HOMEWORK 7 - PART II

DUE 11 NOVEMBER 2008

Reading: chapter I in Koblitz's book and chapter II, section 1 in Serre's book.

1. Let F be a field endowed with a non-archimedean norm $\|\|$. The open ball of radius $r \in(0, \infty)$ centered at $a \in F$ is, as usual, $B(a, r)=\{x \in F ;\|x-a\|<r\}$. Prove that any element of this radius is also a center, namely that for any $x \in B(a, r)$ we have $B(a, r)=B(x, r)$. Prove the same thing for the closed ball.
2. Prove that if $a \in \mathbb{Q}, a \neq 0$ and $|a|_{p} \leq 1$ for all primes p, then a is an integer.
3. Prove that $v_{p}\left(\left(p^{n}\right)!\right)=1+p+\cdots+p^{n-1}$ and that $v_{p}\left(\left(a p^{n}\right)!\right)=a\left(1+p+\cdots+p^{n-1}\right)$ if $0 \leq a \leq p-1$.
4. Prove that of x is a nonzero rational number, then $\prod_{p}|x|_{p}=1$ where the product is taken over all primes p and ∞.
5. If $a \in \mathbb{Q}_{p}$ has p-adic expansion $a=\sum_{n \geq-m} a_{n} p^{n}$, what is the p-adic expansion of $-a$?
6. Prove that the p-adic expansion of $a \in \mathbb{Q}_{p}$ has finitely many non-zero terms if and only if a is a positive rational number whose denominator is a power of p.
7. Prove that the p-adic expansion of $a \in \mathbb{Q}_{p}$ has repeating digits from some point on (i.e., $a_{i+r}=a_{i}$ for some r and for all i greater than some N) if and only if $a \in \mathbb{Q}$.
8. Compute the first 6 digits of the p-adic expansion of $\pm \sqrt{-1}$ in \mathbb{Q}_{5} and $\pm \sqrt{-3}$ in \mathbb{Q}_{7}.
9. What is the cardinality of \mathbb{Z}_{p} ? Prove your answer.
10. Find the p-adic expansion of:
(a) 75 in \mathbb{Q}_{2}
(b) $2 / 3$ in \mathbb{Q}_{2}
(c) $-1 / 1000$ in \mathbb{Q}_{5}
(d) $-9 / 16$ in \mathbb{Q}_{7}
(e) $2 / 3$ in \mathbb{Q}_{3}

$$
\text { (f) } \pm 1 / 6 \text { in } \mathbb{Q}_{7} \text { and } \mathbb{Q}_{13}
$$

11. Which of the following 11-adic numbers have square roots in \mathbb{Q}_{11} ? Justify your answer. If the square roots exist, find the first 3 digits in their 11-adic expansion.
(a) ± 7
(b) $1+3 \cdot 11^{3}$
(c) $3 \cdot 11^{-2}+6 \cdot 11^{-1}+3+7 \cdot 11^{2}$
(d) $1 \cdot 11^{7}$
(e) $7-6 \cdot 11^{2}$
