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SECOND ORDER ODE’S

1. A second order differential equation is an equation of the form

F (x, y, y′, y′′) = 0.

A solution of the differential equation is a function y = y(x) that satisfies the equation.
A differential equation has infinitely many solutions. They usually involve two undeter-
mined constants.

2. An initial value problem consists of a differential equation and an initial conditions y(x0) =
y0, y

′(x0) = y′0. It has a unique solution, which has to be a function (provided F doesn’t
have problems at that point).

3. A boundary problem consists of a differential equation and conditions

y(x0) = y0, y(x1) = y1;
or

y′(x0) = y′0, y(x1) = y1;
or

y(x0) = y0, y′(x1) = y′1;
or

y′(x0) = y′0, y′(x1) = y′1.

A. Homogeneous linear second order ODEs with constant coefficients

mx′′ + bx′ + kx = 0, m, b, k constants, m 6= 0

1. If the equation describes a physical spring–dashpot system, the coefficients m, b, k are
non-negative.

2. An initial value problem consists of a differential equation and an initial condition x(t0) =
A, x′(t0) = B. How many solutions does it have?

3. The general solution is of the form x(t) = c1x1(t) + c2x2(t), where x1 and x2 are two
linearly independent solutions (none of them can be written as a constant multiple of the
other).

4. The characteristic polynomial of this equations is p(s) = ms2 + bs + k.

5. The exponential solutions of this equation are c1e
r1t and c2e

r2t, where r1, r2 are the roots
(real or complex) of the characteristic polynomial and c1, c2 are arbitrary constants. If
r1 = r2 = r, there is only one family of exponential solutions, namely cert.

How to solve:

1. Write down the characteristic equation ms2 + bs + k = 0.

2. Compute its discriminant ∆ = b2 − 4mk.

3. There are three possible situations:
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• overdamped: If ∆ > 0, the quadratic equation has two distinct real solutions, r1 and
r2. Find them. (You might need to use the quadratic formula.) The general solution
of the differential equation is

x = C1e
r1t + C2e

r2t.

• critically damped: If ∆ = 0, the quadratic equation has only one real root r. Find it.
The general solution of the differential equation is

x = C1e
rt + C2te

rt.

• underdamped: If ∆ < 0, the quadratic equation does not have any real roots, it has

two complex conjugate roots r1,2 = α ± iβ, where α = − b
2m and β =

√
|∆|

2m . The
general solution of the differential equation is

x = C1e
αt cos(βt) + C2e

αt sin(βt) or x = Aeαt cos(βt− φ).

In the second expression, A is any positive real number and φ any number in [0, 2π).

4. If it is an initial value problem or a boundary problem, plug in the given values and solve
for C1 and C2 (or for A and φ). Don’t forget to take the derivative of x in the case of an
initial value problem (chain rule!).

B. Nonhomogeneous second order linear ODEs

mx′′ + bx′ + kx = f(t).

We solve these by finding a particular solution xp of the given ODE and the solution xh to
the corresponding homogeneous equation mx′′ + bx′ + kx = 0. The general solution is given by
x = xp + xh.

Note: xh contains all the undetermined constants (denotes an infinite family of functions),
while xp is one particular function.

We have two ways of finding xp, namely ERF and undetermined coefficients. They are both
explained below for linear equations of arbitrary order. Just apply them for your second order
ODE.

LINEAR ODEs AND LINEAR OPERATORS

A. Linear operators

Notation

• D stands for the derivative of a function. For instance, if x is a function of t, Dx =
x′ = dx/dt. If f is a function of x, then Df = f ′ = df/dx.

• Dn stands for taking the n-th derivative. For instance D2x = D(Dx) = D(x′) = x′′.

• I is the identity operator that leaves functions alone, so I(f) = f.

• In general p(D) = anDn + . . . + a1D + a0I applied to a function y means taking a
linear combination of y and its first n derivatives, namely

p(D)y = (anDn + . . . + a1D + a0I)y = any(n) + . . . + a1y
′ + a0y

Writing p(D)y = f(t) provides an handy shorthand for the linear ODE

any(n) + . . . + a1y
′ + a0y = f(t)
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Properties

• Linearity
p(D)(af + bg) = ap(D)f + bp(D)g

• Exponential shift formula

p(D)(ertu) = ertp(D + rI)u

Don’t forget that (D + rI)2 = D2 + 2rD + r2I (and so forth).

B. Homogeneous linear ODEs with constant coefficients

any(n) + . . . + a1y
′ + a0y = 0

This equation can be re-written as
p(D)y = 0

with
p(D) = anDn + . . . + a1D + a0I

1. Write down the characteristic polynomial p(s) = ansn + . . . + a1s + a0.

2. Find its n roots r1, . . . , rn (counted with multiplicity) by solving anrn + . . . + a0 = 0.

3. The general solution is of the form x = c1x1 + . . .+ cnxn where each xj corresponds to the
root rj as follows.

• For each simple real root rj we obtain an exponential solution xj = erjt.

• For each pari of simple complex conjugate roots rj,j+1 = a ± ib we get the pair of
solutionsxj = eat cos bt and xj+1 = eat sin bt

• A repeated real root rj with multiplicity m, should have m corresponding solutions.
Construct xj as above. The rest are txj , t

2xj , . . . , t
m−1xj .

• For repeated pairs of complex roots the same principle applies, except now you have
m pairs of corresponding solutions.

C. Non-homogeneous linear ODEs

any(n) + . . . + a1y
′ + a0y = 0

This equation can be re-written as
p(D)y = 0

with
p(D) = anDn + . . . + a1D + a0I

We solve these by finding a particular solution xp of the given ODE and the solution xh to
the corresponding homogeneous equation mx′′ + bx′ + kx = 0. The general solution is given by
x = xp + xh.

Note: xh contains all the undetermined constants (denotes an infinite family of functions),
while xp is one particular function.

We have two ways of finding xp, detailed below.
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Exponential response formulas: can be applied to an equation with exponential input

p(D)x = Aekt,

where r is any complex number.

1. Write down the characteristic polynomial p(s).

2. Compute p(k). If it is nonzero, then xp =
Aekt

p(k)
is a solution. (ERF)

3. If p(k) = 0, compute p′(k). If this in nonzero, then xp =
Atekt

p′(k)
is a solution. (ERF’)

4. Keep going. The idea is to compute p(k), p′(k), p′′(k), . . . until you find the first
nonzero guy amongst them. Say that happens to be p(m)(k). Then

xp =
Atmekt

p(m)(k)

is a solution.

Undetermined coefficients method: the idea is to look for a solution of the same general
form as the function f(t) on the RHS of our equation.

If f(t) is of the form try

aert Aert

a cos ωt A cos ωt + B sinωt

a sinωt A cos ωt + B sinωt

antn + . . . + a0 Antn + . . . + A0

(antn + . . . + a0)ert (Antn + . . . + A0)ert

(antn + . . . + a0) cos ωt (Antn + . . . + A0)(B1 cos ωt + B2 sinωt)

(antn + . . . + a0) sinωt (Antn + . . . + A0)(B1 cos ωt + B2 sinωt)

(antn + . . . + a0)ert cos ωt (Antn + . . . + A0)ert(B1 cos ωt + B2 sinωt)

(antn + . . . + a0)ert sinωt (Antn + . . . + A0)ert(B1 cos ωt + B2 sinωt)

If f(t) = f1(t) + f2(t), look for solutions xj(t) corresponding to fj(t), j = 1, 2, and then
add them up to get xp = x1 + x2.

G. Physical notions

complex gain
amplitude gain
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phase lag/shift
time lag
amplitude
resonance
practical resonance
frequency
pseudofrequency
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