MATH 20C Lecture 13 - Tuesday, November 25, 2014

Double integrals

Recall integral in 1-variable calculus: $\int_{a}^{b} f(x) d x=$ area below graph $y=f(x)$ over $[a, b]$.
Now: double integral $\iint_{R} f(x, y) d A=$ volume below graph $z=f(x, y)$ over region R in the $x y$-plane.

Cut R into small pieces $\Delta A_{i} \Longrightarrow$ the volume is approximately $\sum f\left(x_{i}, y_{i}\right) \Delta A_{i}$. Limit as $\Delta A \rightarrow 0$ gives $\iint f(x, y) d A$. (demo: potato cut into french fries)

How to compute the integral? By taking slices: $S(x)=$ area of the slice by a plane parallel to $y z$-plane (demo: potato chips); then

$$
\text { volume }=\int_{x_{\min }}^{x_{\max }} S(x) d x \quad \text { and for given } x, \quad S(x)=\int_{y_{\min }(x)}^{y_{\max }(x)} f(x, y) d y
$$

BEWARE! The limits of integration in y depend on x !
In the inner integral, x is a fixed parameter, y is the integration variable. We get an iterated integral.
Example $1 f(x, y)=1-x^{2}-y^{2}$ and $R: 0 \leq x \leq 1,0 \leq y \leq 1$.

$$
\int_{0}^{1} \int_{0}^{1}\left(1-x^{2}-y^{2}\right) d y d x
$$

How to evaluate?

1) inner integral (x is constant):

$$
\int_{0}^{1}\left(1-x^{2}-y^{2}\right) d y=\left[y-x^{2} y-\frac{y^{3}}{3}\right]_{y=0}^{y=1}=\left(1-x^{2}-\frac{1}{3}\right)-0=\frac{2}{3}-x^{2} .
$$

2)outer integral: $\int_{0}^{1}\left(\frac{2}{3}-x^{2}\right) d x=\left[\frac{2}{3} x-\frac{x^{3}}{3}\right]_{x=0}^{x=1}=\frac{2}{3}-\frac{1}{3}=\frac{1}{3}$.

Note: $d A=d y d x=d x d y$, limit of $\Delta A=\Delta y \Delta x=\Delta x \Delta y$ for small rectangles.

Exchanging the order of integration

$\int_{0}^{1} \int_{0}^{2} f(x, y) d x d y=\int_{0}^{2} \int_{0}^{1} f(x, y) d y d x$, since region is a rectangle (drawn picture). In general, more complicated!

Example: $\int_{0}^{1} \int_{x}^{\sqrt{x}} \frac{e^{y}}{y} d y d x$ (Inner integral has no formula.)

To exchange order: 1) draw the region (here: $x \leq y \leq \sqrt{x}$ for $0 \leq x \leq 1$ - picture drawn on blackboard).
2) figure out bounds in other direction: fixing a value of y, what are the bounds for x ? Here: left border is $x=y^{2}$, right is $x=y$; first slice is $y=0$, last slice is $y=1$, so we get

$$
\int_{0}^{1} \int_{y^{2}}^{y} \frac{e^{y}}{y} d x d y=\int_{0}^{1} \frac{e^{y}}{y}\left(y-y^{2}\right) d y=\int_{0}^{1} e^{y}(1-y) d y \stackrel{\text { parts }}{=}\left[e^{y}(1-y)\right]_{y=0}^{y=1}+\int_{0}^{1} e^{y} d y=e-2
$$

Polar coordinates

Recall: in the plane, $x=r \cos \theta, y=r \sin \theta$ where r is the distance from the origin to the (x, y) point, θ is the angle with the positive x-axis. Drawn picture.
Useful if either integrand or region have a simpler expression in polar coordinates.
Area element: $\Delta A \approx(r \Delta \theta) \Delta r$ (picture drawn of a small element with sides Δr and $r \Delta \theta$). Taking Deltar, $\Delta \theta \rightarrow 0$, we get

$$
d A=r d r d \theta
$$

Example Integrate function $f(x, y)=1-x^{2}-y^{2}$ over the quarter-disk $R: x^{2}+y^{2} \leq 1,0 \leq$ $x \leq 1,0 \leq y \leq 1$. (computes volume between $x y$-plane and paraboloid in the first octant). How to find the bounds of integration? Fix x constant and look at the slice of R parallel to y-axis. Bounds from $y=0$ to $y=\sqrt{1-x^{2}}$ in the inner integral. For the outer integral: first slice is at $x=0$, last slice is at $x=1$. So we get

$$
\int_{0}^{1} \int_{0}^{\sqrt{1-y^{2}}}\left(1-x^{2}-y^{2}\right) d x d y
$$

Note that the inner bounds depend on the outer variable x; the outer bounds are constants! 1) inner integral (x is constant):

$$
\int_{0}^{\sqrt{1-x^{2}}}\left(1-x^{2}-y^{2}\right) d y=\left[\left(1-x^{2}\right) y-\frac{y^{3}}{3}\right]_{y=0}^{y=\sqrt{1-x^{2}}}=\left(1-x^{2}\right)^{3 / 2}-\frac{\left(1-x^{2}\right)^{3 / 2}}{3}=\frac{2}{3}\left(1-x^{2}\right)^{3 / 2}
$$

2)outer integral:

$$
\int_{0}^{1} \frac{1}{3}\left(1-x^{2}\right)^{3 / 2} d x=\ldots\left(\text { trig substitution } x=\sin \theta, \text { double angle formulas) } \ldots=\frac{\pi}{8}\right.
$$

This is complicated! It will be easier to do it in polar coordinates.

$$
\iint_{x^{2}+y^{2} \leq 1,0 \leq x \leq 1,0 \leq y \leq 1}\left(1-x^{2}-y^{2}\right) d x d y=\int_{0}^{\pi / 2} \int_{0}^{1}\left(1-r^{2}\right) r d r d \theta=\int_{0}^{\pi / 2}\left[\frac{r^{2}}{2}-\frac{r^{4}}{4}\right]_{r=0}^{r=1} d \theta=\frac{\pi}{8}
$$

Once again,

$$
\iint_{R} f(x, y) d A=\iint_{R} f(r, \theta) r d r d \theta
$$

In general: when setting up $\iint f r d r d \theta$, find bounds as usual: given a fixed θ, find initial and final values of r (sweep region by rays).

Applications of double integrals

(Did not go over this in class due to time limitations. Might be useful for homework though.)
Computing volumes Example: Find the volume of the region enclosed by $z=1-y^{2}$ and $z=y^{2}-1$ for $0 \leq x \leq 2$.
Both surfaces look like parabola-shaped tunnels along the x-axis. They intersect at $1-y^{2}=y^{2}-1 \Longrightarrow y= \pm 1$. So $z=0$ and x can be anything, therefore lines parallel to the x-axis. Draw picture, please! Get volume by integrating the difference $z_{\text {top }}-z_{\text {bottom }}$, i.e. take the volume under the top surface and subtract the volume under the bottom surface (same idea as in 1 variable).

$$
\begin{aligned}
& \pm \mathrm{vol}=\int_{0}^{2} \int_{-1}^{1}\left(\left(1-y^{2}\right)-\left(y^{2}-1\right)\right) d y d x=2 \int_{0}^{2} \int_{-1}^{1}\left(1-y^{2}\right) d y d x \\
&=2 \int_{0}^{2}\left[y-\frac{y^{3}}{3}\right]_{y=-1}^{y=1} d x=2 \int_{0}^{2} \frac{4}{3} d x=\frac{16}{3}
\end{aligned}
$$

Since volume is always positive, our answer is $16 / 3$.
Area of a plane region R is

$$
\operatorname{area}(R)=\iint_{R} 1 d A
$$

Mass the total mass of a flat object in the shape of a region R with density given by $\rho(x, y)$ is

$$
\text { Mass }=\iint_{R} \rho(x, y) d A
$$

Average the average value of a function $f(x, y)$ over the plane region R is

$$
\bar{f}=\frac{1}{\operatorname{area}(R)}=\iint_{R} f(x, y) d A
$$

Weighted average of the function $f(x, y)$ over the plane region R with density $\rho(x, y)$ is

$$
\frac{1}{\text { Mass }} \iint_{R} f(x, y) \rho(x, y) d A
$$

Center of mass of a plate with density $\rho(x, y)$ is the point with coordinates (\bar{x}, \bar{y}) given by weighted average

$$
\begin{aligned}
\bar{x} & =\frac{1}{\operatorname{Mass}} \iint_{R} x \rho(x, y) d A, \\
\bar{y} & =\frac{1}{\operatorname{Mass}} \iint_{R} y \rho(x, y) d A .
\end{aligned}
$$

