MATH 20C Lecture 9 - Tuesday, November 4, 2014

Gradient vector

Recall: the gradient vector of f(z,y,z)is Vf = <g£, g]y“, gi> )

Theorem: V f is perpendicular to the level surfaces f = c.

Proof: take a curve 7= #(t) contained inside level surface f = c¢. Then velocity ¥ = d7’/dt is in
the tangent plane, and by chain rule, dw/dt = Vf -4 =0, so ¥ L Vf. This is true for every ¢ in
the tangent plane.

Ezample 1: f(x,y,z) = a1z + agy + agz, then Vf = (aj,az,a3). The level surface f = c is
a1z + asy + azz = c. This is a plane with normal vector (a1, as,a3) = Vf, so Vf is perpendicular
on the plane f(z,y,2) = c.

Ezample 2: f(x,y) = 22 +9y?, then f = c are circles, Vw = (2z, 2y) points radially out so L circles.

Application: the tangent plane to a surface f(z,y,z) = ¢ at a point P is the plane through P
with normal vector V f(P).

Ezample: tangent plane to 22 4+ y? — 22 = 4 at (2,1,1) : gradient is (2x,2y, —2z) = (4,2, —2);
tangent plane is 4x + 2y — 2z = 8. (Here we could also solve for z = +1/2% 4+ y? — 4 and use linear
approximation formula, but in general we can’t.)

Another way to get the tangent plane: Af ~ 4Ax + 2Ay — 2Az. On the level surface we have
Af = 0, so its tangent plane approximation is 4Az+2Ay—2Az = 0,i.e. 4(z—2)+2(y—1)—2(z—1) =
0, same as above.

Directional derivatives

We want to know the rate of change of f as we move (z,y) in an arbitrary direction.
Take a unit vector u and look at the cross-section of the graph of f by the vertical plane
parallel to @ and passing through the point (z,y). This is a curve passing through the point

P = (z,y,z = f(x,y)) and we want to compute the slope the tangent line to this curve at P.

Notice that % is the directional derivative in the direction of 72 and %?J; is the directional deriva-
tive in the direction of j.

Notation: Dy f(xg,y0) denotes the derivative of f in the direction of the unit vector @ at the
point (o, Yo)-

Shown f = z? + y? + 1, and rotating slices through a point of the graph.



How to compute

Say that @ = (a, b). In order to compute Dy f(z0, yo), look at the straight line trajectory 7(s) through
(0, yo) with velocity 4 given by z(s) = zo+as, y(s) = yo+bs. Then by definition Dy, f(xo, yo)

pu— %'
This we can compute by chain rule to be Z—f =Vf- ? Hence
S s

’Dﬁf(fo,yo) = Vf(z0,%0) ﬂ‘

Ezample Compute the directional derivative of f = 22 +y? — 22 at P = (2,1,1) in the direction of
i = (5, 25,00

so Vf(P) = (4,2,-2).
The unit vector in the direction of 4 is @ itself. So Dy f(P) = Vf(P) -4 = 3v/2. Therefore f is
increasing in the direction of 4.

Geometric interpretation: D;f = Vf -4 = |V f|cosf. Maximal for cosf = 1, when @ is in
direction of V f. Hence: direction of V f is that of fastest increase of f, and |V f]| is the directional
derivative in that direction.

It is minimal in the opposite direction.

We have D f =0 when @ L Vf, i.e. when @ is tangent to direction of level surface.

Implicit differentiation

0 0
Ezample: x4+ yz + 2% = 8. Viewing z = z(z,y), compute a—z and 8—z
T Yy
Take a% of both sides of 2% +yz + 23 = 8. Get 2m+y% —1—3222—; = 0, hence % = —yfgzg = —%.

In general, consider a surface F(z,y,z) = c¢. The we can view z = z(z,y) as a function of two

z 0z
independent variables =,y and compute — and —. To do so, we take the partial derivative with

ox dy
respect to x of both sides of the equation F(z,y,z) = ¢ and get (by the chain rule)
OF 0  OF 0y OF 0
ox 0x Oy Ox 0z 0
But 0x/0x = 1 and, since x and y are independent, dy/0x = 0 (changing = does not affect y).
Hence the equation above really says that F, + F. Z% = 0 which implies

0= I,

or  F.’
Similarly,

9z _ By

oy  F.




Changing gears, let’s see how we can recover f from its gradient. Say Vf = (3z%y, 2® + 2z, 2y +
COS 2).

We proceed by successive integration.

We are given that f, = 3x2y. Integrating with respect to = (view 7, z as constants), we see that
f =23y + g(y, z). Therefore

But we know from the gradient that f, = 3 + 2z, hence g, = 2.
Integrate with respect to y and get g = 2yz + h(z), hence f = 23y + 2yz + h(z2).

Since f, = 2y + cos z we get that % = co0s z, 80 h(z) = sin z 4+ C. Substituting in the expression
of f gives f = z3y + 2yz +sinz + C.

MATH 20C Lecture 10 - Thursday, November 6, 2014

Min/max in several variables

At a local max or min, f, =0 and f, = 0 (since (x0, yo) is a local max or min of the slice). Because
2 lines determine tangent plane, this is enough to ensure that the tangent plane is horizontal.

Definition A critical point of f is a point (zo,y0) where f, =0 and f, = 0. A critical point may
be a local min, local max, or saddle. Or degenerate. Pictures shown of each type. To decide, apply
second derivative test.

Ezample: f(x,y) = 22 — 2zy + 3y? + 22 — 2y.

Critical point: f, = 22 —2y+2 =10, f, = =2z + 6y — 2 = 0, gives (x9,y0) = (—1,0) (only one
critical point).

Definition The hessian matrix of f is

o*f  0%f

822 Oydz
H(z,y) =

o*f  0%f

oxdy  Oy?

Second derivative test

Let (z0,0) be a critical point of f.

Case 1 det H > 0, fyr > 0: (z0,%0) is a local minimum
Case 2 det H > 0, fyr < 0: (z0,y0) is a local maximum

Case 3 det H < 0: (z0, o) is a saddle point



Case 4 det H = 0: cannot tell (need higher order derivatives)

1

Ezample 1 Find the local min/max of f(z,y) =z +y + ol

z,y > 0.

Step 1 Find critical points by solving the 2 X 2 system of equations
fx =0
fy =0

In this case, the system is

Divide the first equation by the second and get x = y, plug back into the first equation and
get 23 = 1. So the only critical point is (1,1).

Showed slide asking students if this point is a local max/min or saddle. Most got it right
(local min). Now let’s do it rigorously.

Step 2 Compute the Hessian matriz

H(z,y) = [ Jaw  Jfay ] '

fya: fyy
Recall that f.y = fyz-

2 1
In our case, get H(z,y) = [ oY iﬁ"’? ] .

24,2

z2y xy3

Step 2 Compute the Hessian matriz at each of the critical points.
2 1
mon-[2 1]

Step 4 Apply the second derivative test for each critical point.
det H(1,1) =4—1=3>0and f,, =2 >0, s0 (1,1) is a local minimum.

Attention! We can also infer the nature of a critical point from the contour plot. Showed picture
and discussed possibilities. Most students got the right answer.

Max: f — oo when z — ocoory - occorz — 0 or y — 0.

Min: global min at (1,1) where f(1,1) = 3.
NOTE: the global min/max of a function is not necessarily at a critical point! Need to check
boundary / infinity.
Ezample 2 f(x,y) = (22 +y?)e™®



Step 1 Find critical points by solving the 2 X 2 system of equations
fz =0
fy =0

(22 — 22 —y?)e =0
2ye™* = 0.

In this case, the system is

The second equation tells us that y = 0. Plug back into the first equation and get 2 — 2z = 0.
So critical points are (0,0) and (2,0).

Step 2 Compute the Hessian matriz

H(z,y) = [ Jae  Jfay ] '

fya: fyy

(2 —dx+ 22 +19%)e® —2ye® ]

In our case, get H(z,y) = oyt -7

Step 2 Compute the Hessian matriz at each of the critical points.

H(O,O):[(Q) g}

and

H(2.0) = [ —2e72 0 }

0 2e2
Step 4 Apply the second derivative test for each critical point.

e For (0,0) : det H(0,0) =4 > 0 and f, =2 > 0, so (0,0) is a local minimum.
e For (2,0) : det H(2,0) = —4e~* < 0, so (2,0) is a saddle point.

In Example 2 above, to find the global min/max of f in the square 0 < z,y < 1, we need
to check what happens on the boundary. Namely we have to look at f(0,y), f(1,y), f(z,0) and
f(z,1). We have to compute the min/max for these 4 functions and compare to the value at critical
points inside the square (if any).

Values at critical points inside the square: f(0,0) = 0.

Boundary:
f(0,y) = y? : it has a minimum at y = 0
f(1,y) = (1 +y?)/e : has a minimum at y = 0.
f(z,0) = x%e~% : the first derivative is (2z — 22)e™%; critical points: 0,2; but only 0 is in our
domain. Second derivative: (2 — 4x + x?)e™" takes value 2 at 0. Get local min 0 at 0.
f(z,1) = (2% + 1)e : first derivative (20 — 22 — 1)e~® is zero at x = 1. Second derivative Have



f(1,1) =271 > 0= £(0,0).

Global min = 0, global max = 2e~! in the square [0, 1] x [0, 1]

We did not cover what follows in class, but I left in the notes as it is good practice.

T

Question: global min/max of f(x,y) = (2% + y?)e™® in first quadrant, i.e. for z,y > 0.

Values at critical points: f(0,0) = 0, f(2,0) = 4e~2.

Boundary:
f(0,y) = y? : it has a minimum at y = 0
Fixz>0:asy— oo, f(z,y) = o0
f(x,0) = 22~ : the first derivative is (2x — 22)e~%; critical points: 0,2; second derivative: (2 —
4z + x?)e ™ takes values 2 at 0 and —2e~2 at 2. Get local min 0 at 0 and local max 4e~2 at 2.
Fixy>0:asz — oo, f(z,y) — 0.

Global min = 0, no global max in first quadrant.



