## EXAM III REVIEW

## 1 Fourier Series

### 1.1 General facts

A (generalized) function $f(t)$ of period $2 L$ has a Fourier series of the form

$$
f(t)=\frac{a_{0}}{2}+a_{1} \cos \frac{\pi t}{L}+a_{2} \cos \frac{2 \pi t}{L}+\cdots+b_{1} \sin \frac{\pi t}{L}+b_{2} \sin \frac{2 \pi t}{L}+\cdots
$$

1. How do we write this in $\sum$ notation?
2. What are the formulas for $a_{n}$ and $b_{n}$ ?

$$
a_{n}=
$$

$$
b_{n}=
$$

3. What is the sum of the Fourier series? When is it convergent?
4. Are the following product of functions even or odd?

- even $\cdot$ even $=$
- even $\cdot$ odd $=$
- odd odd $=$

5. Write down all the sinusoidal functions of period 184.

Which ones are
(a) even?
(b) odd?
(c) even about 46?
(d) odd about 46 ?
6. Same question for a general period $2 L$.

### 1.2 How do we compute Fourier series?

Please review the relevant materials and the worksheet I gave in class at the time (if you don't have it, look at http://math.mit.edu/~alina/18.03).

### 1.3 Use in ODE

Consider the linear ODE with constant coefficients

$$
c_{n} y^{(n)}+\ldots+c_{1} y^{\prime}+c_{0} y=f(t), \quad c_{n} \neq 0, \quad f(t) \text { periodic with period } 2 L
$$

We can make use of Fourier series to find a particular solution $y_{p}$ of this ODE, as follows.

1. First write down the Fourier series of $f(t)$.
2. Replace $f(t)$ by its Fourier series in the RHS of the ODE. It becomes something of the form

$$
c_{n} y^{(n)}+\ldots+c_{1} y^{\prime}+c_{0} y=\frac{a_{0}}{2}+\sum_{n=1}^{\infty} a_{n} \cos \frac{n \pi t}{L}+\sum_{n=1}^{\infty} b_{n} \sin \frac{n \pi t}{L} .
$$

3. For each term that appears in the Fourier series find a particular solution of the corresponding equation (use ERF or ERF' or ERF" etc...).

$$
\begin{aligned}
& c_{n} y^{(n)}+\ldots+c_{1} y^{\prime}+c_{0} y=\frac{a_{0}}{2} \quad \sim \text { get } y_{0} \\
& c_{n} y^{(n)}+\ldots+c_{1} y^{\prime}+c_{0} y=a_{n} \cos \frac{n \pi t}{L} \leadsto \text { get } y_{1, n} \\
& c_{n} y^{(n)}+\ldots+c_{1} y^{\prime}+c_{0} y=b_{n} \sin \frac{n \pi t}{L} \leadsto \text { get } y_{2, n}
\end{aligned}
$$

4. A particular solution to the original ODE is the sum of all these pieces

$$
y_{p}=y_{0}+\sum_{n=1}^{\infty} y_{1, n}+\sum_{n=1}^{\infty} y_{2, n}
$$

Now look at the equation

$$
y^{\prime \prime}+\omega^{2} y=f(t)
$$

where $f(t)$ is the even function of period $2 \pi$ that is equal to $t$ for $0<t<\pi$.

1. Write down the Fourier series of $f(t)$.
2. For which $\omega$ do we have resonance? How many terms give resonance for each of the values of $\omega$ ?
3. Write down the periodic solution in the case of
(a) resonance
(b) non-resonance
4. Now write down the general solution in each of the above cases.
5. Now find a near-resonance problem and solve it.

## 2 Step and Delta

1. Write down the formula for the step function $u(t)=$
2. What's the relationship between $u(t)$ and $\delta(t)$ ?
3. Graph $u(t), \delta(t), f(t)=t u(t), t \delta(t), g(t)=\left(t^{2}+3\right) \delta_{-1}(t), h(t)=\left(t^{2}+3\right)(u(t)-2 u(t-2)+u(t-3))$. Compute the $h^{\prime}(t)$ using the product rule and graph it. Now do the same starting with the graph of $h(t)$.
4. $\int_{a}^{b} \delta(t-c) d t=\{$
5. $\int_{a}^{b} f(t) \delta(t-c) d t=\{$
6. $f(t) \delta(t-c)=$

## 3 Convolution and Green's Formula

The convolution of two functions $f$ and $g$ is a function $(f * g)$ given by

$$
(f * g)(x)=\int_{0}^{x} f(u) g(x-u) d u
$$

Green's formula gives a way of finding a solution $y_{p}$ to the IVP

$$
y^{\prime \prime}+a y^{\prime}+b y=f(t), \quad y(0)=y^{\prime}(0)=0
$$

in terms of the convolution of the forcing function $f(t)$ with a certain function associated to the system called the unit impulse response or weight function.

1. What is the step response for this ODE?
2. What is the unit impulse response or weight function for this ODE?
3. What is the Green function for this ODE?
4. Write down the formula for $y_{p}$ in terms of the impulse response function (Green's formula).
5. What is the value of $y_{p}(0)$ ?
6. What is the value of $y_{p}^{\prime}(0)$ ?
7. Find the step response and weight function for the operator $p(D)=\frac{3}{2}\left(D^{3}-13 D+12 I\right)$. Then write down a particular solution for the equation $p(D) x=f(t)$, where

$$
f(t)= \begin{cases}0 & t<0 \\ e^{t} & 0<t<6 \\ e^{2 t} & t>6\end{cases}
$$

Finally, write down the general solution for $p(D) x=f(t)$.

## 4 Laplace Transform

If the function $f(t)$ is continuous at $t=0$, there is no ambiguity about the way we define its Laplace transform:

$$
\mathcal{L}(f)(s)=\int_{0}^{\infty} e^{-s t} f(t) d t=F(s)
$$

When we have to deal with discontinuities or generalized functions, it makes sense to consider $\mathcal{L}_{+}(f)(s)=\int_{0+}^{\infty} e^{-s t} f(t) d t \quad$ that ignores the (possible) discontinuity at 0 of $f(t) ;$ $\mathcal{L}_{-}(f)(s)=\int_{0-}^{\infty} e^{-s t} f(t) d t \quad$ that detects if $f(t)$ has a discontinuity at 0.

### 4.1 General facts

1. $a f(t)+b g(t) \xrightarrow{\mathcal{L}} a F(s)+b G(s)$
2. $f(t) * g(t) \xrightarrow{\mathcal{L}} F(s) G(s)$
3. $e^{a t} f(t) \xrightarrow{\mathcal{L}} F(s-a)$
4. $t f(t) \xrightarrow{\mathcal{L}}-F^{\prime}(s)$
5. $t^{n} f(t) \xrightarrow{\mathcal{L}}(-1)^{n} F^{(n)}(s)$
6. $u(t-a) f(t-a) \xrightarrow{\mathcal{L}} e^{-a s} F(s)$ for $a \geq 0$
7. $f^{\prime}(t) \xrightarrow{\mathcal{L}} s F(s)-f(0)$ (use $0+$ for $\mathcal{L}_{+}$)
8. $f^{\prime \prime}(t) \xrightarrow{\mathcal{L}} s^{2} F(s)-s f(0)-f^{\prime}(0)$ (use $0+$ for $\mathcal{L}_{+}$)
9. $f^{(n)}(t) \xrightarrow{\mathcal{L}} s^{n} F(s)-s^{n-1} f(0)-\ldots-f^{(n-1)}(0)$ (use $0+$ for $\mathcal{L}_{+}$)
10. $\mathcal{L}_{-}\left(f^{(n)}\right)=s^{n} F(s)$
11. Basic transforms

$$
\begin{gathered}
\mathcal{L}(u)=\mathcal{L}(1)=\frac{1}{s} \quad \mathcal{L}\left(t^{n}\right)=\frac{n!}{s^{n+1}} \quad \mathcal{L}\left(e^{a t}\right)=\frac{1}{s-a} \\
\mathcal{L}(\cos a t)=\frac{s}{s^{2}+a^{2}} \quad \mathcal{L}(\sin a t)=\frac{a}{s^{2}+a^{2}} \\
\mathcal{L}_{-}(\delta(t))=1 \quad \mathcal{L}\left(\delta_{a}(t)\right)=e^{-a s}(a>0)
\end{gathered}
$$

### 4.2 Use in ODE

Finding solutions of ODEs: take he Laplace transforms of both sides of an ODE, one obtains an (algeraic) equation for the Laplace transform. Solve that and take the inverse Laplace transform. That gives you a solution of the original ODE.

Finding the weight function of an operator $p(D): \quad \mathcal{L}(w(t))=\frac{1}{p(s)}$
Pole diagram: the rightmost pole(s) of the Laplace transform $F(s)$ of a function $f(t)$ tells us how $f(t)$ behaves for very large $t$ (as $t \rightarrow \infty$ ).

- If the right most pole is at $s=a$, then, for large $t, f(t) \sim$
- If the right most poles are at $s=a \pm i b$, then, for large $t, f(t) \sim$
- In particular, $f(t) \rightarrow 0$ as $t \rightarrow \infty$ if and only if the poles of $F(s)$ have what property?
- When is a system described by the operator $p(D)$ stable?

1. Find the Laplace transforms of $e^{t} \cos (3 t)+5 e^{-t}, u(t)+\delta(t-2 \pi)$ and $t \sin t$.

MA 18.03, R05
EXAM III REVIEW
2. Find the inverse Laplace transforms of $\frac{2 s+3}{s^{3}+2 s^{2}+s}$ and $\frac{2 s+5}{s^{2}+4 s+5}$.
3. Use the Laplace transform to compute $t^{21} * t^{125}$
4. Compute the Laplace transform of $e^{t}$ first directly from the definition and then using the fact that

$$
e^{t}=\sum_{n=0}^{\infty} \frac{t^{n}}{n!}
$$

5. Solve the initial value problem $x^{\prime \prime}+4 x^{\prime}-5 x=e^{-5 t}, x(0)=2, x^{\prime}(0)=3$.
6. Without solving, describe the long-term behavior of the solutions of the following ODEs. Decide which systems are stable and which are unstable.
(a) $y^{\prime \prime}+y^{\prime}-3 y=\cos t$
(b) $y^{\prime \prime}+y^{\prime}+3 y=\cos t$

MA 18.03, R05
(c) $y^{\prime \prime}+y^{\prime}+3 y=\sin t$
(d) $x^{\prime \prime}+x^{\prime}=3 e^{3 t}$
(e) $x^{\prime}+x=3 e^{-t}$
(f) $x^{\prime \prime}+2 x^{\prime}+x=3 e^{-t}$

