HOMEWORK 6

DUE 28 OCTOBER 2008

1. This example shows that the condition of moderate growth in the Phragmén-Lindelöf principle is necessary. Let

$$
f(s)=e^{e^{-i s}}
$$

Show that f is bounded on the lines $\Re(s)= \pm \frac{\pi}{2}$, but it is not bounded in the strip $-\frac{\pi}{2}<\Re(s)<\frac{\pi}{2}$.
2. Show that the measure on \mathcal{H} given by $\frac{d x d y}{y^{2}}$ is invariant under the action of the modular group G. Compute the volume of $G \backslash \mathcal{H}$ with respect to this measure.
3. The Peterson inner product on the space of cusp forms of weight $2 k$ is given by

$$
\langle f, g\rangle=\int_{G \backslash \mathcal{H}} f(z) \overline{g(z)} y^{2 k} \frac{d x d y}{y^{2}} .
$$

Show that $\langle T(n) f, g\rangle=\langle f, T(n) g\rangle$ for any integer $n \geq 1$ and any $f, g \in M_{k}^{\circ}$, i.e. $T(n)$ is self-adjoint with respect to the Peterson inner product.
4. The function $\eta: \mathcal{H} \rightarrow \mathbb{C}, \eta(z)=q^{1 / 24} \prod_{n=1}^{\infty}\left(1-q^{n}\right)$ is known as the Dedekind eta function. Use the Jacobi triple product formula to prove that

$$
\eta(z)=\sum_{n=1}^{\infty} \chi(n) q^{n^{2} / 24}, \text { where } \chi(n)= \begin{cases}1 & \text { if } n \equiv \pm 1(\bmod 12) \\ -1 & \text { if } n \equiv \pm 5(\bmod 12) \\ 0 & \text { otherwise }\end{cases}
$$

Show that χ is the primitive quadratic character $\bmod 12$.
5. Show that if $g=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in \operatorname{PSL}(2, \mathbb{Z})$ and any $z \in \mathcal{H}$ there exists a 24 th root of unity $\epsilon(g)$ such that

$$
\eta\left(\frac{a z+b}{c z+d}\right)=\epsilon(g)(c z+d)^{1 / 2} \eta(z)
$$

Note: There is an ambiguity about the sign in the choice of the square root $(c z+d)^{1 / 2}$. But, because we are only asserting that $\epsilon(g)$ lies in the group of 24 th roots of unity, this is not a problem. Also note that this implies (again!) the modular property for Ramanujan's Δ.

