Non-homogeneous linear ODEs with constant coefficients

$$
a_{\ell} y^{(\ell)}+a_{\ell-1} y^{(\ell-1)}+\cdots+a_{1} y^{\prime}+a_{0} y=G(x), \text { where } a_{j} \text { are real numbers, } a_{\ell} \neq 0
$$

Note We can solve this only when $G(x)$ looks like $P(x) e^{k x} \cos (m x)$ or $P(x) e^{k x} \sin (m x)$, where P is a polynomial in x (could be 0 or 1 or any other constant), k is any real number (including 0) and m is any integer (this could be 0 as well). In case $m=0, G(x)=P(x) e^{k x}$.

1. Write down the associated homogeneous equation

$$
a_{\ell} y^{(\ell)}+a_{\ell-1} y^{(\ell-1)}+\cdots+a_{1} y^{\prime}+a_{0} y=0
$$

and find its general solution y_{h}, as follows.
(a) Write down the characteristic polynomial $p(s)=a_{\ell} s^{\ell}+\cdots+a_{0}$.
(b) Find its roots r_{1}, \ldots, r_{ℓ}.
(c) Write down the general solution to the homogeneous equation

$$
y_{h}=C_{1} y_{1}+\cdots+C_{\ell} y_{\ell} .
$$

Take into account multiplicities (double/triple/etc... roots) and pairs of complex roots.
2. Find a particular solution y_{p} of the non-homogeneous equation using the method of undetermined coefficients.
If $G(x)=P(x) e^{k x} \cos (m x)$ or $G(x)=P(x) e^{k x} \sin (m x)$, try

$$
y_{p}=x^{s}\left[R_{1}(x) e^{k x} \cos (m x)+R_{2} e^{k x} \sin (m x)\right]
$$

where $\operatorname{deg}\left(R_{1}\right)=\operatorname{deg}\left(R_{2}\right)=\operatorname{deg}(P)$ and s is the smallest nonnegative integer such that no term in y_{p} duplicates a term in y_{h}. For instance,

- if $G(x)=d e^{k x}$, then try $y_{p}=A x^{s} e^{k x}$;
- if $G(x)=P(x) e^{k x}$, then try $y_{p}=x^{s} R(x) e^{k x}$ with R a polynomial in x of the same degree as P;
- if $G(x)=P(x)$, then try $y_{p}=x^{s} R(x)$ with R a polynomial in x of the same degree as P;
- if $G(x)=d \cos (m x)$ or $G(x)=d \sin (m x)$ or $G(x)=d_{1} \cos (m x)+d_{2} \sin (m x)$, then try $y_{p}=$ $x^{s}(A \cos (m x)+B \sin (m x))$;
- if $G(x)=e^{k x}\left(d_{1} \cos (m x)+d_{2} \sin (m x)\right)$, then try $y_{p}=x^{s} e^{k x}(A \cos (m x)+B \sin (m x))$;
- if $G(x)=P(x) \cos (m x)$ or $G(x)=P(x) \sin (m x)$ or $G(x)=P(x)\left(d_{1} \cos (m x)+d_{2} \sin (m x)\right)$, then try $y_{p}=x^{s}\left(R_{1}(x) e^{k x} \cos (m x)+R_{2} e^{k x} \sin (m x)\right)$, with R_{1} and R_{2} polynomials in x of the same degree as P.

If $G(x)=G_{1}(x)+G_{2}(x)$, then find $\tilde{y}_{j}, j=1,2$ particular solution for the equation

$$
a_{\ell} y^{(\ell)}+a_{\ell-1} y^{(\ell-1)}+\cdots+a_{1} y^{\prime}+a_{0} y=G_{j}(x)
$$

and then take $y_{p}=\tilde{y}_{1}+\tilde{y}_{2}$.
3. Write down the general solution $y=y_{h}+y_{p}$.
4. If it is an initial value problem or a boundary problem, plug in the given values and solve for C_{1}, \ldots, C_{ℓ}. Don't forget to take the derivative of y in the case of an initial value problem (chain rule!).

