Atiyah’s Connectivity, Morse Theory and Solution Sets

Lecture 4, Miraflores de la Sierra
V School on Geometry, Mechanics and Control

Álvaro Pelayo

Washington University (USA)
Institute for Advanced Study, Princeton (USA)

Partially supported by NSF CAREER Award, Spanish Ministry of Science Grant MTM 2010-21186-C02-01, NSF Postdoctoral Fellowship, Leibniz Fellowship, NSF Grants DMS-0965738 and DMS-0635607 in Geometric Analysis, CSIC and MSRI-Berkeley
Outline of Topics

1. Questions
2. Examples
3. Morse Case
4. Vector Case

Álvaro Pelayo Atiyah’s Connectivity, Morse Theory and Solution Sets
I.1. Question

Solution Set : Toy Example

Consider \mathbb{R}^2 with coordinates (x, y).

Yes: $\{x = -1\} \cup \{x = 1\} \cup \{y = 0\}$.

Álvaro Pelayo

Atiyah’s Connectivity, Morse Theory and Solution Sets
Solution Set: Toy Example

Consider \mathbb{R}^2 with coordinates (x, y). Is the solution set of $(x^2 - 1)y^2 = 0$ connected in \mathbb{R}^2?
Solution Set: Toy Example

Consider \mathbb{R}^2 with coordinates (x, y).

Is the solution set of $(x^2 - 1)y^2 = 0$ connected in \mathbb{R}^2?

Yes: $\{x = -1\} \cup \{x = 1\} \cup \{y = 0\}$
I.1. Question

Solution Set: Toy Example

Consider \mathbb{R}^2 with coordinates (x, y).
Is the solution set of $(x^2 - 1)y^2 = 0$ connected in \mathbb{R}^2?
Yes: $\{x = -1\} \cup \{x = 1\} \cup \{y = 0\}$
1.2. Another Question

Solution Set: Toy Example

Consider \mathbb{R}^2 with coordinates (x, y).
Consider \mathbb{R}^2 with coordinates (x, y).

Is the solution set of $\left(x^2 - 1 \right) \left(y^2 + 1 \right) = 0$ connected?
I.2. Another Question

Solution Set : Toy Example

Consider \mathbb{R}^2 with coordinates (x, y).

Is the solution set of $(x^2 - 1)(y^2 + 1) = 0$ connected?

No: $\{x = -1\} \cup \{x = 1\}$
I.2. Another Question

Solution Set : Toy Example

Consider \mathbb{R}^2 with coordinates (x, y).

Is the solution set of $(x^2 - 1)(y^2 + 1) = 0$ connected?

No: $\{x = -1\} \cup \{x = 1\}$
I.3. Yet Another Question

More Complicated Solution Set

Consider \mathbb{R}^4 with coordinates (x, y, z, t). Is the solution set of

$$
\begin{align*}
x^2 + x^2y^2z − xyz^3 − t &= 0 \\
2x + y − t^3 + xyzt + e^t &= 1 \\
x − (2t + 1)(x − z + 1)^3 &= −1
\end{align*}
$$

connected in \mathbb{R}^4?
I.3. Yet Another Question

More Complicated Solution Set

Consider \mathbb{R}^4 with coordinates (x, y, z, t). Is the solution set of

\[
\begin{align*}
 x^2 + x^2y^2z - xyz^3 - t &= 0 \\
 2x + y - t^3 + xyzt + e^t &= 1 \\
 x - (2t + 1)(x - z + 1)^3 &= -1
\end{align*}
\]

connected in \mathbb{R}^4? At least one solution $(0, 0, 0, 0)$.
Let $X \subset \mathbb{R}^m$ defined by n equations. Is X connected?

Conclusion

- Easier to check if $n = 2$ from a picture
Let $X \subset \mathbb{R}^m$ defined by n equations. Is X connected?

Conclusion

- Easier to check if $n = 2$ from a picture.
- Harder to check if $n = 2$ from equations:

\[
\begin{cases}
 x^2 + e^{x^2y^2} - 1 + \ln(x^2 + 1) &= 1 \\
 x^3 - y^3 &= 3
\end{cases}
\]
I.4. Conclusion

Let $X \subset \mathbb{R}^m$ defined by n equations. Is X connected?

Conclusion

- Easier to check if $n = 2$ from a picture
- Harder to check if $n = 2$ from equations:
 \[
 \begin{cases}
 x^2 + e^{x^2y^2-1} + \ln(x^2 + 1) = 1 \\
 x^3 - y^3 = 3
 \end{cases}
 \]
- If $n \geq 2$ generally extremely difficult to check
Let $X \subset \mathbb{R}^m$ defined by n equations. Is X connected?

Conclusion

- Easier to check if $n = 2$ from a picture
- Harder to check if $n = 2$ from equations:

\[
\begin{align*}
 x^2 + e^{x^2y^2-1} + \ln(x^2 + 1) &= 1 \\
 x^3 - y^3 &= 3
\end{align*}
\]

- If $n \geq 2$ generally extremely difficult to check
- So: we need to develop mathematical tools
1.5. Framework: Two Equivalent Questions

Question A

Consider functions $f_1, \ldots, f_n : M \subseteq \mathbb{R}^m \to \mathbb{R}$ and $\lambda_1, \ldots, \lambda_n \in \mathbb{R}$, where M is a connected manifold. Is the solution set $\mathcal{S} \subseteq \mathbb{R}^m$ of

\[
\begin{align*}
 f_1(x_1, \ldots, x_m) &= \lambda_1 \\
 \vdots \\
 f_n(x_1, \ldots, x_m) &= \lambda_n
\end{align*}
\]

a connected subset of M?
I.5. Framework: Two Equivalent Questions

Question A
Consider functions $f_1, \ldots, f_n : M \subseteq \mathbb{R}^m \rightarrow \mathbb{R}$ and $\lambda_1, \ldots, \lambda_n \in \mathbb{R}$, where M is a connected manifold. Is the solution set $S \subseteq \mathbb{R}^m$ of

$$\begin{cases} f_1 (x_1, \ldots, x_m) = \lambda_1 \\ \vdots \\ f_n (x_1, \ldots, x_m) = \lambda_n \end{cases}$$

a connected subset of M?

Question B (equivalent to A)
Are the fibers of the map $F : M \subseteq \mathbb{R}^m \rightarrow \mathbb{R}^n$

$$F(x_1, \ldots, x_m) := (f_1(x_1, \ldots, x_m), \ldots, f_n(x_1, \ldots, x_m))$$

connected?
1.6. Examples

Scalar-valued function

Are the fibers of \(f : \mathbb{R}^2 \to \mathbb{R} \)

\[
f(x, y) = x^2 + y^2
\]

connected?
1.6. Examples

Scalar-valued function

- Are the fibers of $f : \mathbb{R}^2 \rightarrow \mathbb{R}$

$$f(x, y) = x^2 + y^2$$

connected?

- Yes, all of them, circles centered at the origin of radius $r \geq 0$
1.6. Examples

Scalar-valued function
- Are the fibers of $f : \mathbb{R}^2 \to \mathbb{R}$

 $f(x, y) = x^2 + y^2$

 connected?
 - Yes, all of them, circles centered at the origin of radius $r \geq 0$

Vector-valued functions
- Are the fibers of $f : \mathbb{R}^2 \to \mathbb{R}^2$

 $f(x, y) = (x^2, y)$

 connected?
1.6. Examples

Scalar-valued function

- Are the fibers of \(f : \mathbb{R}^2 \to \mathbb{R} \)

\[
 f(x, y) = x^2 + y^2
\]

connected?
- Yes, all of them, circles centered at the origin of radius \(r \geq 0 \)

Vector-valued functions

- Are the fibers of \(f : \mathbb{R}^2 \to \mathbb{R}^2 \)

\[
 f(x, y) = (x^2, y)
\]

connected?
- Depends:
1.6. Examples

Scalar-valued function
- Are the fibers of \(f : \mathbb{R}^2 \to \mathbb{R} \)
 \[
 f(x, y) = x^2 + y^2
 \]
- Connected?
- **Yes**, all of them, circles centered at the origin of radius \(r \geq 0 \)

Vector-valued functions
- Are the fibers of \(f : \mathbb{R}^2 \to \mathbb{R}^2 \)
 \[
 f(x, y) = (x^2, y)
 \]
- Connected?
- **Depends**: \(f^{-1}(c, c') = \{(\pm \sqrt{c}, c')\} \) connected \(\iff \ c = 0 \)
I.7. Connectivity is a very unstable notion: easy observations

Warnings

- Small perturbations lead to loss/gain of connectivity

![Diagram of connected sets]

- Intersections of connected sets may be disconnected

![Diagram of disconnected set]

- **So**: Methods to detect connectivity must be **subtle**
II.1. Fibers of Scalar-Valued Function

λ

0

-1

$(0, 0, 1)$

$f(x, y, z) = z$

$(0, 0, -1)$

Natural Question: What is the "essential" difference between these examples?

Answer: f having a saddle point!
II.1. Fibers of Scalar-Valued Function

Natural Question

What is the "essential" difference between these examples?
II.1. Fibers of Scalar-Valued Function

Natural Question
What is the "essential" difference between these examples?

Answer: f having a saddle point!
II.2. Fibers of Vector-Valued Function

Let $M = S^2 \times \mathbb{R}^2 \subset \mathbb{R}^5$ with coordinates (x, y, z, u, v). Is the solution set \mathcal{I} of

\[
\begin{align*}
2u^2 + 2v^2 + z &= 1 \\
ux + vy &= 0
\end{align*}
\]

connected?

You're thinking of using "Morse theory" to check this And you are right!

Goal: give "method" to answer connectivity questions of this type

Álvaro Pelayo

Atiyah’s Connectivity, Morse Theory and Solution Sets
II.2. Fibers of Vector-Valued Function

Let $M = S^2 \times \mathbb{R}^2 \subset \mathbb{R}^5$ with coordinates (x, y, z, u, v).

Is the solution set \mathcal{S} of
\[
\begin{align*}
2u^2 + 2v^2 + z &= 1 \\
u x + vy &= 0
\end{align*}
\]
connected?

I.e. is $F^{-1}(1, 0)$ connected, where

$F: S^2 \times \mathbb{R}^2 \to \mathbb{R}^2$, $F(x, y, z, u, v) := (2u^2 + 2v^2 + z, ux + vy)$?
II.2. Fibers of Vector-Valued Function

Let $M = S^2 \times \mathbb{R}^2 \subset \mathbb{R}^5$ with coordinates (x, y, z, u, v).

Is the solution set \mathcal{I} of

$$\begin{cases}
2u^2 + 2v^2 + z = 1 \\
ux + vy = 0
\end{cases}$$

connected?

I.e. is $F^{-1}(1, 0)$ connected, where

$$F: S^2 \times \mathbb{R}^2 \to \mathbb{R}^2, \ F(x, y, z, u, v) := (2u^2 + 2v^2 + z, ux + vy)$$
II.2. Fibers of Vector-Valued Function

Let $M = S^2 \times \mathbb{R}^2 \subset \mathbb{R}^5$ with coordinates (x, y, z, u, v).

Is the solution set \mathcal{S} of \begin{align*} 2u^2 + 2v^2 + z &= 1 \\ ux + vy &= 0 \end{align*} connected?

I.e. is $F^{-1}(1, 0)$ connected, where

$$F: S^2 \times \mathbb{R}^2 \to \mathbb{R}^2, \quad F(x, y, z, u, v) := (2u^2 + 2v^2 + z, ux + vy)$$
II.2. Fibers of Vector-Valued Function

Let \(M = S^2 \times \mathbb{R}^2 \subset \mathbb{R}^5 \) with coordinates \((x, y, z, u, v)\).

Is the solution set \(\mathcal{S} \) of
\[
\begin{cases}
2u^2 + 2v^2 + z &= 1 \\
u x + vy &= 0
\end{cases}
\]
connected?

I.e. is \(F^{-1}(1, 0) \) connected, where
\[
F: S^2 \times \mathbb{R}^2 \to \mathbb{R}^2, \quad F(x, y, z, u, v) := (2u^2 + 2v^2 + z, ux + vy)
\]

You’re thinking of using “Morse theory” to check this
II.2. Fibers of Vector-Valued Function

Let $M = S^2 \times \mathbb{R}^2 \subset \mathbb{R}^5$ with coordinates (x, y, z, u, v).

Is the solution set \mathcal{I} of

$$\begin{align*}
2u^2 + 2v^2 + z &= 1 \\
ux + vy &= 0
\end{align*}$$

connected? I.e. is $F^{-1}(1, 0)$ connected, where

$$F : S^2 \times \mathbb{R}^2 \rightarrow \mathbb{R}^2, \quad F(x, y, z, u, v) := (2u^2 + 2v^2 + z, ux + vy)$$

You’re thinking of using “Morse theory” to check this And you are right! But Morse Theory for which function?
II.2. Fibers of Vector-Valued Function

Let $M = S^2 \times \mathbb{R}^2 \subset \mathbb{R}^5$ with coordinates (x, y, z, u, v).

Is the solution set \mathcal{S} of \begin{align*}
2u^2 + 2v^2 + z &= 1 \\
u x + v y &= 0
\end{align*}
connected?

I.e. is $F^{-1}(1, 0)$ connected, where \[F : S^2 \times \mathbb{R}^2 \to \mathbb{R}^2, \quad F(x, y, z, u, v) := (2u^2 + 2v^2 + z, u x + v y) \, ? \]

You’re thinking of using “Morse theory” to check this

And you are right! But Morse Theory for which function?

Goal: give “method” to answer connectivity questions of this type
II.3. Warning

Vector valued case cannot be deduced naively from scalar-valued: Fibers of the map $F : M \subseteq \mathbb{R}^m \rightarrow \mathbb{R}^n$

$$F(x_1, \ldots, x_m) := \left(f_1(x_1, \ldots, x_m), \ldots, f_n(x_1, \ldots, x_m)\right)$$

are intersections of fibers of f_1, \ldots, f_n
III.1 Scalar Case — Done with Morse-Bott Theory

Figure: Marston Morse
III.2. Morse-Bott Theory

Morse-Bott Function and Index

\[f : M \rightarrow \mathbb{R} \] is Morse-Bott if \(\text{Crit}(f) = \bigcup C_i \) and Hessian is transversally non-degenerate on each \(C_i \).

Theorem (Fiber Connectivity)

Suppose \(f : M \rightarrow \mathbb{R} \) is Morse-Bott. Suppose \(M \) compact or \(f \) proper. Index, co-indexes \(\neq 1 \).

Then \(f \) has connected fibers.
III.2. Morse-Bott Theory

Morse-Bott Function and Index

\(f : M \to \mathbb{R} \) is Morse-Bott if \(\text{Crit}(f) = \bigsqcup C_i \) and Hessian is transversally non-degenerate on each \(C_i \).

\[
\text{Ind}_p(f) = \# \text{ of } < 0 \text{ eigenvalues of Hessian}, \quad \text{Coind}_p(f) = \text{Ind}_p(-f)
\]
III.2. Morse-Bott Theory

Morse-Bott Function and Index

\(f: M \to \mathbb{R} \) is Morse-Bott if \(\text{Crit}(f) = \bigsqcup C_i \) and Hessian is transversally non-degenerate on each \(C_i \).

\(\text{Ind}_p(f) = \# \) of \(< 0 \) eigenvalues of Hessian, \(\text{Coind}_p(f) = \text{Ind}_p(-f) \)
III.2. Morse-Bott Theory

Morse-Bott Function and Index

\(f : M \rightarrow \mathbb{R} \) is Morse-Bott if \(\text{Crit}(f) = \bigsqcup C_i \) and Hessian is transversally non-degenerate on each \(C_i \).

\(\text{Ind}_p(f) = \# \) of \(< 0 \) eigenvalues of Hessian, \(\text{Coind}_p(f) = \text{Ind}_p(-f) \)

Theorem (Fiber Connectivity)

Suppose \(f : M \rightarrow \mathbb{R} \) Morse-Bott.
Suppose \(M \) compact or \(f \) proper. Index, co-indexes \(\neq 1 \).

Álvaro Pelayo
Atiyah’s Connectivity, Morse Theory and Solution Sets
III.2. Morse-Bott Theory

Morse-Bott Function and Index

\(f : M \rightarrow \mathbb{R} \) is Morse-Bott if \(\text{Crit}(f) = \bigsqcup C_i \) and Hessian is transversally non-degenerate on each \(C_i \).

\[\text{Ind}_p(f) = \# \text{ of } < 0 \text{ eigenvalues of Hessian}, \quad \text{Coind}_p(f) = \text{Ind}_p(-f) \]

Theorem (Fiber Connectivity)

Suppose \(f : M \rightarrow \mathbb{R} \) Morse-Bott.

Suppose \(M \) compact or \(f \) proper. Index, co-indexes \(\neq 1 \).

Then \(f \) has connected fibers.
III.2. Morse-Bott Theory

Morse-Bott Function and Index

\(f : M \to \mathbb{R} \) is Morse-Bott if \(\text{Crit}(f) = \bigcup C_i \) and Hessian is transversally non-degenerate on each \(C_i \).

\[\text{Ind}_p(f) = \# \text{ of } < 0 \text{ eigenvalues of Hessian}, \quad \text{Coind}_p(f) = \text{Ind}_p(-f) \]

Theorem (Fiber Connectivity)

Suppose \(f : M \to \mathbb{R} \) Morse-Bott.

Suppose \(M \) compact or \(f \) proper. Index, co-indexes \(\neq 1 \).

Then \(f \) has connected fibers.
III.3. Idea of Proof of Fiber Connectivity (Compact Case)

Call \mathcal{C}_k set of critical points of index k

- **Compactness** \Rightarrow flows converge, stable and unstable manifolds $W^s(\mathcal{C}_k)$, isolated critical values $c_0 < \ldots < c_n$...
III.3. Idea of Proof of Fiber Connectivity (Compact Case)

Call \mathcal{C}_k set of critical points of index k

- **Compactness** \Rightarrow flows converge, stable and unstable manifolds $W^s(\mathcal{C}_k)$, isolated critical values $c_0 < \ldots < c_n$...

- **Index** $\neq 1 \Rightarrow$ codim$(M \setminus W^s(\mathcal{C}_0)) \geq 2 \Rightarrow W^s(\mathcal{C}_0)$ connected $\Rightarrow \mathcal{C}_0 = f^{-1}(c_0)$ connected.
III.3. Idea of Proof of Fiber Connectivity (Compact Case)

Call \mathcal{C}_k set of critical points of index k

- **Compactness** \Rightarrow flows converge, stable and unstable manifolds $W^s(\mathcal{C}_k)$, isolated critical values $c_0 < \ldots < c_n \ldots$

- **Index** $\neq 1 \Rightarrow \text{codim}(M \setminus W^s(\mathcal{C}_0)) \geq 2 \Rightarrow W^s(\mathcal{C}_0)$ connected $\Rightarrow \mathcal{C}_0 = f^{-1}(c_0)$ connected.

- Let $c_0 < \lambda < c_1$ and $x_0, x_1 \in f^{-1}(\lambda)$. Push down to \mathcal{C}_0 by ∇f, connect in \mathcal{C}_0, and get path $\gamma: [0, 1] \to M$.

III.3. Idea of Proof of Fiber Connectivity (Compact Case)

Call C_k set of critical points of index k

- **Compactness** \Rightarrow flows converge, stable and unstable manifolds $W^s(C_k)$, isolated critical values $c_0 < \ldots < c_n$...

- **Index** $\neq 1 \Rightarrow \text{codim}(M \setminus W^s(C_0)) \geq 2 \Rightarrow W^s(C_0)$ connected $\Rightarrow C_0 = f^{-1}(c_0)$ connected.

- Let $c_0 < \lambda < c_1$ and $x_0, x_1 \in f^{-1}(\lambda)$. Push down to C_0 by ∇f, connect in C_0, and get path $\gamma: [0, 1] \to M$.

- Push γ to the inside of $f^{-1}(\lambda)$ by flowing backwards.
III.3. Idea of Proof of Fiber Connectivity (Compact Case)

Call \(C_k \) set of critical points of index \(k \)

- **Compactness** \(\Rightarrow \) flows converge, stable and unstable manifolds \(W^s(C_k) \), isolated critical values \(c_0 < \ldots < c_n \) ...

- **Index** \(\neq 1 \Rightarrow \) \(\text{codim}(M \setminus W^s(C_0)) \geq 2 \Rightarrow W^s(C_0) \) connected \(\Rightarrow C_0 = f^{-1}(c_0) \) connected.

- Let \(c_0 < \lambda < c_1 \) and \(x_0, x_1 \in f^{-1}(\lambda) \). Push down to \(C_0 \) by \(\nabla f \), connect in \(C_0 \), and get path \(\gamma: [0, 1] \to M \).

- Push \(\gamma \) to the inside of \(f^{-1}(\lambda) \) by flowing backwards.

- Connectivity of \(f^{-1}(\lambda), \lambda \geq c_1 \), uses similar arguments.
IV.1. Results for Vector-Valued Maps

Figure: Michael Atiyah (London 1929 –)
IV.1. Results for Vector-Valued Maps

Figure: Michael Atiyah (London 1929 –)

Theorem (Atiyah’s Connectivity Theorem, 1982)

Suppose \((M, \omega)\) compact, connected, symplectic, \(m\)-dimensional.
IV.1. Results for Vector-Valued Maps

Theorem (Atiyah’s Connectivity Theorem, 1982)

Suppose \((M, \omega)\) compact, connected, symplectic, \(m\)-dimensional. For \(f_1, \ldots, f_n : M \to \mathbb{R}\), let \(\varphi_i\) flow of \(\mathcal{H}_f\), where \(\omega(\mathcal{H}_f, \cdot) = -df_i\).
IV.1. Results for Vector-Valued Maps

Figure: Michael Atiyah (London 1929 –)

Theorem (Atiyah’s Connectivity Theorem, 1982)

Suppose \((M, \omega)\) compact, connected, symplectic, \(m\)-dimensional. For \(f_1, \ldots, f_n: M \to \mathbb{R}\), let \(\varphi_i\) flow of \(\mathcal{H}_{f_i}\), where \(\omega(\mathcal{H}_{f_i}, \cdot) = -df_i\).
IV.1. Results for Vector-Valued Maps

Theorem (Atiyah’s Connectivity Theorem, 1982)

Suppose \((M, \omega)\) compact, connected, symplectic, \(m\)-dimensional. For \(f_1, \ldots, f_n : M \to \mathbb{R}\), let \(\varphi_i\) flow of \(\mathcal{H}_{f_i}\), where \(\omega(\mathcal{H}_{f_i}, \cdot) = -df_i\). Suppose that \(p \mapsto \varphi_1 \circ \ldots \circ \varphi_n(p) \in M\) is a \(\mathbb{T}^n\)-action on \(M\).
IV.1. Results for Vector-Valued Maps

Theorem (Atiyah’s Connectivity Theorem, 1982)

Suppose \((M, \omega)\) compact, connected, symplectic, \(m\)-dimensional. For \(f_1, \ldots, f_n: M \to \mathbb{R}\), let \(\varphi_i\) flow of \(\mathcal{H}_{f_i}\), where \(\omega(\mathcal{H}_{f_i}, \cdot) = -df_i\).

Suppose that \(p \mapsto \varphi_1 \circ \ldots \circ \varphi_n(p) \in M\) is a \(\mathbb{T}^n\)-action on \(M\).

Then the fibers of \(F := (f_1, \ldots, f_n): M \to \mathbb{R}^n\) are connected.
IV.2. Sketch of Proof of Atiyah’s Connectivity Theorem

Statement to prove: “Fibers of F are connected, for any m”
IV.2. Sketch of Proof of Atiyah’s Connectivity Theorem

Statement to prove: “Fibers of F are connected, for any m”

Step 1 (T. Frankel, Ann. Math. 1959)

f_1 is a Morse-Bott function with indexes and coindexes $\neq 1$
IV.2. Sketch of Proof of Atiyah’s Connectivity Theorem

Statement to prove: “Fibers of F are connected, for any m”

Step 1 (T. Frankel, Ann. Math. 1959)

f_1 is a Morse-Bott function with indexes and coindexes $\neq 1$

Step 2 (A mentioned result)

M_1 compact and $f_1 : M \to \mathbb{R}$ Morse-Bott $\Rightarrow f_1$ has connected fibers
IV.2. Sketch of Proof of Atiyah’s Connectivity Theorem

Statement to prove: “Fibers of F are connected, for any m”

Step 1 (T. Frankel, Ann. Math. 1959)
f_1 is a Morse-Bott function with indexes and coindexes $\neq 1$

Step 2 (A mentioned result)
M_1 compact and $f_1 : M \to \mathbb{R}$ Morse-Bott $\Rightarrow f_1$ has connected fibers

Step 3
Induction argument, some similarities with Step 1
IV.3. Vector-valued “Integrable Maps"

<table>
<thead>
<tr>
<th>Integrable Systems</th>
</tr>
</thead>
<tbody>
<tr>
<td>A map (F = (f_1, \ldots, f_n): (M, \omega) \to \mathbb{R}^n) is an integrable system if</td>
</tr>
<tr>
<td>- (\mathcal{H}{f_1}, \ldots, \mathcal{H}{f_n}) are point-wise almost everywhere l.i.</td>
</tr>
<tr>
<td>- (\forall i, j, \ f_i \text{ invariant along flow of } \mathcal{H}_{f_j})</td>
</tr>
</tbody>
</table>

(Recall: \(\mathcal{H}_{f_i} \) defined by \(\omega(\mathcal{H}_{f_i}, \cdot) = -df_i \))
IV.3. Vector-valued "Integrable Maps"

Integrable Systems

A map \(F = (f_1, \ldots, f_n) : (M, \omega) \to \mathbb{R}^n \) is an integrable system if

- \(\mathcal{H}_{f_1}, \ldots, \mathcal{H}_{f_n} \) are point-wise almost everywhere l.i.
- \(\forall \ i, j, \ f_i \) invariant along flow of \(\mathcal{H}_{f_j} \)

(Recall: \(\mathcal{H}_{f_i} \) defined by \(\omega(\mathcal{H}_{f_i}, \cdot) = -df_i \))

Connected Components of Fibers

- regular fiber
- focus-focus fiber
- transversally elliptic fiber

elliptic point

\(\mathcal{H}_H = 0 \)

\(\mathcal{H}_J = \mathcal{H}_H = 0 \)
IV.4. A Recent Result for "Integrable" Vector Valued Maps

Theorem (P.-Ratiu-V˜u Ngo.c, Pending Revision)

Suppose:

- M compact, connected
- $F = (f_1, f_2): M \rightarrow \mathbb{R}^2$ integrable, non-hyperbolic
- regular bifurcation Σ_{reg} may be deformed smoothly so it does not have horizontal tangencies.

Then F has connected fibers.

Proof "should be" extendable to \mathbb{R}^n.
IV.4. A Recent Result for "Integrable" Vector Valued Maps

Theorem (P.-Ratiu-Vũ Ngọc, Pending Revision)

Suppose:
- M compact, connected
- $F = (f_1, f_2): M \to \mathbb{R}^2$ integrable, non-hyperbolic

Then F has connected fibers.

Proof "should be" extendable to \mathbb{R}^n
IV.4. A Recent Result for "Integrable" Vector Valued Maps

Theorem (P.-Ratiu-Vũ Ngọc, Pending Revision)

Suppose:

- M compact, connected
- $F = (f_1, f_2): M \to \mathbb{R}^2$ integrable, non-hyperbolic
- regular bifurcation Σ_{reg} may be deformed smoothly so it does not have horizontal tangencies.
IV.4. A Recent Result for "Integrable" Vector Valued Maps

Theorem (P.-Ratiu-Vũ Ngọc, Pending Revision)

Suppose:

- M compact, connected
- $F = (f_1, f_2): M \to \mathbb{R}^2$ integrable, non-hyperbolic
- regular bifurcation Σ_{reg} may be deformed smoothly so it does not have horizontal tangencies.

Then F has connected fibers.
IV.4. A Recent Result for "Integrable" Vector Valued Maps

Theorem (P.-Ratiu-Vũ Ngọc, Pending Revision)

Suppose:

- M compact, connected
- $F = (f_1, f_2): M \to \mathbb{R}^2$ integrable, non-hyperbolic
- regular bifurcation Σ_{reg} may be deformed smoothly so it does not have horizontal tangencies.

Then F has connected fibers.

Proof “should be” extendable to \mathbb{R}^n
The fibers of

\[F: S^2 \times \mathbb{R}^2 \to \mathbb{R}^2, \ F(x,y,z,u,v) := (2u^2 + 2v^2 + z, ux + vy) \]

are, by the previous Theorem, connected.
Applications: Topology

Connectivity: probably most basic *topological* question to ask about solution set (after whether \(= \emptyset \)).
IV.6. Why should we care?

Applications: Topology

Connectivity: probably most basic *topological* question to ask about solution set (after whether $= \emptyset$).

Applications: Mirror Symmetry, Symplectic Topology

- Integrable system $F: M \to \mathbb{R}^n$ is Lagrangian fibration (LF).
Applications: Topology

Connectivity: probably most basic topological question to ask about solution set (after whether $= \emptyset$).

Applications: Mirror Symmetry, Symplectic Topology

- Integrable system $F: M \to \mathbb{R}^n$ is Lagrangian fibration (LF).
- LF key in Mirror Symmetry and Symplectic Topology.
IV.6. Why should we care?

Applications: Topology

Connectivity: probably most basic *topological* question to ask about solution set (after whether $= \emptyset$).

Applications: Mirror Symmetry, Symplectic Topology

- Integrable system $F: M \rightarrow \mathbb{R}^n$ is Lagrangian fibration (LF).

- LF key in **Mirror Symmetry** and **Symplectic Topology**.

- Fiber connectivity (usually) assumed in theorems about LF.
IV.6. Why should we care?

Applications: Topology

Connectivity: probably most basic *topological* question to ask about solution set (after whether $\neq \emptyset$).

Applications: Mirror Symmetry, Symplectic Topology

- Integrable system $F: M \to \mathbb{R}^n$ is Lagrangian fibration (LF).
- LF key in *Mirror Symmetry* and *Symplectic Topology*.
- Fiber connectivity (usually) assumed in theorems about LF.
- We give method to test *whether* a theorem applies to a LF.
IV.7. Idea of Proof of (Preliminary) Theorem

Step 1: Constructing proper Morse-Bott function

Build $\tilde{f}_1 := g(f_1, f_2): M \to \mathbb{R}$ proper, Morse-Bott, index/coindex $\neq 1$

\Downarrow

\tilde{f}_1 has connected fibers.
IV.7. Idea of Proof of (Preliminary) Theorem

Step 1: Constructing proper Morse-Bott function

Build \(\tilde{f}_1 := g(f_1, f_2) : M \to \mathbb{R} \) proper, Morse-Bott, index/coindex \(\neq 1 \)

\[
\downarrow
\]

\(\tilde{f}_1 \) has connected fibers.

Step 2: from component connectivity to global connectivity

Use fiber connectivity of \(\tilde{f}_1 \) + Integrable systems

\[
\downarrow
\]

fibers of \(F \) are connected
Lecture 4 Summary

- Solution sets \iff fibers of maps
Lecture 4 Summary

- Solution sets \iff fibers of maps
- Morse-Bott functions, index, proper maps
Lecture 4 Summary

- Solution sets \iff fibers of maps
- Morse-Bott functions, index, proper maps
- Atiyah’s connectivity theorem

Lecture 4 References

- D. McDuff and D. Salamon: *Introduction to Symplectic Topology* (Chapter 5), Oxford University Press
Summary and References for Lecture 4

Lecture 4 Summary

- Solution sets \iff fibers of maps
- Morse-Bott functions, index, proper maps
- Atiyah’s connectivity theorem
- Connectivity for integrable systems

References:
- J. Milnor: Morse theory
 Princeton University Press 1963
- R. Bott: Morse theory indomitable
 Publ. Math. de L’IHES 68 99-114
- Á. Pelayo, T.S. Ratiu and S. V˜u Ngo.c: Singular Lagrangian fibrations of integrable systems
 Preprint.
- D. McDuff and D. Salamon: Introduction to Symplectic Topology (Chapter 5)
 Oxford University Press
Lecture 4 Summary

- Solution sets \iff fibers of maps
- Morse-Bott functions, index, proper maps
- Atiyah’s connectivity theorem
- Connectivity for integrable systems
Lecture 4 Summary

- Solution sets ⇐⇒ fibers of maps
- Morse-Bott functions, index, proper maps
- Atiyah’s connectivity theorem
- Connectivity for integrable systems

Lecture 4 References

- J. Milnor: Morse theory
 Princeton University Press 1963
- R. Bott: Morse theory indomitable
 Publ. Math. de L’IHES 68 99-114
- Á. Pelayo, T.S. Ratiu and S. Vũ Ngọc: Singular Lagrangian fibrations of integrable systems
 Preprint.
- D. McDuff and D. Salamon: Introduction to Symplectic Topology (Chapter 5)
 Oxford University Press
The end. THANK YOU!