Linear Systems I

1. Given an $n \times n$ matrix A, how do you compute its determinant? How about the trace?

1 Eigenvalues and eigenvectors of matrices

2.	The characteristic polynomial of A is
	$p(\lambda) =$
3.	The eigenvalues of A are
4.	How many eigenvalues does A have, counting multiplicities?
5.	An eigenvector corresponding to the eigenvalue λ of the matrix A is
6.	Assume λ is a repeated eigenvalue of A with multiplicity m. When is it complete? When is it defective?

2 Systems of first order ODEs

What is an autonomous system?

The general solution of autonomous $n \times n$ linear system

$$\frac{d\mathbf{x}}{dt} = A\mathbf{x}$$

is of the form

$$c_1\mathbf{x}_1(t) + \cdots + c_n\mathbf{x}_n(t),$$

where c_1, \ldots, c_n are arbitrary constants and $\mathbf{x}_1(t), \ldots, \mathbf{x}_n(t)$ are linearly independent solutions of the system of ODE's. To find the solution of an IVP, solve for constants.

1. How do we check that $\mathbf{x}_1(t), \dots \mathbf{x}_n(t)$ are linearly independent?

- 2. To find $\mathbf{x}_1(t), \dots \mathbf{x}_n(t)$ we proceed as follows:
 - (a) Find the eigenvalues $\lambda_1, \ldots, \lambda_n$ of A.
 - (b) For each of the **distinct** eigenvalues λ , there are a few possible cases:
 - If λ_j is a simple real eigenvalue, find an eigenvector \mathbf{u}_j . Then

$$\mathbf{x}_i = \mathbf{u}_i e^{\lambda_j t}$$

is the corresponding solution.

• If λ_j and $\bar{\lambda}_j$ are simple complex conjugate eigenvalues of A, find an eigenvector \mathbf{u}_j corresponding to λ_j . Then the two linearly independent solutions corresponding to λ_j and $\bar{\lambda}_j$ are given by

$$\mathbf{x}_j = \mathbf{x}_{j+1} =$$

MA 18.03, R05

- If λ_j is a complete repeated eigenvalue with multiplicity m find m linearly independent eigenvectors $\mathbf{u}_1, \dots, \mathbf{u}_{\mathbf{m}}$ and use them to find the corresponding solutions according to the previous cases.
- If λ_j is a defective repeated eigenvalue, first try elimination. If that doesn't work find the generalized eigenvectors and ... (you tell me!)

3 2×2 Systems

Consider the autonomous linear system

$$\begin{cases} \frac{dx}{dt} = ax + by \\ \frac{dy}{dt} = cx + dy \end{cases}$$

- Review graphing systems.
- Consider the autonomous linear system

$$\begin{cases} \frac{dx}{dt} = ax + by \\ \frac{dy}{dt} = cx + dy \end{cases}$$

1. Its matrix is

A =

MA 18.03, R05

- 2. The critical point (0,0) (it will always be a critical point for a linear system!) can exhibit the following behaviors, according to the nature of the eigenvalues λ_1, λ_2 of A (fill in and draw):
 - (a) If $\lambda_1, \lambda_2 < 0$ distinct real roots, then (0,0) is a ...

(b) If $\lambda_1, \lambda_2 > 0$ distinct real roots, then (0,0) is a ...

(c) If $\lambda_1>0, \lambda_2<0$ distinct real roots, then (0,0) is a . . .

- (d) If $\lambda_1 = \lambda_2 < 0$ equal real roots, then (0,0) is a . . .
- (e) If $\lambda_1 = \lambda_2 > 0$ equal real roots, then (0,0) is a . . .
- (f) If λ_1, λ_2 are complex conjugates with the real part negative, then (0,0) is a ...

$\Lambda \Lambda \Lambda$	12	UЗ	R05
IVIA	IO.	U.S.	ていわ

- (g) If λ_1,λ_2 are complex conjugates with the real part positive , then (0,0) is a . . .
- (h) If λ_1, λ_2 are complex conjugates with the real part 0 (i.e. purely imaginary), then (0,0) is a ...

3. What happens if 0 is an eigenvalue?