MATH 20C Lecture 9 - Tuesday, November 4, 2014

Gradient vector

Recall: the gradient vector of $f(x, y, z)$ is $\nabla f=\left\langle\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}\right\rangle$.
Theorem: ∇f is perpendicular to the level surfaces $f=c$.
Proof: take a curve $\vec{r}=\vec{r}(t)$ contained inside level surface $f=c$. Then velocity $\vec{v}=d \vec{r} / d t$ is in the tangent plane, and by chain rule, $d w / d t=\nabla f \cdot \vec{v}=0$, so $\vec{v} \perp \nabla f$. This is true for every \vec{v} in the tangent plane.

Example 1: $f(x, y, z)=a_{1} x+a_{2} y+a_{3} z$, then $\nabla f=\left\langle a_{1}, a_{2}, a_{3}\right\rangle$. The level surface $f=c$ is $a_{1} x+a_{2} y+a_{3} z=c$. This is a plane with normal vector $\left\langle a_{1}, a_{2}, a_{3}\right\rangle=\nabla f$, so ∇f is perpendicular on the plane $f(x, y, z)=c$.

Example 2: $f(x, y)=x^{2}+y^{2}$, then $f=c$ are circles, $\nabla w=\langle 2 x, 2 y\rangle$ points radially out so \perp circles.
Application: the tangent plane to a surface $f(x, y, z)=c$ at a point P is the plane through P with normal vector $\nabla f(P)$.

Example: tangent plane to $x^{2}+y^{2}-z^{2}=4$ at $(2,1,1)$: gradient is $\langle 2 x, 2 y,-2 z\rangle=\langle 4,2,-2\rangle$; tangent plane is $4 x+2 y-2 z=8$. (Here we could also solve for $z= \pm \sqrt{x^{2}+y^{2}-4}$ and use linear approximation formula, but in general we can't.)

Another way to get the tangent plane: $\Delta f \approx 4 \Delta x+2 \Delta y-2 \Delta z$. On the level surface we have $\Delta f=0$, so its tangent plane approximation is $4 \Delta x+2 \Delta y-2 \Delta z=0$, i.e. $4(x-2)+2(y-1)-2(z-1)=$ 0 , same as above.

Directional derivatives

We want to know the rate of change of f as we move (x, y) in an arbitrary direction.
Take a unit vector \hat{u} and look at the cross-section of the graph of f by the vertical plane parallel to \hat{u} and passing through the point (x, y). This is a curve passing through the point $P=(x, y, z=f(x, y))$ and we want to compute the slope the tangent line to this curve at P.

Notice that $\frac{\partial f}{\partial x}$ is the directional derivative in the direction of $\hat{\imath}$ and $\frac{\partial f}{\partial y}$ is the directional derivative in the direction of $\hat{\jmath}$.

Notation: $D_{\hat{u}} f\left(x_{0}, y_{0}\right)$ denotes the derivative of f in the direction of the unit vector \hat{u} at the point $\left(x_{0}, y_{0}\right)$.

Shown $f=x^{2}+y^{2}+1$, and rotating slices through a point of the graph.

How to compute

Say that $\hat{u}=\langle a, b\rangle$. In order to compute $D_{\hat{u}} f\left(x_{0}, y_{0}\right)$, look at the straight line trajectory $\vec{r}(s)$ through $\left(x_{0}, y_{0}\right)$ with velocity \hat{u} given by $x(s)=x_{0}+a s, y(s)=y_{0}+b s$. Then by definition $D_{\hat{u}} f\left(x_{0}, y_{0}\right)=\frac{d f}{d s}$. This we can compute by chain rule to be $\frac{d f}{d s}=\nabla f \cdot \frac{d \vec{r}}{d s}$. Hence

$$
D_{\hat{u}} f\left(x_{0}, y_{0}\right)=\nabla f\left(x_{0}, y_{0}\right) \cdot \hat{u}
$$

Example Compute the directional derivative of $f=x^{2}+y^{2}-z^{2}$ at $P=(2,1,1)$ in the direction of $\hat{u}=\left\langle\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}, 0\right\rangle$.
so $\nabla f(P)=\langle 4,2,-2\rangle$.
The unit vector in the direction of \hat{u} is \hat{u} itself. So $D_{\hat{u}} f(P)=\nabla f(P) \cdot \hat{u}=3 \sqrt{2}$. Therefore f is increasing in the direction of \hat{u}.

Geometric interpretation: $D_{\hat{u}} f=\nabla f \cdot \hat{u}=|\nabla f| \cos \theta$. Maximal for $\cos \theta=1$, when \hat{u} is in direction of ∇f. Hence: direction of ∇f is that of fastest increase of f, and $|\nabla f|$ is the directional derivative in that direction.

It is minimal in the opposite direction.
We have $D_{\hat{u}} f=0$ when $\hat{u} \perp \nabla f$, i.e. when \hat{u} is tangent to direction of level surface.

Implicit differentiation

Example: $x^{2}+y z+z^{3}=8$. Viewing $z=z(x, y)$, compute $\frac{\partial z}{\partial x}$ and $\frac{\partial z}{\partial y}$.
Take $\frac{\partial}{\partial x}$ of both sides of $x^{2}+y z+z^{3}=8$. Get $2 x+y \frac{\partial z}{\partial x}+3 z^{2} \frac{\partial z}{\partial x}=0$, hence $\frac{\partial z}{\partial x}=-\frac{2 x}{y+3 z^{2}}=-\frac{2}{3}$.
In general, consider a surface $F(x, y, z)=c$. The we can view $z=z(x, y)$ as a function of two independent variables x, y and compute $\frac{\partial z}{\partial x}$ and $\frac{\partial z}{\partial y}$. To do so, we take the partial derivative with respect to x of both sides of the equation $F(x, y, z)=c$ and get (by the chain rule)

$$
\frac{\partial F}{\partial x} \frac{\partial x}{\partial x}+\frac{\partial F}{\partial y} \frac{\partial y}{\partial x}+\frac{\partial F}{\partial z} \frac{\partial z}{\partial x}=0 .
$$

But $\partial x / \partial x=1$ and, since x and y are independent, $\partial y / \partial x=0$ (changing x does not affect y). Hence the equation above really says that $F_{x}+F_{z} \frac{\partial z}{\partial x}=0$ which implies

$$
\frac{\partial z}{\partial x}=-\frac{F_{x}}{F_{z}} .
$$

Similarly,

$$
\frac{\partial z}{\partial y}=-\frac{F_{y}}{F_{z}} .
$$

Changing gears, let's see how we can recover f from its gradient. Say $\nabla f=\left\langle 3 x^{2} y, x^{3}+2 z, 2 y+\right.$ $\cos z\rangle$.

We proceed by successive integration.
We are given that $f_{x}=3 x^{2} y$. Integrating with respect to x (view y, z as constants), we see that $f=x^{3} y+g(y, z)$. Therefore

$$
f_{y}=x^{3}+\frac{\partial g}{\partial y} .
$$

But we know from the gradient that $f_{y}=x^{3}+2 z$, hence $g_{y}=2 z$.
Integrate with respect to y and get $g=2 y z+h(z)$, hence $f=x^{3} y+2 y z+h(z)$.
Since $f_{z}=2 y+\cos z$ we get that $\frac{d h}{d z}=\cos z$, so $h(z)=\sin z+C$. Substituting in the expression of f gives $f=x^{3} y+2 y z+\sin z+C$.

MATH 20C Lecture 10 - Thursday, November 6, 2014

Min/max in several variables

At a local max or min, $f_{x}=0$ and $f_{y}=0$ (since $\left(x_{0}, y_{0}\right)$ is a local max or min of the slice). Because 2 lines determine tangent plane, this is enough to ensure that the tangent plane is horizontal.

Definition A critical point of f is a point $\left(x_{0}, y_{0}\right)$ where $f_{x}=0$ and $f_{y}=0$. A critical point may be a local min, local max, or saddle. Or degenerate. Pictures shown of each type. To decide, apply second derivative test.

Example: $f(x, y)=x^{2}-2 x y+3 y^{2}+2 x-2 y$.
Critical point: $f_{x}=2 x-2 y+2=0, f_{y}=-2 x+6 y-2=0$, gives $\left(x_{0}, y_{0}\right)=(-1,0)$ (only one critical point).
Definition The hessian matrix of f is

$$
H(x, y)=\left[\begin{array}{cc}
\frac{\partial^{2} f}{\partial x^{2}} & \frac{\partial^{2} f}{\partial y \partial x} \\
\frac{\partial^{2} f}{\partial x \partial y} & \frac{\partial^{2} f}{\partial y^{2}}
\end{array}\right]
$$

Second derivative test

Let $\left(x_{0}, y_{0}\right)$ be a critical point of f.
Case $1 \operatorname{det} H>0, f_{x x}>0:\left(x_{0}, y_{0}\right)$ is a local minimum
Case $2 \operatorname{det} H>0, f_{x x}<0:\left(x_{0}, y_{0}\right)$ is a local maximum
Case $3 \operatorname{det} H<0:\left(x_{0}, y_{0}\right)$ is a saddle point

Case $4 \operatorname{det} H=0$: cannot tell (need higher order derivatives)
Example 1 Find the local min/max of $f(x, y)=x+y+\frac{1}{x y}, \quad x, y>0$.
Step 1 Find critical points by solving the 2×2 system of equations

$$
\left\{\begin{array}{l}
f_{x}=0 \\
f_{y}=0
\end{array}\right.
$$

In this case, the system is

$$
\left\{\begin{array}{l}
\frac{1}{x^{2} y}=1 \\
\frac{1}{x y^{2}}=1
\end{array}\right.
$$

Divide the first equation by the second and get $x=y$, plug back into the first equation and get $x^{3}=1$. So the only critical point is $(1,1)$.
Showed slide asking students if this point is a local max/min or saddle. Most got it right (local min). Now let's do it rigorously.

Step 2 Compute the Hessian matrix

$$
H(x, y)=\left[\begin{array}{ll}
f_{x x} & f_{x y} \\
f_{y x} & f_{y y}
\end{array}\right]
$$

Recall that $f_{x y}=f_{y x}$.
In our case, get $H(x, y)=\left[\begin{array}{cc}\frac{2}{x^{3} y} & \frac{1}{x^{2} y^{2}} \\ \frac{1}{x^{2} y^{2}} & \frac{2}{x y^{3}}\end{array}\right]$.
Step 2 Compute the Hessian matrix at each of the critical points.

$$
H(1,1)=\left[\begin{array}{ll}
2 & 1 \\
1 & 2
\end{array}\right]
$$

Step 4 Apply the second derivative test for each critical point.
$\operatorname{det} H(1,1)=4-1=3>0$ and $f_{x x}=2>0$, so $(1,1)$ is a local minimum.
Attention! We can also infer the nature of a critical point from the contour plot. Showed picture and discussed possibilities. Most students got the right answer.

Max: $f \rightarrow \infty$ when $x \rightarrow \infty$ or $y \rightarrow \infty$ or $x \rightarrow 0$ or $y \rightarrow 0$.
Min: global min at $(1,1)$ where $f(1,1)=3$.
NOTE: the global min/max of a function is not necessarily at a critical point! Need to check boundary / infinity.
Example 2 $f(x, y)=\left(x^{2}+y^{2}\right) e^{-x}$

Step 1 Find critical points by solving the 2×2 system of equations

$$
\left\{\begin{array}{l}
f_{x}=0 \\
f_{y}=0
\end{array}\right.
$$

In this case, the system is

$$
\left\{\begin{array}{l}
\left(2 x-x^{2}-y^{2}\right) e^{-x}=0 \\
2 y e^{-x}=0
\end{array}\right.
$$

The second equation tells us that $y=0$. Plug back into the first equation and get $x^{2}-2 x=0$. So critical points are $(0,0)$ and $(2,0)$.

Step 2 Compute the Hessian matrix

$$
H(x, y)=\left[\begin{array}{ll}
f_{x x} & f_{x y} \\
f_{y x} & f_{y y}
\end{array}\right] .
$$

In our case, get $H(x, y)=\left[\begin{array}{cc}\left(2-4 x+x^{2}+y^{2}\right) e^{-x} & -2 y e^{-x} \\ -2 y e^{-x} & 2 e^{-x}\end{array}\right]$.
Step 2 Compute the Hessian matrix at each of the critical points.

$$
H(0,0)=\left[\begin{array}{ll}
2 & 0 \\
0 & 2
\end{array}\right]
$$

and

$$
H(2,0)=\left[\begin{array}{cc}
-2 e^{-2} & 0 \\
0 & 2 e^{-2}
\end{array}\right] .
$$

Step 4 Apply the second derivative test for each critical point.

- For $(0,0)$: $\operatorname{det} H(0,0)=4>0$ and $f_{x x}=2>0$, so $(0,0)$ is a local minimum.
- For $(2,0): \operatorname{det} H(2,0)=-4 e^{-4}<0$, so $(2,0)$ is a saddle point.

In Example 2 above, to find the global min/max of f in the square $0 \leq x, y \leq 1$, we need to check what happens on the boundary. Namely we have to look at $f(0, y), f(1, y), f(x, 0)$ and $f(x, 1)$. We have to compute the min/max for these 4 functions and compare to the value at critical points inside the square (if any).

Values at critical points inside the square: $f(0,0)=0$.
Boundary:
$f(0, y)=y^{2}$: it has a minimum at $y=0$
$f(1, y)=\left(1+y^{2}\right) / e:$ has a minimum at $y=0$.
$f(x, 0)=x^{2} e^{-x}$: the first derivative is $\left(2 x-x^{2}\right) e^{-x}$; critical points: 0,2 ; but only 0 is in our domain. Second derivative: $\left(2-4 x+x^{2}\right) e^{-x}$ takes value 2 at 0 . Get local min 0 at 0 .
$f(x, 1)=\left(x^{2}+1\right) e^{-x}:$ first derivative $\left(2 x-x^{2}-1\right) e^{-x}$ is zero at $x=1$. Second derivative Have
$f(1,1)=2 e^{-1}>0=f(0,0)$.
Global $\min =0$, global $\max =2 e^{-1}$ in the square $[0,1] \times[0,1]$

We did not cover what follows in class, but I left in the notes as it is good practice.
Question: global min/max of $f(x, y)=\left(x^{2}+y^{2}\right) e^{-x}$ in first quadrant, i.e. for $x, y \geq 0$.
Values at critical points: $f(0,0)=0, f(2,0)=4 e^{-2}$.
Boundary:
$f(0, y)=y^{2}:$ it has a minimum at $y=0$
Fix $x>0$: as $y \rightarrow \infty, f(x, y) \rightarrow \infty$
$f(x, 0)=x^{2} e^{-x}$: the first derivative is $\left(2 x-x^{2}\right) e^{-x}$; critical points: 0,2 ; second derivative: $(2-$ $\left.4 x+x^{2}\right) e^{-x}$ takes values 2 at 0 and $-2 e^{-2}$ at 2 . Get local min 0 at 0 and local max $4 e^{-2}$ at 2 . Fix $y>0$: as $x \rightarrow \infty, f(x, y) \rightarrow 0$.

Global $\min =0$, no global max in first quadrant.

