Step and delta functions; step and delta responses

1. Suppose $q(t)=2 u(t-1)+\delta(t-2)-2 u(t-3)$. Sketch a graph of this generalized function. Formulate at least one scenario which might result in each of the equations $x^{\prime}+k x=q(t)$ (your choice of k, it might be negative);
$2 x^{\prime \prime}+4 x^{\prime}+4 x=q(t)$.
2. (a) Graph the functions

$$
f(t)=3(u(t-1)-u(t-2)) t
$$

and

$$
g(t)= \begin{cases}0 & t<0 \\ \lfloor t\rfloor & t>0\end{cases}
$$

where $\lfloor t\rfloor$ denotes the greatest integer less than or equal to t.
(b) Express $f(t)$ as an alternative $(f(t)=\cdots$ for $t<\cdots$, etc). Express $g(t)$ as a single formula using the step function $u(t)$.
(c) Using the graphs of $f(t)$ and $g(t)$, graph the generalized derivatives of these two functions. Use labeled harpoons to denote the delta functions that occur.
(d) Finally, differentiate formally the expression for $f(t)$ that was given and the expression for $g(t)$ you found in part (b). Graph the resulting functions.
3. Find the unit step function and unit impulse responses to the operator $D^{2}+2 D+2 I$, and graph them. Why is one the derivative of the other? How do these results change if one uses instead the operator $2 D^{2}+4 D+4 I$?
4. Using the time-invariance and your solution to part 3, write down a solution to

$$
x^{\prime \prime}+2 x^{\prime}+2 x=2 u(t-1)+\delta(t-2)-2 u(t-3) .
$$

