HOMOGENEOUS SECOND ORDER ODE'S

$$
a y^{\prime \prime}+b y^{\prime}+c y=0, \text { where } \mathrm{a}, \mathrm{~b}, \mathrm{c}, \text { are real numbers with } a \neq 0
$$

(1) Write down the associated quadratic equation $a r^{2}+b r+c=0$.
(2) Compute its discriminant $\Delta=b^{2}-4 a c$.
(3) There are three possible situations:

- If $\Delta>0$, the quadratic equation has two distinct real solutions, r_{1} and r_{2}. Find them. (You might need to use the quadratic formula.) The general solution of the differential equation is

$$
y=C_{1} e^{r_{1} t}+C_{2} e^{r_{2} t}
$$

- If $\Delta=0$, the quadratic equation has only one real root r. Find it. The general solution of the differential equation is

$$
y=C_{1} e^{r t}+C_{2} t e^{r t} .
$$

- If $\Delta<0$, the quadratic equation does not have any real roots. Compute $\alpha=-\frac{b}{2 a}$ and $\beta=\frac{\sqrt{||| |}}{2 a}$. The general solution of the differential equation is

$$
y=C_{1} e^{\alpha t} \cos (\beta t)+C_{2} e^{\alpha t} \sin (\beta t)
$$

(4) If it is an initial value problem or a boundary problem, plug in the given values and solve for C_{1} and C_{2}. Don't forget to take the derivative of y in the case of an initial value problem (chain rule!).

