## SECOND ORDER LINEAR HOMOGENEOUS ODEs

$$
m x^{\prime \prime}+b x^{\prime}+k x=0, \quad m, b, k \text { constants, } m \neq 0
$$

1. If the equation describes a physical spring-dashpot system, the coefficients $m, b, k$ are non-negative.
2. An initial value problem consists of a differential equation and an initial condition $x\left(t_{0}\right)=A, x^{\prime}\left(t_{0}\right)=$ $B$. How many solutions does it have?
3. A boundary problem consists of a differential equation and a boundary condition $x\left(t_{0}\right)=A, x\left(t_{1}\right)=B$. How many solutions does it have?
4. The general solution is of the form $x(t)=c_{1} x_{1}(t)+c_{2} x_{2}(t)$, where $x_{1}$ and $x_{2}$ are two linearly independent solutions (none of them can be written as a constant multiple of the other).
5. The characteristic polynomial of this equations is $p(s)=m s^{2}+b s+k$.
6. The exponential solutions of this equation are $c_{1} e^{r_{1} t}$ and $c_{2} e^{r_{2} t}$, where $r_{1}, r_{2}$ are the roots (real or complex) of the characteristic polynomial and $c_{1}, c_{2}$ are arbitrary constants. If $r_{1}=r_{2}=r$, there is only one family of exponential solutions, namely $c e^{r t}$.

## How to solve:

1. Write down the characteristic equation $m s^{2}+b s+k=0$.
2. Compute its discriminant $\Delta=b^{2}-4 m k$.
3. There are three possible situations:

- overdamped: If $\Delta>0$, the quadratic equation has two distinct real solutions, $r_{1}$ and $r_{2}$. Find them. (You might need to use the quadratic formula.) The general solution of the differential equation is

$$
x=C_{1} e^{r_{1} t}+C_{2} e^{r_{2} t} .
$$

- critically damped: If $\Delta=0$, the quadratic equation has only one real root $r$. Find it. The general solution of the differential equation is

$$
x=C_{1} e^{r t}+C_{2} t e^{r t}
$$

- underdamped: If $\Delta<0$, the quadratic equation does not have any real roots, it has two complex conjugate roots $r_{1,2}=\alpha \pm i \beta$, where $\alpha=-\frac{b}{2 m}$ and $\beta=\frac{\sqrt{|\Delta|}}{2 m}$. The general solution of the differential equation is

$$
x=C_{1} e^{\alpha t} \cos (\beta t)+C_{2} e^{\alpha t} \sin (\beta t) \quad \text { or } \quad x=A e^{\alpha t} \cos (\beta t-\phi) .
$$

In the second expression, $A$ is any real number and $\phi$ any number in $[0,2 \pi)$.
4. If it is an initial value problem or a boundary problem, plug in the given values and solve for $C_{1}$ and $C_{2}$ (or for $A$ and $\phi$ ). Don't forget to take the derivative of $x$ in the case of an initial value problem (chain rule!).

