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FIRST ORDER DIFFERENTIAL EQUATIONS

1. A first order differential equation is an equation of the form

F (x, y, y′) = 0.

A solution of the differential equation is a function y = y(x) that satisfies the equation. A differential
equation has infinitely many solutions.

2. An equilibrium solution is a constant solution, i.e. a constant function y(x) = K that satisfies the
equation.

3. An initial value problem consists of a differential equation and an initial condition y(x0) = y0. It has a
unique solution, which has to be a function. For instance y = ±

√
x cannot be the solution of an i.v.p.

A. Separable Equations

dy

dx
= f(x)g(y)

1. Separate the variables:
dy

g(y)
= f(x)dx.

2. Integrate both sides:
∫

dy

g(y)
=

∫
f(x)dx and get G(y) = C + F (x).

3. Solve for y (if possible).

4. If it is an initial value problem, plug in the given values and solve for C.

B. Linear equations

dy

dx
+ P (x)y = Q(x)

1. Write the equation in the above form.

2. Compute the integrating factor I(x) = e
R

P (x)dx.

3. Multiply both sides of the equation by this integrating factor: I(x)
dy

dx
+ I(x) · P (x)y = I(x) ·Q(x).

4. Integrate both sides and get I(x)y = C +
∫

I(x)Q(x)dx.

5. Solve for y.

6. If it is an initial value problem, plug in the given values and solve for C.

C. Homogeneous Equations

dy

dx
= F

(y

x

)
1. Make the substitution v =

y

x
. Attention:

dy

dx
= x · dv

dx
+ v.



2. Solve the new equation, not forgetting the constant involved. (It will probably be a separable equation.)

3. Find y(x) = xv(x).

4. If it is an initial value problem, make sure you find the constant.

D. Bernoulli Equations

dy

dx
+ P (x)y = Q(x)yn

1. Make the substitution v = y1−n.

2. Solve the new linear equation:
dv

dx
+ (1− n)P (x)y = (1− n)Q(x).

3. Find y(x).

4. If it is an initial value problem, make sure you find the constant.

E. Other Substitutions
Some equations need some other substitution to transform them in a known type. These substitutions

vary greatly and there are no general formulas that can help. However, the more you practice, the better
your intuition becomes in these matters.

F. Linear first order equations with sinusoidal input

y′ + ky = B cos(ωt) or B sin(ωt) (∗)

Such an equation can be seen as the real or imaginary part of the complex differential equation

z′ + kz = Beiωt (∗∗)

The general idea is that the solutions to (∗) are of the form

y = yp + yh,

where yp is a particular solution of the original equation (∗), and yh is the general solution to the associated
homogeneous equation (see below).

1. Solve the corresponding homogeneous equation y′ + ky = 0. The solution is yh = Ce−kt. This is where
the arbitrary constant appears!

2. Find a particular solution zp of (∗∗). It will usually be of the same form as the input, namelyAeiωt.
So try that and determine A.

3. Write yp by taking either the real or imaginary part of zp. If the input in (∗) is cos, you should take
the real part, if it is sin, the imaginary part.

4. Write down the general solution to (∗), y = yp + yh

5. If it is an initial value problem, find the constant.

G. General strategy
If you are asked to solve a first order ODE and no method is specified, go through the following steps in

order to determine what method to apply.



1. Is it separable?

2. Is it linear? Does it have sinusoidal or exponential input?

3. Is it homogeneous? Reducible?

4. Is it a Bernoulli equation?

5. Can you think of a substitution that would put it in a form you recognize?


