 or y → 0.
Min: global min at (1, 1) where f(1, 1) = 3.

NOTE: the global min/max of a function is not necessarily at a critical point! Need to check
boundary / infinity.
Example 2 f(x, y) = (x2 + y2)e−x
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Step 1 Find critical points by solving the 2× 2 system of equations{
fx = 0

fy = 0

In this case, the system is {
(2x− x2 − y2)e−x = 0

2ye−x = 0.

The second equation tells us that y = 0. Plug back into the first equation and get x2−2x = 0.
So critical points are (0, 0) and (2, 0).

Step 2 Compute the Hessian matrix

H(x, y) =

[
fxx fxy
fyx fyy

]
.

In our case, get H(x, y) =

[
(2− 4x+ x2 + y2)e−x −2ye−x

−2ye−x 2e−x

]
.

Step 2 Compute the Hessian matrix at each of the critical points.

H(0, 0) =

[
2 0
0 2

]
and

H(2, 0) =

[
−2e−2 0

0 2e−2

]
.

Step 4 Apply the second derivative test for each critical point.

• For (0, 0) : detH(0, 0) = 4 > 0 and fxx = 2 > 0, so (0, 0) is a local minimum.

• For (2, 0) : detH(2, 0) = −4e−4 < 0, so (2, 0) is a saddle point.

In Example 2 above, to find the global min/max of f in the square 0 ≤ x, y ≤ 1, we need
to check what happens on the boundary. Namely we have to look at f(0, y), f(1, y), f(x, 0) and
f(x, 1). We have to compute the min/max for these 4 functions and compare to the value at critical
points inside the square (if any).

Values at critical points inside the square: f(0, 0) = 0.

Boundary:
f(0, y) = y2 : it has a minimum at y = 0
f(1, y) = (1 + y2)/e : has a minimum at y = 0.
f(x, 0) = x2e−x : the first derivative is (2x − x2)e−x; critical points: 0, 2; but only 0 is in our
domain. Second derivative: (2− 4x+ x2)e−x takes value 2 at 0. Get local min 0 at 0.
f(x, 1) = (x2 + 1)e−x : first derivative (2x − x2 − 1)e−x is zero at x = 1. Second derivative Have
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f(1, 1) = 2e−1 > 0 = f(0, 0).

Global min = 0, global max = 2e−1 in the square [0, 1]× [0, 1]

We did not cover what follows in class, but I left in the notes as it is good practice.

Question: global min/max of f(x, y) = (x2 + y2)e−x in first quadrant, i.e. for x, y ≥ 0.

Values at critical points: f(0, 0) = 0, f(2, 0) = 4e−2.

Boundary:
f(0, y) = y2 : it has a minimum at y = 0
Fix x > 0 : as y →∞, f(x, y)→∞
f(x, 0) = x2e−x : the first derivative is (2x − x2)e−x; critical points: 0, 2; second derivative: (2 −
4x+ x2)e−x takes values 2 at 0 and −2e−2 at 2. Get local min 0 at 0 and local max 4e−2 at 2.
Fix y > 0 : as x→∞, f(x, y)→ 0.

Global min = 0, no global max in first quadrant.
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