1 Step and delta

Step function: $u(t)= \begin{cases}1 & t>0 \\ 0 & t<0\end{cases}$
This is the derivative of the continuous function $\begin{cases}t & t \geq 0 \\ 0 & t<0 .\end{cases}$
Notation: $u_{a}(t)=u(t-a)$ has a jump of 1 at the point $t=a$, is zero before that and 1 after.
Delta: the harpoon at 0 of size 1 , is the derivative of $u(t)$. The harpoon indicates exactly the fact that its antiderivative has a jump of 1 at $t=0$.
Notation: $\delta_{a}(t)=\delta(t-a)$ has a harpoon of size 1 at the point $t=a$ and is zero otherwise.
Properties:

- $\int_{b}^{c} f(t) \delta(t-a) d t= \begin{cases}f(a) & a \text { is between } b, c \\ 0 & \text { otherwise }\end{cases}$
- $f(t) \delta(t-a)=f(a) \delta(t-a)$ harpoon of size $f(a)$ at $t=a$ and zero everywhere else.
- $u^{\prime}(t-a)=\delta(t-a)$

2 Step and unit impulse response

Step response of an operator $p(D)$ is the solution to the equation $p(D) x=u(t)$. We usually denote it by $v(t)$.
In practice, it is found as follows for $p(D)=a_{n} D^{n}+\cdots+a_{1} D+a_{0} I$.

1. Solve the inhomogeneous equation $p(D) x=1$ for $t>0$ with the initial conditions (given by matching singularities) $x(0+)=x^{\prime}(0+)=x^{(n-1)}(0+)=0$.
2. Take the solution you found and multiply by the step function $u(t)$. This is your $v(t)$.

Note: The solution to $p(D) x=u_{a}(t)$ or $p(D) x=u(t-a)$ is $v(t-a)$.
Unit impulse response $=$ weight function $=$ fundamental solution of an operator $p(D)$ is the solution to the equation $p(D) x=\delta(t)$. We usually denote it by $w(t)$.
In practice, it is found as follows for $p(D)=a_{n} D^{n}+\cdots+a_{1} D+a_{0} I$.

1. Solve the homogeneous equation $p(D) x=0$ for $t>0$ with the initial conditions (given by matching singularities) $x^{(n-1)}=1 / a_{n}$ and $x(0+)=x^{\prime}(0+)=x^{(n-2)}(0+)=0$.
2. Take the solution you found and multiply by the step function $u(t)$. This is your $w(t)$.

Note: The solution to $p(D) x=\delta_{a}(t)$ or $p(D) x=\delta(t-a)$ is $w(t-a)$.

$$
w(t)=v^{\prime}(t)
$$

MA 18.03, R05

3 Convolution

The convolution of two functions f and g is a function $(f * g)$ given by

$$
(f * g)(x)=\int_{0}^{x} f(u) g(x-u) d u
$$

Green's formula gives a way of finding a solution y_{p} to the IVP

$$
a y^{\prime \prime}+b y^{\prime}+c y=f(t), \quad y(0)=y^{\prime}(0)=0
$$

or more generally for an order n linear equation

$$
p(D) y=f(t) \quad y(0)=y^{\prime}(0)=\ldots=y^{(n-1)}(0)=0
$$

in terms of the convolution of the input function $f(t)$ with a certain function associated to the system called the unit impulse response or weight function.

1. What is the unit impulse response or weight function for this ODE?
2. What is the Green function for this ODE?
3. Write down the formula for y_{p} in terms of the impulse response function (Green's formula).
4. What is the value of $y_{p}(0)$?
5. What is the value of $y_{p}^{\prime}(0)$?
