SECOND ORDER ODE'S

1. A second order differential equation is an equation of the form

$$
F\left(x, y, y^{\prime}, y^{\prime \prime}\right)=0
$$

A solution of the differential equation is a function $y=y(x)$ that satisfies the equation. A differential equation has infinitely many solutions. They usually involve two undetermined constants.
2. An initial value problem consists of a differential equation and an initial conditions $y\left(x_{0}\right)=$ $y_{0}, y^{\prime}\left(x_{0}\right)=y_{0}^{\prime}$. It has a unique solution, which has to be a function (provided F doesn't have problems at that point).
3. A boundary problem consists of a differential equation and conditions

$$
y\left(x_{0}\right)=y_{0}, \quad y\left(x_{1}\right)=y_{1}
$$

or

$$
y^{\prime}\left(x_{0}\right)=y_{0}^{\prime}, \quad y\left(x_{1}\right)=y_{1}
$$

or

$$
y\left(x_{0}\right)=y_{0}, \quad y^{\prime}\left(x_{1}\right)=y_{1}^{\prime} ;
$$

or
$y^{\prime}\left(x_{0}\right)=y_{0}^{\prime}, \quad y^{\prime}\left(x_{1}\right)=y_{1}^{\prime}$.
A. Homogeneous linear second order ODEs with constant coefficients

$$
m x^{\prime \prime}+b x^{\prime}+k x=0, \quad m, b, k \text { constants, } m \neq 0
$$

1. If the equation describes a physical spring-dashpot system, the coefficients m, b, k are non-negative.
2. An initial value problem consists of a differential equation and an initial condition $x\left(t_{0}\right)=$ $A, x^{\prime}\left(t_{0}\right)=B$. How many solutions does it have?
3. The general solution is of the form $x(t)=c_{1} x_{1}(t)+c_{2} x_{2}(t)$, where x_{1} and x_{2} are two linearly independent solutions (none of them can be written as a constant multiple of the other).
4. The characteristic polynomial of this equations is $p(s)=m s^{2}+b s+k$.
5. The exponential solutions of this equation are $c_{1} e^{r_{1} t}$ and $c_{2} e^{r_{2} t}$, where r_{1}, r_{2} are the roots (real or complex) of the characteristic polynomial and c_{1}, c_{2} are arbitrary constants. If $r_{1}=r_{2}=r$, there is only one family of exponential solutions, namely $c e^{r t}$.

How to solve:

1. Write down the characteristic equation $m s^{2}+b s+k=0$.
2. Compute its discriminant $\Delta=b^{2}-4 m k$.
3. There are three possible situations:

- overdamped: If $\Delta>0$, the quadratic equation has two distinct real solutions, r_{1} and r_{2}. Find them. (You might need to use the quadratic formula.) The general solution of the differential equation is

$$
x=C_{1} e^{r_{1} t}+C_{2} e^{r_{2} t}
$$

- critically damped: If $\Delta=0$, the quadratic equation has only one real root r. Find it. The general solution of the differential equation is

$$
x=C_{1} e^{r t}+C_{2} t e^{r t}
$$

- underdamped: If $\Delta<0$, the quadratic equation does not have any real roots, it has two complex conjugate roots $r_{1,2}=\alpha \pm i \beta$, where $\alpha=-\frac{b}{2 m}$ and $\beta=\frac{\sqrt{|\Delta|}}{2 m}$. The general solution of the differential equation is

$$
x=C_{1} e^{\alpha t} \cos (\beta t)+C_{2} e^{\alpha t} \sin (\beta t) \quad \text { or } \quad x=A e^{\alpha t} \cos (\beta t-\phi) .
$$

In the second expression, A is any positive real number and ϕ any number in $[0,2 \pi)$.
4. If it is an initial value problem or a boundary problem, plug in the given values and solve for C_{1} and C_{2} (or for A and ϕ). Don't forget to take the derivative of x in the case of an initial value problem (chain rule!).

B. Nonhomogeneous second order linear ODEs

$$
m x^{\prime \prime}+b x^{\prime}+k x=f(t)
$$

We solve these by finding a particular solution x_{p} of the given ODE and the solution x_{h} to the corresponding homogeneous equation $m x^{\prime \prime}+b x^{\prime}+k x=0$. The general solution is given by $x=x_{p}+x_{h}$.

Note: x_{h} contains all the undetermined constants (denotes an infinite family of functions), while x_{p} is one particular function.

We have two ways of finding x_{p}, namely ERF and undetermined coefficients. They are both explained below for linear equations of arbitrary order. Just apply them for your second order ODE.

LINEAR ODEs AND LINEAR OPERATORS

A. Linear operators

Notation

- D stands for the derivative of a function. For instance, if x is a function of $t, D x=$ $x^{\prime}=d x / d t$. If f is a function of x, then $D f=f^{\prime}=d f / d x$.
- D^{n} stands for taking the n-th derivative. For instance $D^{2} x=D(D x)=D\left(x^{\prime}\right)=x^{\prime \prime}$.
- I is the identity operator that leaves functions alone, so $I(f)=f$.
- In general $p(D)=a_{n} D^{n}+\ldots+a_{1} D+a_{0} I$ applied to a function y means taking a linear combination of y and its first n derivatives, namely

$$
p(D) y=\left(a_{n} D^{n}+\ldots+a_{1} D+a_{0} I\right) y=a_{n} y^{(n)}+\ldots+a_{1} y^{\prime}+a_{0} y
$$

Writing $p(D) y=f(t)$ provides an handy shorthand for the linear ODE

$$
a_{n} y^{(n)}+\ldots+a_{1} y^{\prime}+a_{0} y=f(t)
$$

Properties

- Linearity

$$
p(D)(a f+b g)=a p(D) f+b p(D) g
$$

- Exponential shift formula

$$
p(D)\left(e^{r t} u\right)=e^{r t} p(D+r I) u
$$

Don't forget that $(D+r I)^{2}=D^{2}+2 r D+r^{2} I$ (and so forth).

B. Homogeneous linear ODEs with constant coefficients

$$
a_{n} y^{(n)}+\ldots+a_{1} y^{\prime}+a_{0} y=0
$$

This equation can be re-written as

$$
p(D) y=0
$$

with

$$
p(D)=a_{n} D^{n}+\ldots+a_{1} D+a_{0} I
$$

1. Write down the characteristic polynomial $p(s)=a_{n} s^{n}+\ldots+a_{1} s+a_{0}$.
2. Find its n roots r_{1}, \ldots, r_{n} (counted with multiplicity) by solving $a_{n} r^{n}+\ldots+a_{0}=0$.
3. The general solution is of the form $x=c_{1} x_{1}+\ldots+c_{n} x_{n}$ where each x_{j} corresponds to the root r_{j} as follows.

- For each simple real root r_{j} we obtain an exponential solution $x_{j}=e^{r_{j} t}$.
- For each pari of simple complex conjugate roots $r_{j, j+1}=a \pm i b$ we get the pair of solutions $x_{j}=e^{a t} \cos b t$ and $x_{j+1}=e^{a t} \sin b t$
- A repeated real root r_{j} with multiplicity m, should have m corresponding solutions. Construct x_{j} as above. The rest are $t x_{j}, t^{2} x_{j}, \ldots, t^{m-1} x_{j}$.
- For repeated pairs of complex roots the same principle applies, except now you have m pairs of corresponding solutions.

C. Non-homogeneous linear ODEs

$$
a_{n} y^{(n)}+\ldots+a_{1} y^{\prime}+a_{0} y=0
$$

This equation can be re-written as

$$
p(D) y=0
$$

with

$$
p(D)=a_{n} D^{n}+\ldots+a_{1} D+a_{0} I
$$

We solve these by finding a particular solution x_{p} of the given ODE and the solution x_{h} to the corresponding homogeneous equation $m x^{\prime \prime}+b x^{\prime}+k x=0$. The general solution is given by $x=x_{p}+x_{h}$.

Note: x_{h} contains all the undetermined constants (denotes an infinite family of functions), while x_{p} is one particular function.

We have two ways of finding x_{p}, detailed below.

Exponential response formulas: can be applied to an equation with exponential input

$$
p(D) x=A e^{k t}
$$

where r is any complex number.

1. Write down the characteristic polynomial $p(s)$.
2. Compute $p(k)$. If it is nonzero, then $x_{p}=\frac{A e^{k t}}{p(k)}$ is a solution. (ERF)
3. If $p(k)=0$, compute $p^{\prime}(k)$. If this in nonzero, then $x_{p}=\frac{A t e^{k t}}{p^{\prime}(k)}$ is a solution. (ERF')
4. Keep going. The idea is to compute $p(k), p^{\prime}(k), p^{\prime \prime}(k), \ldots$ until you find the first nonzero guy amongst them. Say that happens to be $p^{(m)}(k)$. Then

$$
x_{p}=\frac{A t^{m} e^{k t}}{p^{(m)}(k)}
$$

is a solution.

Undetermined coefficients method: the idea is to look for a solution of the same general form as the function $f(t)$ on the RHS of our equation.

If $f(t)$ is of the form	try
$a e^{r t}$	$A e^{r t}$
$a \cos \omega t$	$A \cos \omega t+B \sin \omega t$
$a \sin \omega t$	$A \cos \omega t+B \sin \omega t$
$a_{n} t^{n}+\ldots+a_{0}$	$A_{n} t^{n}+\ldots+A_{0}$
$\left(a_{n} t^{n}+\ldots+a_{0}\right) e^{r t}$	$\left(A_{n} t^{n}+\ldots+A_{0}\right) e^{r t}$
$\left(a_{n} t^{n}+\ldots+a_{0}\right) \cos \omega t$	$\left(A_{n} t^{n}+\ldots+A_{0}\right)\left(B_{1} \cos \omega t+B_{2} \sin \omega t\right)$
$\left(a_{n} t^{n}+\ldots+a_{0}\right) \sin \omega t$	$\left(A_{n} t^{n}+\ldots+A_{0}\right)\left(B_{1} \cos \omega t+B_{2} \sin \omega t\right)$
$\left(a_{n} t^{n}+\ldots+a_{0}\right) e^{r t} \cos \omega t$	$\left(A_{n} t^{n}+\ldots+A_{0}\right) e^{r t}\left(B_{1} \cos \omega t+B_{2} \sin \omega t\right)$
$\left(a_{n} t^{n}+\ldots+a_{0}\right) e^{r t} \sin \omega t$	$\left(A_{n} t^{n}+\ldots+A_{0}\right) e^{r t}\left(B_{1} \cos \omega t+B_{2} \sin \omega t\right)$

If $f(t)=f_{1}(t)+f_{2}(t)$, look for solutions $x_{j}(t)$ corresponding to $f_{j}(t), j=1,2$, and then add them up to get $x_{p}=x_{1}+x_{2}$.

G. Physical notions

complex gain
amplitude gain

MA 18.03, R05

phase lag/shift
time lag
amplitude
resonance
practical resonance
frequency
pseudofrequency

