HOMEWORK 4

DUE 7 OCTOBER 2008

This Pset works through the proof that the weight 2 Eisenstein series is a quasi-modular form.

Define $G_{2}: \mathcal{H} \rightarrow \mathbb{C}$ by

$$
G_{2}(\tau)=2 \zeta(2)+2(2 \pi i)^{2} \sum_{n=1}^{\infty} \sigma_{1}(n) q^{n}
$$

where $q=e^{2 \pi i \tau}$. Note that the series is absolutely convergent for $|q|<1$, i.e. for $\Im(\tau)>0$. Hence G_{2} is analytic on \mathcal{H}.

1. Show that $G_{2}(\tau+1)=G_{2}(\tau)$ (this is the transformation under $\left.T\right)$.
2. To see how G_{2} transforms under the action of the other generator, S, start by showing that

$$
G_{2}(\tau)=2 \zeta(2)+\sum_{n \in \mathbb{Z} \backslash\{0\}} \sum_{m \in \mathbb{Z}} \frac{1}{(m+n \tau)^{2}}
$$

3. Now prove that

$$
\frac{1}{\tau^{2}} G_{2}\left(-\frac{1}{\tau}\right)=2 \zeta(2)+\sum_{m \in \mathbb{Z}} \sum_{n \in \mathbb{Z} \backslash\{0\}} \frac{1}{(m+n \tau)^{2}} .
$$

Be careful with the order of summation!
4. Show that

$$
\sum_{n \in \mathbb{Z} \backslash\{0\}} \frac{1}{(m+n \tau)^{2}}=-8 \pi^{2} \int_{0}^{\infty} \cos (2 \pi m t) g_{\tau}(t) d t,
$$

where $g_{\tau}(t)=t \sum_{n=1}^{\infty} e^{2 \pi i n t \tau}$ for $t>0$
and $g_{\tau}(0)=\lim _{t \rightarrow 0+} g_{\tau}(t)=-\frac{1}{2 \pi i \tau}$.
5. Now use the previous point to prove that

$$
\sum_{m \in \mathbb{Z}} \sum_{n \in \mathbb{Z} \backslash\{0\}} \frac{1}{(m+n \tau)^{2}}=\sum_{n \in \mathbb{Z} \backslash\{0\}} \sum_{m \in \mathbb{Z}} \frac{1}{(m+n \tau)^{2}}-\frac{2 \pi i}{\tau}
$$

Note: In particular this shows that the double sum is not absolutely convergent.
6. Prove that G_{2} transforms under the action of $S=\left(\begin{array}{rr}0 & -1 \\ 1 & 0\end{array}\right)$ as follows:

$$
G_{2}\left(-\frac{1}{\tau}\right)=\tau^{2} G_{2}(\tau)-2 \pi i \tau
$$

7. Quasi-modularity: Prove that for any matrix $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in \operatorname{SL}(2, \mathbb{Z})$ and any $\tau \in \mathcal{H}$ we have

$$
G_{2}\left(\frac{a \tau+b}{c \tau+d}\right)=(c \tau+d)^{2} G_{2}(\tau)-2 \pi i c(c \tau+d)
$$

Note: You have to show that $c(c \tau+d)$ and $(c \tau+d)^{2}$ behave well w.r.t. matrix multiplication.
8. Set $\tilde{G}_{2}(\tau)=-\frac{1}{8 \pi^{2}} G_{2}(\tau)$. Show that
(a) $\tilde{G}_{2}(\tau)=\frac{1}{2} \zeta(-1)+\sum_{n=1}^{\infty} \sigma_{1}(n) q^{n}$
(b) $\tilde{G}_{2}\left(\frac{a \tau+b}{c \tau+d}\right)=(c \tau+d)^{2} \tilde{G}_{2}(\tau)-\frac{1}{4 \pi i} c(c \tau+d)$, for all $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in \operatorname{SL}(2, \mathbb{Z})$ and $\tau \in \mathcal{H}$.

