## Step and delta functions; step and delta responses

1. Suppose $q(t)=2 u(t-1)+\delta(t-2)-2 u(t-3)$. Sketch a graph of this generalized function. Formulate at least one scenario which might result in each of the equations $x^{\prime}+k x=q(t)$ (your choice of $k$, it might be negative);

$$
2 x^{\prime \prime}+4 x^{\prime}+4 x=q(t) .
$$

The graph will have a spike of 1 at $t=2$ because of the delta. Other than that, for $t<1$ both step functions are 0 , so $q(t)=0$. For $1<t<2$ and $2<t<3$ the first step function is 1 , while the second is 0 , so $q(t)=2$. Finally, for $t>3$ both step functions are 1 and they cancel each other, so $q(t)=0$.
2. (a) Graph the functions

$$
f(t)=3(u(t-1)-u(t-2)) t
$$

and

$$
g(t)= \begin{cases}0 & t<0 \\ \lfloor t\rfloor & t>0\end{cases}
$$

where $\lfloor t\rfloor$ denotes the greatest integer less than or equal to $t$.
left for you
(b) Express $f(t)$ as an alternative $(f(t)=\cdots$ for $t<\cdots$, etc). Express $g(t)$ as a single formula using the step function $u(t)$.

$$
\begin{gathered}
f(t)= \begin{cases}0 & t<1 \\
3 t & 1<t<2 \\
0 & t>2\end{cases} \\
g(t)=u(t-1)+u(t-2)+\cdots=\sum_{k=1}^{\infty} u(t-k)
\end{gathered}
$$

(c) Using the graphs of $f(t)$ and $g(t)$, graph the generalized derivatives of these two functions. Use labeled harpoons to denote the delta functions that occur.
Once again, I leave the graphing to you.
(d) Finally, differentiate formally the expression for $f(t)$ that was given and the expression for $g(t)$ you found in part (b). Graph the resulting functions.

Applying the product rule,

$$
\begin{aligned}
f^{\prime}(t) & =3\left(u^{\prime}(t-1)-u^{\prime}(t-2)\right) t+3(u(t-1)-u(t-2)) \cdot 1 \\
& =3(\delta(t-1)-\delta(t-2)) t+3(u(t-1)-u(t-2))
\end{aligned}
$$

Now we use a key fact about delta,

$$
f(t) \delta(t-a)=f(a) \delta(t-a)
$$

and the derivative becomes

$$
f^{\prime}(t)=3 \delta(t-1)-3 \delta(t-2)+3 u(t-1)-3 u(t-2)
$$

3. Find the unit step function and unit impulse responses to the operator $D^{2}+2 D+2 I$, and graph them. Why is one the derivative of the other? How do these results change if one uses instead the operator $2 D^{2}+4 D+4 I$ ?

## Step response

We need to solve the equation

$$
x^{\prime \prime}+2 x^{\prime}+2 x=u(t) .
$$

with rest initial conditions. That means that $x^{\prime \prime}$ must match the singularity of $u(t)$ and have a jump of 1 at $t=0$. Which in turn implies that both $x^{\prime}$ and $x$
are continuous functions and therefore take the value 0 at $t=0$. So we need to solve the equation

$$
x^{\prime \prime}+2 x^{\prime}+2 x=1 \quad \text { for } t>0, \quad x(0+)=0, x^{\prime}(0+)=0 .
$$

Now ERF says that a particular solution is $x_{p}(t)=\frac{1}{p(0)}=\frac{1}{2}$.
Since the roots of $p$ are $-1 \pm i$, the homogeneous part is $x_{h}(t)=c_{1} e^{-t} \cos t+$ $c_{2} e^{-t} \sin t$.
Thus, the general solution is

$$
x(t)=\frac{1}{2}+c_{1} e^{-t} \cos t+c_{2} e^{-t} \sin t
$$

Plugging in the initial conditions we get $c_{1}=c_{2}-\frac{1}{2}$. So the unit response function is

$$
v(t)= \begin{cases}\frac{1}{2}-\frac{1}{2} e^{-t} \cos t-\frac{1}{2} e^{-t} \sin t & t>0 \\ 0 & t<0\end{cases}
$$

## Unit impulse response

We need to solve the equation

$$
x^{\prime \prime}+2 x^{\prime}+2 x=\delta(t) .
$$

with rest initial conditions. That means that $x^{\prime \prime}$ must match the singularity of $\delta(t)$. This implies that $x^{\prime}$, being the antiderivative of $x^{\prime \prime}$, has a jump of 1 at $t=0$. Which in turn implies that $x$ is continuous and therefore takes the value 0 at $t=0$. So we need to solve the equation

$$
x^{\prime \prime}+2 x^{\prime}+2 x=0 \quad \text { for } t>0, \quad x(0+)=0, x^{\prime}(0+)=1 .
$$

This is now a homogeneous equation with general solution $x(t)=c_{1} e^{-t} \cos t+$ $c_{2} e^{-t} \sin t$. The initial conditions give $c_{1}=0$ and $c_{2}=1$. So the unit impulse response is

$$
w(t)= \begin{cases}e^{-t} \sin t & t>0 \\ 0 & t<0\end{cases}
$$

Since $\delta(t)=u^{\prime}(t)$, it follows that the same relationship must be satisfied by the system responses to these two inputs, so $w(t)=v^{\prime}(t)$. This is true for any linear operator $p(D)$.

The second operator is the first one multiplied by 2 .
The equation

$$
2 x^{\prime \prime}+4 x^{\prime}+4 x=f(t)
$$

can be rewritten as

$$
x^{\prime \prime}+2 x^{\prime}+2 x=\frac{1}{2} f(t) .
$$

So the response of the system described by $2 D^{2}+4 D+4 I$ to any input $f(t)$ will be $1 / 2$ of the response of the system $D^{2}+2 D+2 I$ to the same input. Applying this principle to the inputs $u(t)$ and $\delta(t)$ it follows that the step response and the unit impulse response get multiplied by $1 / 2$ when the operator gets multiplied by 2 .
4. Using the time-invariance and your solution to part 3, write down a solution to

$$
x^{\prime \prime}+2 x^{\prime}+2 x=2 u(t-1)+\delta(t-2)-2 u(t-3) .
$$

Time invariance gives the following information

| Equation | Solution |
| :---: | :---: |
| $x^{\prime \prime}+2 x^{\prime}+2 x=u(t-1)$ | $v(t-1)$ |
| $x^{\prime \prime}+2 x^{\prime}+2 x=\delta(t-2)$ | $w(t-2)$ |
| $x^{\prime \prime}+2 x^{\prime}+2 x=u(t-3)$ | $v(t-3)$ |

where $v$ and $w$ are the functions we determined in part 3. Hence a solution to our equation is

$$
x=2 v(t-1)+w(t-2)-2 v(t-3),
$$

that is,

$$
x(t)= \begin{cases}0 & t<1 \\ 1-e^{1-t} \cos (t-1)-e^{1-t} \sin (t-1) & 1<t<2 \\ 1-e^{1-t} \cos (t-1)-e^{1-t} \sin (t-1)+e^{2-t} \sin (t-2) & 2<t<3 \\ -e^{1-t} \cos (t-1)-e^{1-t} \sin (t-1)+e^{2-t} \sin (t-2) & \\ +e^{3-t} \cos (t-3)+e^{3-t} \sin (t-3) & t>3\end{cases}
$$

