Convolution

$$
f(t) * g(t)=\int_{0}^{t} f(t-\tau) g(\tau) d \tau
$$

1. (a) What is the differential operator $p(D)$ whose weight function (i.e. unit impulse response) is the unit step function $u(t)$? Verify that $u(t) * q(t)$ is the solution to $p(D) x=q(t)$ with rest initial conditions.

The answer to the first questions is just $p(D)=D$, since the solution of the equation $x^{\prime}=\delta(t)$ is exactly $u(t)$.
The equation $p(D) x=q(t)$ is then the same as $x^{\prime}=q(t)$ with $x(0+)=0$. It remains to check that the convolution $u(t) * q(t)$ satisfies this it.

$$
\frac{d}{d t} u(t) * q(t)=\frac{d}{d t} \int_{0}^{t} u(t-\tau) q(\tau) d \tau=q(t)+\int_{0}^{t}-\delta(t-\tau) q(\tau) d \tau=q(t)
$$

(b) What is the differential operator $p(D)$ whose weight function (i.e. unit impulse response) is $u(t) t$? Verify that $t * t^{n}$ is the solution to $p(D) x=t^{n}$ with rest initial conditions.
We want $w(t)=u(t) t$, so $w^{\prime}(t)=u(t)$ and $w^{\prime \prime}(t)=\delta(t)$. Therefore $p(D)=D^{2}$.
Now

$$
\begin{aligned}
t * t^{n} & =\int_{0}^{t}(t-\tau) \tau^{n} d \tau=t \int_{0}^{t} \tau^{n} d \tau-\int_{0}^{t} \tau^{n+1} d \tau= \\
& =t \cdot \frac{t^{n+1}}{n+1}-\frac{t^{n+2}}{n+2}=\frac{t^{n+2}}{(n+1)(n+2)}
\end{aligned}
$$

and the second derivative of this function is clearly t^{n}.
2. Solve $x^{\prime}+x=u(t)(1+\cos t)$ with rest initial conditions by computing the convolution product $w(t) *(1+\cos t)$, where $w(t)$ is the unit impulse response of the operator $D+I$. Use the integral definition of convolution.

First we need to compute $w(t)$, which means solving $x^{\prime}+x=\delta(t)$. Here x^{\prime} must have the same singularity as $\delta(t)$, which means that x must have a jump of 1 at $t=0$. So we want to solve

$$
x^{\prime}+x=0 \quad \text { for } t>0, \quad x(0+)=1 .
$$

The general solution is $x(t)=C e^{-t}$ and the initial condition gives $C=1$. So

$$
w(t)= \begin{cases}e^{-t} & t>0 \\ 0 & t<0\end{cases}
$$

Then

$$
\begin{aligned}
w(t) *(1+\cos t) & =\int_{0}^{t} w(t-\tau)(1+\cos \tau) d \tau=\int_{0}^{t} e^{\tau-t}(1+\cos \tau) d \tau= \\
& =e^{-t} \int_{0}^{t} e^{\tau}(1+\cos \tau) d \tau
\end{aligned}
$$

Use integration by parts and your 18.02 prowess to do this last integral. The answer should be
3. Now $p(D)=a_{n} D^{n}+\cdots+a_{1} D+a_{0} I$.
(a) Suppose $a \geq 0$. Figure out what $w(t) * \delta(t-a)$ is by using the fact that is the solution to the equation $p(D) x=\delta(t-a)$ with rest initial conditions.

Time invariance says the solution is $w(t-a)$ for $t>a$ and 0 for $t<a$, so that's the result for our convolution.
(b) Then figure out what $w(t) * \delta(t-a)$ is by using the integral definition of convolution.

$$
w(t) * \delta(t-a)=\int_{0}^{t} w(t-\tau) \delta(\tau-a) d \tau= \begin{cases}w(t-a) & t>a \\ 0 & t<a\end{cases}
$$

