LINEAR SYSTEMS

1 Eigenvalues and eigenvectors of matrices

$$
A=\left[\begin{array}{cccc}
a_{11} & a_{12} & \ldots & a_{1 n} \\
a_{21} & a_{22} & \ldots & a_{2 n} \\
\vdots & \vdots & & \vdots \\
a_{n 1} & a_{n 2} & \ldots & a_{n n}
\end{array}\right]
$$

1. The trace of A is the sum of the elements on the diagonal, $\operatorname{Tr} A=a_{11}+a_{22}+\ldots+a_{n n}$.
2. The determinant of A is computed by expanding along a row or a column and keep doing it until we reduce the computation to 2×2 determinants. For instance, expanding along the i-th row we get

$$
\operatorname{det} A=a_{i 1}(-1)^{i+1} \operatorname{det} m_{i 1}+a_{i 2}(-1)^{i+2} \operatorname{det} m_{i 2}+\ldots+a_{i n}(-1)^{i+n} \operatorname{det} m_{i n}
$$

where $m_{i j}$ stands for the (i, j) minor of A, namely the $(n-1) \times(n-1)$ matrix obtained from A by erasing the i-th row and the j-th column.
3. A is invertible if and only if $\operatorname{det} A \neq 0$. In that case

$$
A^{-1}=\frac{1}{\operatorname{det} A}\left[\begin{array}{cccc}
m_{11} & -m_{12} & \ldots & (-1)^{1+n} m_{1 n} \\
-m_{21} & m_{22} & \ldots & (-1)^{2+n} m_{2 n} \\
\vdots & \vdots & & \vdots \\
(-1)^{n+1} m_{n 1} & (-1)^{n+2} m_{n 2} & \cdots & m_{n n}
\end{array}\right]^{T}
$$

where [] ${ }^{T}$ stands for the transpose of a matrix and the $m_{i j}$'s denote minors like above.
4. The characteristic polynomial of A is the degree n polynomial

$$
p_{A}(\lambda)=\operatorname{det}\left(A-\lambda I_{n}\right)
$$

5. The eigenvalues of A are the roots of $p_{A}(\lambda)=0$. Counting multiplicities there are n of them.
6. An eigenvector corresponding to the eigenvalue λ of the matrix A is a nonzero vector \mathbf{v} such that $A \mathbf{v}=\lambda \mathbf{v}$, or equivalently, $\left(A-\lambda I_{n}\right) \mathbf{v}=\mathbf{0}$.
7. Assume λ is a repeated eigenvalue of A with multiplicity m. It is called complete if there are m linearly independent eigenvectors corresponding to it and defective otherwise.
8. If λ is a defective eigenvalue and \mathbf{v} is a corresponding eigenvector, a generalized eigenvector is a vector \mathbf{u} such that $(A-\lambda I) \mathbf{u}=\mathbf{v}$.

2 Matrix exponentials

Definition The exponential of a square matrix A is $e^{A}=\sum_{k=0}^{\infty} \frac{1}{k!} A^{k}$.
Note:

- If B in another $n \times n$ matrix, then $e^{A+B}=e^{A} e^{B}$ if and only if $A B=B A$.
- If A has eigenvalues $\lambda_{1}, \ldots, \lambda_{n}$, the eigenvalues of its exponential e^{A} are $e^{\lambda_{1}}, \ldots, e^{\lambda_{n}}$.

How to compute

- Probably the easiest way is to make a system $\mathbf{x}^{\prime}=A \mathbf{x}$ and find one of fundamental matrices $F(t)$. Then $e^{A}=F(1) F(0)^{-1}$.
- There is one other trick that might help with computations, namely if all the elements on the main diagonal are equal to r, write $A=r I+B$. Then B to some power gives the zero matrix and its exponential is easy to compute being a finite sum and $e^{A}=e^{r} e^{B}$.
- $D=\left[\begin{array}{cccc}a_{1} & 0 & \ldots & 0 \\ 0 & a_{2} & \ldots & 0 \\ \vdots & \vdots & & \vdots \\ 0 & 0 & \ldots & a_{n}\end{array}\right]$ diagonal matrix $\Rightarrow e^{D}=\left[\begin{array}{cccc}e^{a_{1}} & 0 & \ldots & 0 \\ 0 & e^{a_{2}} & \ldots & 0 \\ \vdots & \vdots & & \vdots \\ 0 & 0 & \ldots & e^{a_{n}}\end{array}\right]$.
- In general, you can diagonalize A, i.e. write it as $A=S D S^{-1}$ with D a diagonal matrix. Then $e^{A}=S e^{D} S^{-1}$.

3 Homogeneous linear systems of first order ODEs

$$
\frac{d \mathbf{x}}{d t}=A \mathbf{x}
$$

The general solution of the system is of the form

$$
\mathbf{x}(t)=c_{1} \mathbf{x}_{1}(t)+\cdots+c_{n} \mathbf{x}_{n}(t)
$$

where c_{1}, \ldots, c_{n} are arbitrary constants and $\mathbf{x}_{1}(t), \ldots \mathbf{x}_{n}(t)$ are linearly independent solutions of the system of ODE's. To find the solution of an IVP, solve for constants.

How to solve

The general solution of the system is of the form

$$
\mathbf{x}(t)=c_{1} \mathbf{x}_{1}(t)+\cdots+c_{n} \mathbf{x}_{n}(t)
$$

where c_{1}, \ldots, c_{n} are arbitrary constants and $\mathbf{x}_{1}(t), \ldots \mathbf{x}_{n}(t)$ are linearly independent solutions of the system of ODE's. To find the solution of an IVP, solve for constants.
To find $\mathbf{x}_{1}(t), \ldots \mathbf{x}_{n}(t)$ we proceed as follows.

1. Find the eigenvalues $\lambda_{1}, \ldots, \lambda_{n}$ of A.
2. For each of the distinct eigenvalues λ, there are a few possible cases:

- If λ_{j} is a simple real eigenvalue, find an eigenvector \mathbf{u}_{j}. Then

$$
\mathbf{x}_{j}=e^{\lambda_{j} t} \mathbf{u}_{j}
$$

is the corresponding solution. Such a solution is called a normal mode of the system.

- If λ_{j} and $\lambda_{j+1}=\bar{\lambda}_{j}$ are simple complex conjugate eigenvalues of A, find a complex eigenvector \mathbf{u}_{j} corresponding to λ_{j}. Then the two linearly independent solutions corresponding to λ_{j} and $\bar{\lambda}_{j}$ are given by

$$
\begin{aligned}
\mathbf{x}_{j} & =\operatorname{Re}\left(e^{\lambda_{j} t} \mathbf{u}_{j}\right) \\
\mathbf{x}_{j+1} & =\operatorname{Im}\left(e^{\lambda_{j} t} \mathbf{u}_{j}\right) .
\end{aligned}
$$

- If λ_{j} is a complete repeated eigenvalue with multiplicity m find m linearly independent eigenvectors $\mathbf{u}_{1}, \ldots, \mathbf{u}_{\mathbf{m}}$ and use them to find the corresponding solutions according to the previous cases.
- If λ_{j} is a defective repeated eigenvalue, first try elimination. If that doesn't work and you really, really have to find the generalized eigenvectors and write down the corresponding solutions. Say that λ_{j} has multiplicity m and only one eigenvector \mathbf{u}_{j}. Then solve successively

$$
\begin{array}{ll}
\left(A-\lambda_{j} I\right) \widehat{\mathbf{u}}_{1} & =\mathbf{u}_{j} \\
\left(A-\lambda_{j} I\right) \widehat{\mathbf{u}}_{2} & =\widehat{\mathbf{u}}_{1} \\
& \vdots \\
\left(A-\lambda_{j} I\right) \widehat{\mathbf{u}}_{m-1} & =\widehat{\mathbf{u}}_{m-2}
\end{array}
$$

The corresponding solutions are

$$
\begin{aligned}
\mathbf{x}_{j} & =e^{\lambda_{j} t} \mathbf{u}_{j} \\
\mathbf{x}_{j+1} & =e^{\lambda_{j} t}\left(t \mathbf{u}_{j}+\widehat{\mathbf{u}}_{1}\right) \\
\mathbf{x}_{j+2} & =e^{\lambda_{j} t}\left(t^{2} \mathbf{u}_{j}+t \widehat{\mathbf{u}}_{1}+\widehat{\mathbf{u}}_{2}\right) \\
& \vdots \\
\mathbf{x}_{j+m-1} & =e^{\lambda_{j} t}\left(t^{m-1} \mathbf{u}_{j}+\ldots+t \widehat{\mathbf{u}}_{m-2}+\widehat{\mathbf{u}}_{m-1}\right)
\end{aligned}
$$

Fundamental matrix

A linear system has infinitely many fundamental matrices. If $F(t)$ is any fundamental matrix, then

$$
F^{\prime}(t)=A F(t)
$$

There is a distinguished one amongst them, denoted $F_{0}(t)$ in lecture. It has the following properties.

- $F_{0}(t)=e^{A t}$.
- $F_{0}(0)=I_{n}$ the identity matrix.
- The solution to the IVP $\mathbf{x}^{\prime}=A \mathbf{x}, \mathbf{x}(0)=\mathbf{v}$, is $\mathbf{x}=F_{0}(t) \mathbf{v}$.
- $F_{0}(1)=e^{A}$.

How to compute a fundamental matrix

1. Find n linearly independent solutions of the linear system $\mathbf{x}_{1}(t), \ldots \mathbf{x}_{n}(t)$.
2. Write down the matrix $F(t)$ that has $\mathbf{x}_{1}(t), \ldots \mathbf{x}_{n}(t)$ as columns. This is a fundamental matrix.

How to compute the distinguished fundamental matrix

Method I

1. First compute a fundamental matrix $F(t)$.
2. Compute $F(0)$ and take its inverse.
3. The distinguished fundamental matrix is $F_{0}(t)=F(t)(F(0))^{-1}$.

Method II

1. Find n linearly independent solutions of the linear system $\mathbf{x}_{1}(t), \ldots \mathbf{x}_{n}(t)$.
2. Write down the general solution $\mathbf{x}(t)=c_{1} \mathbf{x}_{1}(t)+\cdots+c_{n} \mathbf{x}_{n}(t)$.
3. Find the solution \mathbf{y}_{j} to the IVP $\mathbf{x}^{\prime}=A \mathbf{x}, \quad \mathbf{x}(0)=\left[\begin{array}{c}0 \\ \vdots \\ 1 \\ \vdots \\ 0\end{array}\right]$, where 1 is on the j-th row.
4. The fundamental matrix $F(t)$ is the matrix with columns $\mathbf{y}_{1}, \ldots, \mathbf{y}_{n}$.

Method III

Just compute the exponential $e^{A t}$ using either the series definition or, if possible, the trick of writing $A t=r t I+B t$. Then $F_{0}(t)=e^{A t}$.

42×2 homogeneous linear systems

$$
\left\{\begin{aligned}
\frac{d x}{d t} & =a x+b y \\
\frac{d y}{d t} & =c x+d y
\end{aligned}\right.
$$

1. Its coefficient matrix is

$$
A=\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]
$$

2. The characteristic polynomial is $p(\lambda)=\lambda^{2}-(\operatorname{Tr} A) \lambda+\operatorname{det} A$.
3. The critical point $(0,0)$ (it will always be a critical point for a linear system!) can exhibit the following behaviors, according to the nature of the eigenvalues λ_{1}, λ_{2} of A :

- If $\lambda_{1}<\lambda_{2}<0$ distinct real roots, then $(0,0)$ is an improper nodal sink (stable). The solutions will be of the form $\mathbf{x}=c_{1} e^{\lambda_{1} t} \mathbf{v}_{1}+c_{2} e^{\lambda_{2} t} \mathbf{v}_{2}$, where \mathbf{v}_{j} is an eigenvector cor-
responding to the eigenvalue λ_{j}. The trajectories will be tangent to the line spanned by \mathbf{v}_{2} and follow the direction of \mathbf{v}_{1}. They all approach the origin.
- If $\lambda_{1}>\lambda_{2}>0$ distinct real roots, then $(0,0)$ is an improper nodal source (unstable). The solutions will be of the form $\mathbf{x}=c_{1} e^{\lambda_{1} t} \mathbf{v}_{1}+c_{2} e^{\lambda_{2} t} \mathbf{v}_{2}$, where \mathbf{v}_{j} is an eigenvector corresponding to the eigenvalue λ_{j}. The trajectories will be tangent to the line spanned by \mathbf{v}_{2} and follow the direction of \mathbf{v}_{1}. They all go away from the origin.
- If $\lambda_{1}>0, \lambda_{2}<0$ distinct real roots, then $(0,0)$ is a saddle (unstable). The solutions will be of the form $\mathbf{x}=c_{1} e^{\lambda_{1} t} \mathbf{v}_{1}+c_{2} e^{\lambda_{2} t} \mathbf{v}_{2}$, where \mathbf{v}_{j} is an eigenvector corresponding to the eigenvalue λ_{j}.
- If $\lambda_{1}=\lambda_{2}=\lambda<0$ equal real negative roots and λ is a complete eigenvalue with linearly independent eigenvectors \mathbf{v}_{1} and \mathbf{v}_{2}, then $(0,0)$ is a proper nodal sink (starshaped, stable). The general solution is $\mathbf{x}=c_{1} e^{\lambda t} \mathbf{v}_{1}+c_{2} e^{\lambda t} \mathbf{v}_{2}$.
- If $\lambda_{1}=\lambda_{2}=\lambda>0$ equal real positive roots and λ is a complete eigenvalue with linearly independent eigenvectors \mathbf{v}_{1} and \mathbf{v}_{2}, then $(0,0)$ is a proper nodal source
(star-shaped, unstable). The general solution is $\mathbf{x}=c_{1} e^{\lambda t} \mathbf{v}_{1}+c_{2} e^{\lambda t} \mathbf{v}_{2}$.
- If $\lambda_{1}=\lambda_{2}=\lambda<0$ equal real negative roots and λ is a defective eigenvalue with eigenvector \mathbf{v}_{1}, then $(0,0)$ is a proper nodal sink (stable). The general solution is $\mathbf{x}=c_{1} e^{\lambda t} \mathbf{v}_{1}+c_{2} e^{\lambda t}\left(t \mathbf{v}_{1}+\mathbf{v}_{2}\right)$, where \mathbf{v}_{2} is a generalized eigenvector. All trajectories are tangent to the line spanned by the eigenvector \mathbf{v}_{1}.
- If $\lambda_{1}=\lambda_{2}=\lambda>0$ equal real positive roots and λ is a defective eigenvalue with eigenvector \mathbf{v}_{1}, then $(0,0)$ is a proper nodal source (unstable). The general solution is $\mathbf{x}=c_{1} e^{\lambda t} \mathbf{v}_{1}+c_{2} e^{\lambda t}\left(t \mathbf{v}_{1}+\mathbf{v}_{2}\right)$, where \mathbf{v}_{2} is a generalized eigenvector. All trajectories are tangent to the line spanned by the eigenvector \mathbf{v}_{1}.
- If $\lambda_{1}, \lambda_{2}=\alpha \pm i \beta$ are complex conjugates with the real part negative, then $(0,0)$ is a spiral sink (stable). The direction of the spiral will be counterclockwise if $b>0$ and $c<0$ and clockwise if $b<0$ and $c>0$. Note that this is condition on the coefficient matrix!
The general solution will be $\mathbf{x}=c_{1} \operatorname{Re}\left(e^{\lambda t} \mathbf{v}\right)+c_{2} \operatorname{Im}\left(e^{\lambda t} \mathbf{v}\right)$.
- If $\lambda_{1}, \lambda_{2}=\alpha \pm i \beta$ are complex conjugates with the real part positive, then $(0,0)$ is a spiral source (unstable). As in the previous case, the direction of the spiral will be
counterclockwise if $b>0$ and $c<0$ and clockwise if $b<0$ and $c>0$.
- If $\lambda_{1}, \lambda_{2}= \pm i \beta$ are complex conjugates with the real part 0 (i.e. purely imaginary), then $(0,0)$ is a stable center. The trajectories look like ellipses centered at the origin. Again, the direction of the trajectories will be counterclockwise if $b>0$ and $c<0$ and clockwise if $b<0$ and $c>0$.
- If $\lambda_{1}<\lambda_{2}=0$, and \mathbf{v}_{j} is an eigenvector corresponding to the eigenvalue $\lambda_{j}, j=1,2$, the general solution is $\mathbf{x}=c_{1} e^{\lambda_{1} t} \mathbf{v}_{1}+c_{2} \mathbf{v}_{2}$. The trajectories on the line spanned by \mathbf{v}_{2} are just points. The rest of the trajectories are parallel to \mathbf{v}_{1}. The phase portrait looks like
- If $\lambda_{1}>\lambda_{2}=0$, and \mathbf{v}_{j} is an eigenvector corresponding to the eigenvalue $\lambda_{j}, j=1,2$, the general solution is $\mathbf{x}=c_{1} e^{\lambda_{1} t} \mathbf{v}_{1}+c_{2} \mathbf{v}_{2}$. The trajectories on the line spanned by \mathbf{v}_{2} are just points. The rest of the trajectories are parallel to \mathbf{v}_{1}. The critical point $(0,0)$ is unstable and the phase portrait looks like
- If $\lambda_{1}=\lambda_{2}=0$ is a repeated complete eigenvalue, all trajectories are just points in the plane. Notice that in this case the matrix A is just the zero matrix and all solutions
are constant.
- If $\lambda_{1}=\lambda_{2}=0$ is a repeated defective eigenvalue with eigenvector \mathbf{v}_{1}, the general solution is $\mathbf{x}=c_{1} \mathbf{v}_{1}+c_{2}\left(t \mathbf{v}_{1}+\mathbf{v}_{2}\right)$. The trajectories are lines parallel to \mathbf{v}_{1}.

5 Non-homogeneous $n \times n$ linear systems of ODEs

$$
\frac{d \mathbf{x}}{d t}=A \mathbf{x}(t)+\mathbf{b}(t)
$$

Once again the general solution is of the form $\mathbf{x}=\mathbf{x}_{p}+\mathbf{x}_{h}$, with \mathbf{x}_{p} a particular solution of the non-homogeneous system and \mathbf{x}_{h} the solution to the corresponding homogenous system $\mathbf{x}^{\prime}=A \mathbf{x}$.

How to solve

1. Guess by whatever means a particular solution \mathbf{x}_{p}, compute \mathbf{x}_{h} by the previous algorithm and add them up.
2. Variation of parameters:

- Compute the distinguished fundamental matrix $F_{0}(t)=e^{t A}$. Or, equivalently, compute the exponential $e^{t A}$ directly.
- The general solution is of the form

$$
\mathbf{x}(t)=\int_{0}^{t} e^{(t-\tau) A} \mathbf{b}(\tau) d \tau+e^{t A} \mathbf{v}
$$

where \mathbf{v} is any n-dimensional vector (=your arbitrary constants!). Note that $\mathbf{x}(0)=\mathbf{v}$, so IVPs are really easy to solve.

