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Step and delta functions; step and delta responses

1. Suppose q(t) = 2u(t − 1) + δ(t − 2) − 2u(t − 3). Sketch a graph of this generalized
function. Formulate at least one scenario which might result in each of the equations

x′ + kx = q(t) (your choice of k, it might be negative);

2x′′ + 4x′ + 4x = q(t).

The graph will have a spike of 1at t = 2 because of the delta. Other than that, for
t < 1 both step functions are 0, so q(t) = 0. For 1 < t < 2 and 2 < t < 3 the first
step function is 1, while the second is 0, so q(t) = 2. Finally, for t > 3 both step
functions are 1 and they cancel each other, so q(t) = 0.

2. (a) Graph the functions

f(t) = 3 (u(t − 1) − u(t − 2)) t

and

g(t) =

{
0 t < 0

btc t > 0

where btc denotes the greatest integer less than or equal to t.

left for you

(b) Express f(t) as an alternative (f(t) = · · · for t < · · · , etc). Express g(t) as a
single formula using the step function u(t).

f(t) =


0 t < 1

3t 1 < t < 2

0 t > 2

g(t) = u(t − 1) + u(t − 2) + · · · =
∞∑

k=1

u(t − k)



(c) Using the graphs of f(t) and g(t), graph the generalized derivatives of these two
functions. Use labeled harpoons to denote the delta functions that occur.

Once again, I leave the graphing to you.

(d) Finally, differentiate formally the expression for f(t) that was given and the
expression for g(t) you found in part (b). Graph the resulting functions.

Applying the product rule,

f ′(t) = 3 (u′(t − 1) − u′(t − 2)) t + 3 (u(t − 1) − u(t − 2)) · 1
= 3 (δ(t − 1) − δ(t − 2)) t + 3 (u(t − 1) − u(t − 2))

Now we use a key fact about delta,

f(t)δ(t − a) = f(a)δ(t − a)

and the derivative becomes

f ′(t) = 3δ(t − 1) − 3δ(t − 2) + 3u(t − 1) − 3u(t − 2)

3. Find the unit step function and unit impulse responses to the operator D2 +2D+2I,
and graph them. Why is one the derivative of the other? How do these results change
if one uses instead the operator 2D2 + 4D + 4I?

Step response

We need to solve the equation

x′′ + 2x′ + 2x = u(t).

with rest initial conditions. That means that x′′ must match the singularity of
u(t) and have a jump of 1 at t = 0. Which in turn implies that both x′ and x



are continuous functions and therefore take the value 0 at t = 0. So we need to
solve the equation

x′′ + 2x′ + 2x = 1 for t > 0, x(0+) = 0, x′(0+) = 0.

Now ERF says that a particular solution is xp(t) = 1
p(0)

= 1
2
.

Since the roots of p are −1 ± i, the homogeneous part is xh(t) = c1e
−t cos t +

c2e
−t sin t.

Thus, the general solution is

x(t) =
1

2
+ c1e

−t cos t + c2e
−t sin t.

Plugging in the initial conditions we get c1 = c2− 1
2
. So the unit response function

is

v(t) =

{
1
2
− 1

2
e−t cos t − 1

2
e−t sin t t > 0,

0 t < 0.

Unit impulse response

We need to solve the equation

x′′ + 2x′ + 2x = δ(t).

with rest initial conditions. That means that x′′ must match the singularity of
δ(t). This implies that x′, being the antiderivative of x′′, has a jump of 1 at
t = 0. Which in turn implies that x is continuous and therefore takes the value
0 at t = 0. So we need to solve the equation

x′′ + 2x′ + 2x = 0 for t > 0, x(0+) = 0, x′(0+) = 1.

This is now a homogeneous equation with general solution x(t) = c1e
−t cos t +

c2e
−t sin t. The initial conditions give c1 = 0 and c2 = 1. So the unit impulse

response is

w(t) =

{
e−t sin t t > 0,

0 t < 0.



Since δ(t) = u′(t), it follows that the same relationship must be satisfied by the system
responses to these two inputs, so w(t) = v′(t). This is true for any linear operator
p(D).

The second operator is the first one multiplied by 2.

The equation
2x′′ + 4x′ + 4x = f(t)

can be rewritten as

x′′ + 2x′ + 2x =
1

2
f(t).

So the response of the system described by 2D2 + 4D + 4I to any input f(t) will be
1/2 of the response of the system D2 + 2D + 2I to the same input. Applying this
principle to the inputs u(t) and δ(t) it follows that the step response and the unit
impulse response get multiplied by 1/2 when the operator gets multiplied by 2.

4. Using the time-invariance and your solution to part 3, write down a solution to

x′′ + 2x′ + 2x = 2u(t − 1) + δ(t − 2) − 2u(t − 3).

Time invariance gives the following information

Equation Solution

x′′ + 2x′ + 2x = u(t − 1) v(t − 1)

x′′ + 2x′ + 2x = δ(t − 2) w(t − 2)

x′′ + 2x′ + 2x = u(t − 3) v(t − 3)

where v and w are the functions we determined in part 3. Hence a solution to our
equation is

x = 2v(t − 1) + w(t − 2) − 2v(t − 3),



that is,

x(t) =



0 t < 1

1 − e1−t cos(t − 1) − e1−t sin(t − 1) 1 < t < 2

1 − e1−t cos(t − 1) − e1−t sin(t − 1) + e2−t sin(t − 2) 2 < t < 3

−e1−t cos(t − 1) − e1−t sin(t − 1) + e2−t sin(t − 2)

+e3−t cos(t − 3) + e3−t sin(t − 3) t > 3.


