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Step and delta functions; step and delta responses

1. Suppose ¢(t) = 2u(t — 1) + d(t — 2) — 2u(t — 3). Sketch a graph of this generalized
function. Formulate at least one scenario which might result in each of the equations

' + kx = q(t) (your choice of k, it might be negative);

22" + 4x’ + dx = q(t).

The graph will have a spike of lat t = 2 because of the delta. Other than that, for
t < 1 both step functions are 0, so ¢(t) = 0. For 1 <t < 2 and 2 < t < 3 the first
step function is 1, while the second is 0, so ¢(t) = 2. Finally, for ¢ > 3 both step
functions are 1 and they cancel each other, so ¢(t) = 0.

2. (a) Graph the functions

F(&) =3 (ult—1) —u(t —2))t

and

0 t<0
g<t>:{m t>0

where |¢] denotes the greatest integer less than or equal to t.
left for you

(b) Express f(t) as an alternative (f(t) = --- for t < ---, etc). Express g(t) as a
single formula using the step function u(t).

0 t<1
fO)=¢3t 1<t<?2
0 t>2

gt) =u(t — 1) +u(t —2) + =Y u(t—k)

k=1



(c) Using the graphs of f(¢) and g(¢), graph the generalized derivatives of these two
functions. Use labeled harpoons to denote the delta functions that occur.

Once again, I leave the graphing to you.

(d) Finally, differentiate formally the expression for f(¢) that was given and the
expression for g(t) you found in part (b). Graph the resulting functions.

Applying the product rule,

@) = 3@it—1)—-u{t—2)t+3w(lt—1)—ult—2)-1
= 30(t—-1)—=06(t=2))t+3ult—1)—u(t—2)

Now we use a key fact about delta,

f)o(t —a) = fa)é(t —a)

and the derivative becomes

Fi(t) = 38(t—1)—36(t —2) + 3ult — 1) — 3u(t — 2)

3. Find the unit step function and unit impulse responses to the operator D? +2D + 21,
and graph them. Why is one the derivative of the other? How do these results change
if one uses instead the operator 2D? + 4D + 417

Step response
We need to solve the equation

" + 22" + 22 = u(t).

with rest initial conditions. That means that x” must match the singularity of
u(t) and have a jump of 1 at ¢ = 0. Which in turn implies that both 2" and x



are continuous functions and therefore take the value 0 at t = 0. So we need to
solve the equation

2 +22 +2x =1 fort >0, z(04) = 0,2'(0+) = 0.

Now ERF says that a particular solution is x,(t) = ﬁ = %

Since the roots of p are —1 + 4, the homogeneous part is xp(t) = ¢je ' cost +
—t .:

coe”sint.

Thus, the general solution is

z(t) = 5T cre " cost + cpe "t sint.

Plugging in the initial conditions we get ¢; = ¢ —%. So the unit response function
is

o(t) = +—1etcost —ietsint t >0,
0 t <O.

Unit impulse response
We need to solve the equation

"+ 22" + 22 = 4(¢).

with rest initial conditions. That means that z” must match the singularity of
d(t). This implies that 2/, being the antiderivative of z”, has a jump of 1 at
t = 0. Which in turn implies that z is continuous and therefore takes the value
0 at £ = 0. So we need to solve the equation

2" +22 +22 =0 fort >0, 2(04) = 0,2'(0+) = 1.

This is now a homogeneous equation with general solution x(t) = cie™*cost +
coe tsint. The initial conditions give ¢; = 0 and ¢, = 1. So the unit impulse
response is

etsint t >0,
w(t) =
0 t<0.



Since 0(t) = u'(t), it follows that the same relationship must be satisfied by the system
responses to these two inputs, so w(t) = v(t). This is true for any linear operator

p(D).
The second operator is the first one multiplied by 2.

The equation
22" + 42’ + 4z = f(t)

can be rewritten as
! / 1
2’ 422" + 22 = §f(t)
So the response of the system described by 2D? + 4D + 41 to any input f(¢) will be
1/2 of the response of the system D? + 2D + 2I to the same input. Applying this

principle to the inputs w(t) and §(¢) it follows that the step response and the unit
impulse response get multiplied by 1/2 when the operator gets multiplied by 2.

4. Using the time-invariance and your solution to part 3, write down a solution to

2"+ 22"+ 22 =2u(t — 1) +6(t — 2) — 2u(t — 3).

Time invariance gives the following information

Equation Solution

24+ 20 +2r=u(t—1) | v(t—1)

2 422 +2x=0(t—2) | w(t—2)

" + 22" 4+ 2x =u(t —3) | v(t—3)

where v and w are the functions we determined in part 3. Hence a solution to our
equation is

r=2v(t—1)+w(t—2)—2v(t—3),



that is,

(

0 t<1
1—e'"tcos(t —1) — e tsin(t — 1) l<t<?2

z(t) =< 1—e"teos(t — 1) — e tsin(t — 1) + e fsin(t —2) 2<t<3

—e!'"teos(t — 1) —eltsin(t — 1) + e tsin(t — 2)
| +e?Fcos(t — 3) + e’ sin(t - 3) t> 3.




