(1) Since f is continuous on $[a, b]$, it is uniformly continuous. Let $\varepsilon > 0$ and let $\delta > 0$ be such that for all $x, y \in [a, b]$, $|x - y| < \delta \implies |f(x) - f(y)| < \frac{\varepsilon}{\alpha(b) - \alpha(a)}$. Let $P = \{x_0, \ldots, x_n\}$ be a partition of $[a, b]$ such that $\Delta x_i < \delta$ for all i. Then $M_i - m_i = \sup_{x, y \in [x_{i-1}, x_i]} |f(x) - f(y)| \leq \frac{\varepsilon}{\alpha(b) - \alpha(a)}$ for each i, so we have that $U(P, f, \alpha) - L(P, f, \alpha) = \sum_{i=1}^{n} (M_i - m_i) \Delta \alpha(x_i) \leq \frac{\varepsilon}{\alpha(b) - \alpha(a)} \sum_{i=1}^{n} \Delta \alpha(x_i) = \varepsilon$, so $f \in \mathcal{R}(\alpha)$.

(2) See the solution for Problem (B) on HW 6. Use $g(x) = x^2$ and compute that $\int_{a}^{b} g(x)dx = \frac{b^3 - a^3}{3}$.

(3)(a) By assumption, $\{x \in [a, b] : f(x) \geq 1\}$ is finite. Let $M = \max\{f(x_1), \ldots, f(x_n), 1\}$ where $\{x_1, \ldots, x_n\} = \{x \in [a, b] : f(x) \geq 1\}$. Then $f(x) \leq M$ for all x, and $f(x) \geq 0$ for all x by assumption, so f is bounded.

(3)(b) Let $\varepsilon > 0$, and let $\{x \in [a, b] : f(x) \geq \varepsilon\} = \{c_1, \ldots, c_k\}$. For $1 \leq i \leq k$, let I_i be an open interval containing c_i with length less than ε/k. By shrinking the I_i's if necessary, we may assume they are disjoint (for notational convenience). Let $P = \{x_0, \ldots, x_n\}$ be a partition of $[a, b]$ made up of a, b, and all the endpoints of the I_i's. Define $A = \{i \in \{1, \ldots, n\} : \exists! m \leq k \text{ such that } c_m \in [x_{i-1}, x_i]\}$; that is, A keeps track of the “bad” intervals in P. Then we have that

$$U(P, f) - L(P, f) = \sum_{i=1}^{n} (M_i - m_i) \Delta x_i$$

$$= \sum_{i \in A} (M_i - m_i) \Delta x_i + \sum_{i \not\in A} (M_i - m_i) \Delta x_i$$

$$\leq M \sum_{i \in A} \frac{\varepsilon}{k} + 2\varepsilon \sum_{i \not\in A} \Delta x_i$$

$$= M \frac{\varepsilon}{k} + 2\varepsilon (b - a)$$

(1)

where (1) follows because $|A| = k$, and for $i \in A$, $\Delta x_i < \varepsilon/k$, and $M_i - m_i \leq M$ always holds (where M is the bound for f from (a)) because $M_i \leq M$ and $m_i \geq 0$. If $i \not\in A$, then $f(x) \leq \varepsilon$, so $M_i - m_i \leq 2\varepsilon$ by the triangle inequality. Since M and $b - a$ do not depend on ε, this shows that f is integrable.

(3)(c) Proof 1:
By the same reasoning as in (b), \(U(P, f) = \sum_{i \in A} M_i \Delta x_i + \sum_{i \notin A} M_i \Delta x_i \leq M \sum_{i \in A} \frac{\epsilon}{n} + \epsilon \sum_{i \notin A} \Delta x_i = M \epsilon + \epsilon (b - a) \). Since this works for every \(\epsilon \), this implies that \(\int_a^b f(x) \, dx \leq 0 \). Since \(f(x) \geq 0 \) for all \(x \), \(L(P, f) \geq 0 \) for all \(P \), and so \(\int_a^b f(x) \, dx \geq 0 \). Putting these together implies that \(\int_a^b f(x) \, dx = 0 \).

Proof 2: This proof shows a more general type of argument that can be quite useful.

Observe that \(\{ x \in [a, b] : f(x) > 0 \} = \bigcup_{n \in \mathbb{N}} \{ x \in [a, b] : f(x) > \frac{1}{n} \} \) by the archimedian principle. By assumption, each \(\{ x \in [a, b] : f(x) > \frac{1}{n} \} \) is finite, so this means that \(\{ x \in [a, b] : f(x) > 0 \} \) is countable. Since \(f \geq 0 \) by assumption, this means that \(\{ x \in [a, b] : f(x) = 0 \} = \{ x \in [a, b] : f(x) > 0 \}^c \) must be dense in \([a, b]\). (To see this: suppose for contradiction that it is not dense. Then there exists some open set \((c, d)\) in \([a, b]\) such that \((c, d) \cap \{ x \in [a, b] : f(x) = 0 \} = \emptyset\), i.e. \((c, d) \subseteq \{ x \in [a, b] : f(x) > 0 \}\), so \(\{ x \in [a, b] : f(x) > 0 \} \) is uncountable.)

This means that every interval in \([a, b]\) contains a point where \(f \) is zero, so \(L(P, f) = 0 \) for every partition \(P \). Since we know \(f \) is integrable by (b), this implies that \(\int_a^b f(x) \, dx = \sup_P L(P, f) = 0 \).

(4) We need to show that for all \(\epsilon > 0 \), there exists \(N \in \mathbb{N} \) such that for all \(n \geq N \) and all \(x \in [0, 1] \), \(|f_n(x) - f(x)| < \epsilon \).

First, notice that since \(f \) is continuous on \([0, 1]\), a compact set, it is uniformly continuous. Let \(\epsilon > 0 \) and let \(\delta > 0 \) be such that for all \(x, y \in [0, 1] \), \(|x - y| < \delta \implies |f(x) - f(y)| < \epsilon \).

By definition of \(f_n \), for any \(x \in [0, 1] \), \(|f_n(x) - f(x)| = |f\left(\frac{nx}{n+1}\right) - f(x)| \). Observe that \(\left| \frac{nx}{n+1} - x \right| = \left| \frac{x}{n+1} \right| \leq \frac{1}{n+1} \). Choose \(N \in \mathbb{N} \) such that \(\frac{1}{N+1} < \delta \). Then for all \(n \geq N \) and all \(x \in [0, 1] \), \(\frac{nx}{n+1} - x \) < \(\delta \), so \(|f_n(x) - f(x)| < \epsilon \) by choice of \(\delta \).