Linear Systems I

1 Eigenvalues and eigenvectors of matrices

1. Given an $n \times n$ matrix A, how do you compute its determinant? How about the trace?
2. The characteristic polynomial of A is

$$
p(\lambda)=
$$

3. The eigenvalues of A are
4. How many eigenvalues does A have, counting multiplicities?
5. An eigenvector corresponding to the eigenvalue λ of the matrix A is
6. Assume λ is a repeated eigenvalue of A with multiplicity m. When is it complete? When is it defective?

MA 18.03, R05

2 Systems of first order ODEs

What is an autonomous system?

The general solution of autonomous $n \times n$ linear system

$$
\frac{d \mathbf{x}}{d t}=A \mathbf{x}
$$

is of the form

$$
c_{1} \mathbf{x}_{1}(t)+\cdots+c_{n} \mathbf{x}_{n}(t),
$$

where c_{1}, \ldots, c_{n} are arbitrary constants and $\mathbf{x}_{1}(t), \ldots \mathbf{x}_{n}(t)$ are linearly independent solutions of the system of ODE's. To find the solution of an IVP, solve for constants.

1. How do we check that $\mathbf{x}_{1}(t), \ldots \mathbf{x}_{n}(t)$ are linearly independent?
2. To find $\mathbf{x}_{1}(t), \ldots \mathbf{x}_{n}(t)$ we proceed as follows:
(a) Find the eigenvalues $\lambda_{1}, \ldots, \lambda_{n}$ of A.
(b) For each of the distinct eigenvalues λ, there are a few possible cases:

- If λ_{j} is a simple real eigenvalue, find an eigenvector \mathbf{u}_{j}. Then

$$
\mathbf{x}_{j}=\mathbf{u}_{j} e^{\lambda_{j} t}
$$

is the corresponding solution.

- If λ_{j} and $\bar{\lambda}_{j}$ are simple complex conjugate eigenvalues of A, find an eigenvector \mathbf{u}_{j} corresponding to λ_{j}. Then the two linearly independent solutions corresponding to λ_{j} and $\bar{\lambda}_{j}$ are given by
$\mathbf{x}_{j}=$
$\mathbf{x}_{j+1}=$

MA 18.03, R05

- If λ_{j} is a complete repeated eigenvalue with multiplicity m find m linearly independent eigenvectors $\mathbf{u}_{1}, \ldots, \mathbf{u}_{\mathbf{m}}$ and use them to find the corresponding solutions according to the previous cases.
- If λ_{j} is a defective repeated eigenvalue, first try elimination. If that doesn't work find the generalized eigenvectors and ... (you tell me!)

$3 \quad 2 \times 2$ Systems

Consider the autonomous linear system

$$
\left\{\begin{aligned}
\frac{d x}{d t} & =a x+b y \\
\frac{d y}{d t} & =c x+d y
\end{aligned}\right.
$$

- Review graphing systems.
- Consider the autonomous linear system

$$
\left\{\begin{aligned}
\frac{d x}{d t} & =a x+b y \\
\frac{d y}{d t} & =c x+d y
\end{aligned}\right.
$$

1. Its matrix is
$A=$

MA 18.03, R05

2. The critical point $(0,0)$ (it will always be a critical point for a linear system!) can exhibit the following behaviors, according to the nature of the eigenvalues λ_{1}, λ_{2} of A (fill in and draw):
(a) If $\lambda_{1}, \lambda_{2}<0$ distinct real roots, then $(0,0)$ is a \ldots
(b) If $\lambda_{1}, \lambda_{2}>0$ distinct real roots, then $(0,0)$ is a \ldots
(c) If $\lambda_{1}>0, \lambda_{2}<0$ distinct real roots, then $(0,0)$ is a \ldots
(d) If $\lambda_{1}=\lambda_{2}<0$ equal real roots, then $(0,0)$ is a \ldots
(e) If $\lambda_{1}=\lambda_{2}>0$ equal real roots, then $(0,0)$ is a \ldots
(f) If λ_{1}, λ_{2} are complex conjugates with the real part negative, then $(0,0)$ is a \ldots

MA 18.03, R05
(g) If λ_{1}, λ_{2} are complex conjugates with the real part positive, then $(0,0)$ is a \ldots
(h) If λ_{1}, λ_{2} are complex conjugates with the real part 0 (i.e. purely imaginary), then $(0,0)$ is a
3. What happens if 0 is an eigenvalue?

