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Abstract. We show that pair correlation function for the spectrum of
a flat 2-dimensional torus satisfying an explicit Diophantine condition
agrees with those of a Poisson process with a polynomial error rate.

The proof is based on a quantitative equidistribution theorem and
tools from geometry of numbers.
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1. Introduction

Let ∆ ⊂ R2 be a lattice. The eigenvalues of the Laplacian of the corre-
sponding flat torus M = R2/∆ are the values of the quadratic form

(1.1) BM(x, y) = 4π2 ∥xv1 + yv2∥2

at integer points, where {v1, v2} is a basis for the dual lattice ∆∗.
Let

0 = λ0 < λ1 ≤ λ2 · · ·
be the corresponding eigenvalues counted with multiplicity. By the Weyl’s
law we have

#{j : λj ≤ T} ∼ vol(M)
4π T.
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The set of eigenvalues has a clear symmetry; let us write j ∼ k if λj = BM(u)
and λk = BM(±u). Let α < β, and define the pair correlation function

RM(α, β, T ) =
#{(j, k) : j ≁ k, λj , λk ≤ T, α ≤ λj − λk ≤ β}

T

The following was proved by Eskin, Margulis, and Mozes [EMM05].

1.1. Theorem ([EMM05], Theorem 1.7). Let M be a two dimensional flat
torus, and let

BM(x, y) = ax2 + 2bxy + cy2

be the associated quadratic form giving the Laplacian spectrum of M, nor-
malized so that ac − b2 = 1. Suppose there exist A ≥ 1 such that for all
(p1, p2, q) ∈ Z3 with q ≥ 2, we have

(1.2)
∣∣b
a − p1

q

∣∣+ ∣∣ c
a −

p2
q

∣∣ > q−A.

Then for any interval [α, β] with 0 /∈ [α, β], we have

(1.3) lim
T→∞

RM(α, β, T ) = π2(β − α).

Prior to [EMM05], Sarnak [Sar97] showed that (1.3) holds on a set of
full measure in the space of flat tori. The case of inhomogeneous forms,
which correspond to eigenvalues of quasi-periodic eigenfunctions, was also
studied by Marklof [Mar03, Mar02], and by Margulis and the second named
author [MM11]. More recently, Blomer, Bourgain, Radziwill, and Rudnick
[BBRlR17] studied consecutive spacing for certain families of rectangular
tori, i.e., b = 0. We also refer to the work of Strömbergsson and Vishe [SV20]
where an effective version of [Mar03] is obtained.

In this paper, we prove a polynomially effective version of Theorem 1.1,
i.e., we provide a polynomial error term for RM(α, β, T ).

1.2. Theorem. Let M be a two dimensional flat torus,

BM(x, y) = ax2 + 2bxy + cy2

the associated quadratic form giving the Laplacian spectrum of M normalized
so that ac − b2 = 1, and let A ≥ 103. Then there are absolute constants δ0
and N , some A′ depending on A, and C and T0 depending on A, a, b, and
c, and for every 0 < δ ≤ δ0, a κ = κ(δ, A) so that the following holds.

Let T ≥ T0, assume that for all (p1, p2, q) ∈ Z3 with T δ/A′
< q < T δ we

have

(1.4)
∣∣b
a − p1

q

∣∣+ ∣∣ c
a −

p2
q

∣∣ > q−A.

Then if ∣∣RM(α, β, T )− π2(β − α)
∣∣ > C(1 + |α|+ |β|)NT−κ,

then there are two primitive vectors u1, u2 ∈ Z2 so that

(1.5) ∥u1∥ , ∥u2∥ ≤ T δ/A and |BM(u1, u2)| ≤ T−1+δ
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and moreover

RM(α, β, T )− π2(β − α) =
MT (u1, u2)

T
+O

(
(1 + |α|+ |β|)NT−κ

)
with

MT (u1, u2) = #

(ℓ1, ℓ2) ∈ 1
2Z

2 :
ℓ1u1 ± ℓ2u2 ∈ Z2,
BM(ℓ1u1 ± ℓ2u2) ≤ T,
4BM(u1, u2)ℓ1ℓ2 ∈ [α, β]

 .

Note that our result does not require the assumption that 0 /∈ [α, β] (a
restriction that appears in the work of Eskin, Margulis and Mozes, and is
needed in order for Theorem 1.1 to hold). The proof of Theorem 1.2 is
effective, and for all of the above implicit constants, one can give explicit
expressions if desired.

Remark. Let us now elaborate on the term MT (u1, u2) in the statement of
Theorem 1.2: Let u1, u2 ∈ Z2 be two primitive vectors satisfying

0 < ∥ui∥ ≤ T δ/A and |BM(u1, u2)| ≤ T−1+δ.

Then for all (ℓ1, ℓ2) ∈ 1
2Z

2, we have

BM(ℓ1u1 + ℓ2u2)−BM(ℓ1u1 − ℓ2u2) = 4BM(u1, u2)ℓ1ℓ2.

In particular, if T−1−δ ≤ |BM(u1, u2)| ≤ T−1+δ, then there would be ≫
T 1−10δ pairs of integer ℓ1, ℓ2 of size≪ T

1
2
(1−δ) (so that BM(ℓ1u1+ℓ2u2) ≤ T ),

such that
ℓ1ℓ2 ∈ [ α

4BM(u1,u2)
, α
4BM(u1,u2)

]

as the last interval is of length ≫ T 1−δ. All such pairs contribute to

MT (u1, u2), making MT (u1,u2)
T ≫ T−10δ, which is bigger than any fixed poly-

nomial error term. Moreover, even if (1.4) holds, such pairs u1, u2 ∈ Z2 can
definitely exist.

If (1.4) holds, up to changing the order such a pair u1, u2 is unique —
see Lemma 2.5 — hence there is no need for additional error terms. The
subspaces of R4 spanned by pairs (u1, u2) as above are called exceptional.
In Section 6 we introduce a Margulis function that accounts for the all
contributions towards pairs RM out of exceptional spaces and show that
exceptional subspaces are the only source of large error terms.

We now state a corollary of Theorem 1.2. A rectangular torus has extra
multiplicities in the spectrum built in, so to accommodate that we consider
the modified pair correlation function

R′
M(α, β, T ) =

#{(j, k) : λj ̸= λk < T, α ≤ λj − λk ≤ β}
T

.

1.3. Corollary. Let M be a two dimensional flat torus, and let

BM(x, y) = ax2 + 2bxy + cy2

be normalized so that ac− b2 = 1.
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(1) Suppose there exist A ≥ 1 and q > 0 such that for all (m,n, k) ∈ Z3\{0},

(1.6) |am+ bn+ ck| > q ∥(m,n, k)∥−A .

Then ∣∣RM(α, β, T )− π2(β − α)
∣∣ ≤ C(1 + |α|+ |β|)NT−κ.

(2) Let M be a rectangular torus, i.e., b = 0. Assume there exist A ≥ 1 and
q > 0 such that for all (m,n) ∈ Z2 \ {0} we have∣∣a2m+ n

∣∣ > q ∥(m,n)∥−A .

Then ∣∣R′
M(α, β, T )− π2(β − α)

∣∣ ≤ C(1 + |α|+ |β|)NT−κ.

Where N is absolute, κ depends on A, and C depends on a, b, c, A, and q.

Indeed, under (1.6), pairs u1, u2 of primitive integer vectors as in Theo-
rem 1.2 do not exist, and if M is a rectangular torus the unique (up to order)
pair of primitive vectors is given by e1 = (1, 0), e2 = (0, 1), for which the
contribution of MT (e1, e2) can be accounted for by looking at R′

M(α, β, T )
instead of RM(α, β, T ).

Note that in part (2), though the modified pair correlation function
R′

M(α, β, T ) avoids counting zero values, the interval [α, β] is still allowed
to contain 0. This is slightly stronger than assuming 0 /∈ [α, β], as Corol-
lary 1.3.(2) in particular gives effective bounds on the number of extremely
close eigenvalues.

The general strategy of the proof of Theorem 1.2 is similar to [EMM98]
and [EMM05]. That is, we deduce the above theorems from an equidis-
tribution theorem for certain unbounded functions in homogeneous spaces.
Unlike [EMM98] and [EMM05], where the analysis takes place in the space
of unimodular lattices in R4, the homogeneous space in question here is

X = SL2(R)× SL2(R)/Γ′

where Γ′ is a finite index subgroup of SL2(Z)× SL2(Z).
This reduction is carried out in §3. The lower bound estimate will be

proved using the following effective equidistribution theorem that relies
on [LMW22, Thm. 1.1]:

Let G = SL2(R) × SL2(R). For all h ∈ SL2(R), we let ∆(h) denote the
element (h, h) ∈ G, and let H = ∆(SL2(R)). For every t ∈ R and every
θ ∈ [0, 2π], let

at =

(
et 0
0 e−t

)
and rθ =

(
cos θ − sin θ
sin θ cos θ

)
.

1.4. Theorem. Assume Γ is an arithmetic lattice in G. For every x0 ∈
X = G/Γ, and large enough R (depending explicitly on X and the injectivity
radius at x0), for any et ≥ RD, at least one of the following holds.
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(1) For every φ ∈ C∞
c (X) and 2π-periodic smooth function ξ on R, we have∣∣∣∫ 2π

0
φ(∆(atrθ)x0)ξ(θ) dθ −

∫ 2π

0
ξ(θ) dθ

∫
φdmX

∣∣∣ ≤ S(φ)S(ξ)R−κ0

where we use S(·) to denote an appropriate Sobolev norm on both X and
R, respectively.

(2) There exists x ∈ X such that Hx is periodic with vol(Hx) ≤ R, and

dX(x, x0) ≤ RDtDe−t.

The constants D and κ0 are positive and depend on X but not on x0, and
dX is a fixed metric on X.

This is a variant of [LMW22, Thm. 1.1]. Indeed, instead of expanding an
orbit segment of the unipotent flow ∆(us) where

us =

(
1 s
0 1

)
,

here we expand an orbit of the compact group {∆(rθ)}. The deduction of
Theorem 1.4 from [LMW22, Thm. 1.1] is given in §5 using a fairly simple
and standard argument.

To prove the upper bound estimate, in addition to Theorem 1.4, we also
need to analyze Margulis functions à la [EMM98, EMM05]; our analysis
simplifies substantially thanks to simpler structure of the cusp in SL2(R)×
SL2(R)/Γ′ compared to that in SL4(R)/SL4(Z). This is the content of §6.
Indeed Proposition 6.1 reduces the analysis to special subspaces, see Defi-
nition 2.3, that are closely connected to the pairs of almost BM-orthogonal
vectors discussed above. We study these special subspaces using the elemen-
tary Lemma 2.2; in particular, using this lemma we establish Lemma 2.4,
which shows that under (1.4) there are at most two special subspaces. Fi-
nally, Lemma 2.6 shows that even for special subspaces, only the range
asserted in (1.5) can produce enough solutions to affect the error term.

Acknowledgment. We would like to thank Jens Marklof for helpful con-
versations. We also thank the anonymous referee for valuable comments.
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2. Notation and preliminaries

In this paper

G =

{(
g1 0
0 g2

)
:g1, g2 ∈ SL2(R)

}
and H =

{(
g 0
0 g

)
: g ∈ SL2(R)

}
.

Let g = Lie(G) and h = Lie(H).
We identify G with SL2(R)× SL2(R) and H with

{(g, g) : g ∈ SL2(R)} ⊂ SL2(R)× SL2(R).
Indeed, to simplify the notation, we will often denote

g =

(
g1 0
0 g2

)
∈ G

by (g1, g2). Given v = (x1, y1, x2, y2) ∈ R4, we write g.v = (g1v1, g2v2) where
vi = (xi, yi) ∈ R for i = 1, 2 (for purely typographical reasons, we prefer
to work with row vectors even though representing these as column vectors
would be more consistent).

For all h ∈ SL2(R), we let ∆(h) = (h, h) ∈ H. In particular, for every
t ∈ R and every θ ∈ [0, 2π], ∆(at) and ∆(rθ) denote the images of(

et 0
0 e−t

)
and

(
cos θ − sin θ
sin θ cos θ

)
in H, respectively.

2.1. Quadratic Forms. Let Q0 denote the determinant form on R4:

Q0(x1, y1, x2, y2) = x1y2 − x2y1.

Note that H = G ∩ SO(Q0).
Let ∆ ⊂ R2 be a lattice and let ∆∗ be the dual lattice. We normalize ∆∗

to have covolume (2π)−2 and fix gM ∈ SL2(R) so that

2π∆∗ = gMZ2.

The eigenvalues of the Laplacian on R2/∆ are ∥v∥2 for v ∈ 2π∆∗. Therefore,

given two eigenvalues λi = ∥vi∥2, i = 1, 2, we have

(2.1)
λ1 − λ2 = (∥v1∥2 − ∥v2∥2) = (v1 + v2) · (v1 − v2)

= Q0(v1 + v2, ω(v1 − v2))

where ω =

(
0 −1
1 0

)
.

Recall that G = SL2(R)× SL2(R) ⊂ SL4(R). Define

Λ = {(v1 + v2, ω(v1 − v2)) : v1, v2 ∈ Z2} ⊂ R4.

Then {(v1 + v2, ω(v1 − v2)) : v1, v2 ∈ 2π∆∗} = (gM,−ωgMω)Λ.
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Let Γ′ be the maximal subgroup of SL2(Z) × SL2(Z) which preserves Λ.
More explicitly,

Γ′ = {(γ1, γ2) ∈ SL2(Z)× SL2(Z) : γ1 ≡ ωγ2ω (mod 2)}.

Let X = G/Γ′.

Möbius transformations. In this section, we prove an elementary lemma
concerning Möbius transformations. This lemma will be used to complete
the proof of Lemma 2.5; it also will be used in the proof of Lemma 6.4.

Let P denote the set of primitive vectors in Z2. For every t ≥ 1, let

P(t) = {v ∈ P : ∥v∥ < et}.

2.2. Lemma. Let A ≥ 103, s > 0 and 0 < ηA < e−s/100. Assume that for
i = 1, 2 there are vi, v

′
i, v

′′
i ∈ P(s) satisfying

(2.2) 1 ≤ |Q0(v, w)| ≪ η−4, for v, w ∈ {vi, v′i, v′′i }.

Also suppose there are h ∈ PGL2(R) and C > 0 so that

(2.3) hv1 = µv2 + w1,2, hv′1 = µ′v′2 + w′
1,2, hv′′1 = µ′′v′′2 + w1,2

where |µ| , |µ′| , |µ′′| ≥ C−1 and ∥w∥ ≤ CηAe−s for w ∈ {w1,2, w
′
1,2, w

′′
1,2}.

Then there exists Q ∈ Mat2(Z) with ∥Q∥ ≤ η−100 and λ ∈ R so that

∥h− λQ∥ ≤ C ′ηA−50,

where C ′ depends on C and polynomially on ∥h∥.

Proof. Let us write vi = (xi, yi), v
′
i = (x′i, y

′
i), and v′′i = (x′′i , y

′′
i ). The matrix

M1 =

(
y1 −x1
y′1z1 −x′1z1

)
for z1 =

x′′1 y1−x1y′′1
x′′1 y

′
1−x′1y

′′
1

acting on P1 takes (x1 : y1) to (0 : 1), (x′1 : y′1) to (1 : 0) and (x′′1 : y′′1) to
(1 : 1). The matrix

M2 =

(
−x′2z2 x2
−y′2z2 y2

)
for z2 =

x′′2 y2−x2y′′2
x′′2 y

′
2−x′2y

′′
2

in turn takes (0 : 1) to (x2 : y2), (1 : 0) to (x′2 : y′2) and (1 : 1) to (x′′2 : y′′2).

By (2.2), we have that r = |det(M1) det(M2)|−1 is a rational number of
height ≪ η−20. Thus by (2.3)

h = ±
√
rM2M1 +O(ηA−50) or

h = ±
√
r

(
1 0
0 −1

)
M2M1 +O(ηA−50).

Since the denominators of the entries of M1 and M2 are bounded by η−4,
and since all our implicit constants are allowed to depend on ∥h∥, we may
conclude the claim. □

We draw some corollaries of Lemma 2.2.
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Definition 2.3. Let g = (g1, g2) ∈ G. A two dimensional gZ4-rational linear
subspace L ⊂ R4 is called (ρ,A, t)-exceptional if there are (v1, 0), (0, v2) ∈ Z4

satisfying

(2.4) ∥g1v1∥ , ∥g2v2∥ ≤ eρt and |Q0(g1v1, g2v2)| ≤ e−Aρt

so that L ∩ gZ4 is spanned by {(g1v1, 0), (0, g2v2)}.
Given a (ρ,A, t)-special subspace L, we will refer to {(g1v1, 0), (0, g2v2)}

as a spanning set for L.

2.4. Lemma. Let A ≥ 103, and let g = (g1, g2) ∈ G. Let ρ ≤ A/100. Then
for all t large enough, depending on ∥g∥, at least one of the following holds:

(1) There are at most two different (ρ,A, t)-exceptional subspaces.
(2) There exists Q ∈ Mat2(Z) whose entries are bounded by e100ρt and λ ∈ R

satisfying
∥∥g−1

2 g1 − λQ
∥∥ ≤ e−(A−100)ρt.

Proof. We begin by proving the first assertion in the lemma. Let η = e−ρt

and s = ρt. Indeed assume there are three different (ρ,A, t)-special sub-
spaces in R4, and let vi, v

′
i, v

′′
i ∈ Ps, i = 1, 2, be the corresponding spanning

vectors. Then

1 < |Q0(v, w)| ≪ e2ρt, for v, w ∈ {v1, v′1, v′′1}

That is, {v1, v′1, v′′1} satisfies (2.2) with η = e−ρt so long as t is large enough

to account for the implied constant. Moreover, if we put h = g−1
2 g1, then

hv1 = µv2 + w1,2

where µ ∈ R satisfies |µ| ≫ 1 and ∥w1,2∥ ≪ e−Aρt = η(A−1)e−s (recall that
the implicit constants in these inequalities are allowed to depend polynomi-
ally on ∥g1∥ and ∥g2∥). Similarly,

hv′1 = µ′v′2 + w′
1,2 and hv′′1 = µ′′v′′2 + w′′

1,2

where µ′, µ′′ ∈ R satisfy |µ′| , |µ′′| ≫ 1 and
∥∥w′

1,2

∥∥ ,∥∥w′′
1,2

∥∥ ≪ e−Aρt. There-

fore, {v2, v′2, v′′2} also satisfy (2.2). Moreover, h = g−1
2 g1 satisfies (2.3) with

A − 1, η, and s, in view of the above discussion. Hence, Lemma 2.2 im-
plies that the assertion in part (2) of this lemma holds so long as t is large
enough. □

Special subspaces and the spectrum of flat tori. Using the discussion
in §2.1, we translate the conclusion of Lemma 2.4 to a similar statement
about the quadratic form BM.

2.5. Lemma. Let A ≥ 104, and let ρ ≤ A/100. Recall that

BM(x, y) = ax2 + 2bxy + cy2

is renormalized so that ac−b2 = 1. Then for all t ≥ t0, depending on ρ, |a|,
|b|, and |c|, at least one of the following holds:
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(1) There is a unique, up to change of order, pair of primitive vectors
u1, u2 ∈ Z2 \ {0} satisfying

∥ui∥ ≤ eρt and |BM(u1, u2)| ≤ e−Aρt

(2) There exists Q ∈ Mat2(Z) whose entries are bounded by e100ρt and λ ∈ R
satisfying ∥∥∥∥(a b

b c

)
− λQ

∥∥∥∥ ≤ e−(A−100)ρt.

In particular, if M is a rectangular torus, i.e., b = 0, then t0 may be
chosen so that if part (2) is not satisfied, then (up to changing the order)
u1 = (1, 0) and u2 = (0, 1).

Proof. Let t1 be large enough so that Lemma 2.4 holds for all t ≥ t1. Since
BM is positive definite, there exists t′0 so that if t ≥ t′0, then

|BM(u1, u2)| < e−Aρt

implies that {u1, u2} is linearly independent.
Let t0 = max(t1, t

′
0) and let t ≥ t0. Put

g = (g1, 1) =

((
a b
b c

)
, 1

)
.

Note that if part (2) in Lemma 2.4 holds, then part (2) in this lemma holds
and the proof is complete. Thus let us assume that part (1) in Lemma 2.4
holds.

Let ui = (xi, yi) ∈ Z2 \ {0}. Then

BM(u1, u2) = (x1, y1)

(
a b
b c

)(
x2
y2

)
= (ax1 + by1)x2 + (bx1 + cy1)y2

=

((
a b
b c

)(
x1
y1

))
∧
(
−y2
x2

)
= Q0(g1(x1, y1), (−y2, x2)).

Thus if u1, u2 satisfy part (1), then (g1(x1, y1), (0, 0)) and ((0, 0), (−y2, x2))
span a (ρ,A, t)-special subspace for gZ4.

By Lemma 2.4, there is at most two such subspaces. Moreover, since
BM( , ) is symmetric, we conclude that

Q0(g1(x2, y2), (−y1, x1)) = Q0(g1(x1, y1), (−y2, x2)).

This implies the two special subspaces are spanned by

{(g1(x1, y1), 0, 0), (0, 0,−y2, x2)} or {(g1(x2, y2), 0, 0), (0, 0,−y1, x1)}.

This shows part (1) in this lemma holds.
Assume now that b = 0, and suppose part (2) does not hold. Let ui be

as in part (1). Then

(2.5) |BM(u1, u2)| =
∣∣ax1x2 + a−1y1y2

∣∣ ≤ e−Aρt.
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Unless y1y2 = 0, the above contradicts that part (2) does not hold. There-
fore, we have y1y2 = 0. Assuming t is large enough so that the right side
in (2.5) is < |a|, we conclude x1x2 = 0 and the claim follows. □

The following lemma further investigates the contribution of special sub-
spaces, or more precisely, vectors u1, u2 satisfying part (1) in Lemma 2.5.
We note that condition (2.6) is (1.5) in Theorem 1.2.

2.6. Lemma. Let A ≥ 103 and 0 < ρ < 1/(100A). Let

BM(x, y) = ax2 + 2bxy + cy2

which is normalized so that ac − b2 = 1. The following holds for all large
enough t, depending on ρ, |a|, |b|, and |c|. Let u1, u2 ∈ Z2 \ {0} satisfy

∥ui∥ ≤ eρt and |BM(u1, u2)| ≤ e−Aρt.

Assume further that

(2.6) |BM(u1, u2)| > e(−2+2ρ)t.

Let C > 0, then

#

{
(ℓ1, ℓ2) ∈ 1

2Z
2 :

|ℓi| ≤ Cet

4BM(u1, u2)ℓ1ℓ2 ∈ [α, β]

}
≪ max(|α| , |β|)e(2−ρ)t

where the implied constant depends on C, a, b, and c.

Proof. Let (ℓ1, ℓ2) satisfy that |ℓi| ≤ Cet and

(2.7) 4BM(u1, u2)ℓ1ℓ2 ∈ [α, β].

Then the number of solutions with ℓ1 = 0 or ℓ2 = 0 is ≪ et. Therefore, we
assume ℓi ̸= 0 for i = 1, 2 for the rest of the argument.

Assume that
|BM(u1, u2)| > e(−2+2ρ)t.

Then (2.7) implies that

(2.8) 0 < 4 |ℓ1ℓ2| ≤ max(|α| , |β|)e(2−2ρ)t.

The number of (ℓ1, ℓ2) ∈ Z2 with 0 < |ℓ1| ≤ Cet so that (2.8) holds is

≪ max(|α| , |β|)te(2−2ρ)t ≪ max(|α| , |β|)e(2−ρ)t

as we claimed. □

3. Circular averages and values of quadratic forms

In this section, we state an equidistribution result for the action of SO(Q0).
Theorem 1.2 will be deduced from this equidistribution theorem in §4 using
some preparatory lemmas which will be established in this section.

Let fi be compactly supported bounded Borel functions on R2, and define
f on R4 by f(w1, w2) = f1(w1)f2(w2). For any g′ ∈ G, let

(3.1) f̂(g′Γ′) =
∑

v∈g′Λnz

f(v)
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where

Λ = {(v1 + v2, ω(v1 − v2)) : v1, v2 ∈ Z2} ⊂ R4,

Λnz = {(w1, w2) ∈ Λ : w1 ̸= 0 and w2 ̸= 0}
Γ′ = {(γ1, γ2) ∈ SL2(Z)× SL2(Z) : γ1 ≡ ωγ2ω (mod 2)},

and ω =

(
0 −1
1 0

)
. Note that Γ′ preserves Λ and Λnz.

Let X = G/Γ′, and let mX denote the G-invariant probability measure
on X.

3.1. Theorem. For every A ≥ 104 and 0 < ρ ≤ 10−4, there exist Â (de-
pending on A) and δ1, δ2 (depending on ρ and A) with

ρ/Â ≤ δ1/A ≤ ρ/100,

so that for all g = (g1, g2) ∈ G and all large enough t, depending linearly on
log(∥gi∥), the following holds.

Assume that for every Q ∈ Mat2(Z) with eρt/Â ≤ ∥Q∥ ≤ eρt and all
λ ∈ R, we have

(3.2)
∥∥g−1

2 g1 − λQ
∥∥ > ∥Q∥−A/1000 .

There exists some C ′ depending on A and polynomially on ∥gi∥ so that the
following holds. For any 2π-periodic smooth function ξ on R, if∣∣∣∫ 2π

0
f̂(∆(atrθ)gΓ

′)ξ(θ) dθ −
∫ 2π

0
ξ dθ

∫
X
f̂ dmX

∣∣∣ > C ′S(f)S(ξ)e−δ2t

then there are at least one, and at most two, (δ1/A,A, t)-exceptional sub-
spaces, say L and L′ (for notational convenience, if there is only one excep-
tional subspace, set L′ = L). Moreover∫ 2π

0
f̂(∆(atrθ)gΓ

′)ξ(θ) dθ =

∫ 2π

0
ξ dθ

∫
X
f̂ dmX

+M+O(S(f)S(ξ)e−δ2t)

where

M =

∫
C
f̂sp(θ)ξ(θ) dθ

with

f̂sp(θ) =
∑

v∈gΛnz∩(L∪L′)

f(∆(atrθ)v)

C =
{
θ ∈ [0, 2π] : f̂sp(θ) ≥ eδ1t

}
The proof of Theorem 3.1 will be completed in §7; it relies on results in

§5 and §6. Notice that, even though the functions f1, f2 are bounded on R2,
the resulting function f̂ is unbounded on G/Γ′. It is well-recognized that
such unboundedness can be overcome with the use of cusp functions and
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their contracting functions, see e.g [EM22]. The adaptation of this method
to our setting where exceptional subspaces are present will be contained
in §6.

The goal in the remaining parts of this section and §4 is to complete the
proof of Theorem 1.2 using Theorem 3.1. We will also explicate the proof
of Corollary 1.3 at the end of §4.

Before proceeding, however, let us record an a priori, i.e., without assum-

ing (3.2), upper bound for
∫ 2π
0 f̂(∆(atrθ)gΓ

′) dθ.

3.2. Lemma. For every 0 < η < 1, there exists tη ≪ |log η| so that the
following hold. Let g = (g1, g2) ∈ G and R ≥ 1; assume that ∥gi∥ ≤ R. Let
fi be the characteristic function of {w ∈ R2 : ∥w∥ ≤ R}, and put f = f1f2.

(1) For every t ≥ tη we have∫ 2π

0
f̂(∆(atrθ)gΓ

′) dθ ≪ eηt

(2) Let t ≥ tη. Let L ⊂ R4 be a two dimensional subspace so that L ∩ gZ4

is spanned by {(g1v1, 0), (0, g2v2)} for (v1, 0), (0, v2) ∈ Z4 \ {0}. Then∫
[0,2π]\CL

f̂L(θ) dθ ≪ e(−1+η)t

where f̂L(θ) =
∑

v∈gΛnz∩L f(∆(atrθ)v) and

CL = {θ ∈ [0, 2π] : f̂L(θ) ≥ eηt}.

The implied constants depend polynomially on R.

We postpone the proof of this lemma to the end of §6. Part (1) in this
Lemma should be compared with [EMM98, Lemma 5.13]; indeed in loc. cit.

the integral appearing part (1) in Lemma 3.2 is bounded by O(t) (vs. eo(t)

that we give here) which is sharp. The above however suffices for our needs.

3.3. A linear algebra lemma. The goal in the remaining parts of this
section is to relate the circular integrals as appear in Theorem 3.1 to the
counting problem in Theorem 1.2. This is the content of Lemma 3.4 which
should be compared with [EMM98, Lemma 3.6] and [EM01, Lemma 3.4].
We will also establish a certain upper bound estimate in Lemma 3.9 which
will be used in the proof of Theorem 1.2.

Let us begin by fixing some notation which will be used in Lemma 3.5
and Lemma 3.4. Let α < β, R ≥ max{1, |α| , |β|}, R−1 ≤ q ≤ R, and
0 < ε < R−4. Let ϱ : R → [0, 1] be a smooth function supported on
[q − ε, q]. Let f1 be a smooth function on R2 satisfying

(3.3) 1[− ε
2
, ε
2
](x) · ϱ(y) ≤ f1(x, y) ≤ 1

[−ε−ε2

2
, ε+ε2

2
]
(x) · ϱ(y);

we chose ϱ and f1 so that their partial derivatives are ≪R ε−10.
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For an interval I = [a, b] and δ > 0, put

(3.4)
Iδ = [a− δ, b+ δ] ⊃ I

I−δ = [a+ δ, b− δ] ⊂ I.

Given two intervals I ⊂ [−R2, R2] and I ′ ⊂ [0, R], let fI,I′ be a smooth
function with partial derivatives ≪R ε−10 satisfying

(3.5) 1I(1)(x) · 1I′(1)(|y|) ≤ fI,I′(x, y) ≤ 1I(2)(x) · 1I′(2)(|y|),

where we write I(k) = I10kR3ε (in the formula above we used k = 1, 2, but
later also larges values of k will be used).

For any function h on R2, define

Jh(y) =

∫
R
h(x, y) dx.

Note that if f1 is as in (3.3), then

(3.6) Jf1(y) = ϱ(y)(ε+O(ε2))

Let f1 be as above (for this q and some ϱ) and let f2 = fI0,I1 (for I0 =
[−q−1β,−q−1α] and some I1 ⊂ [0, R]). Define f on R4 by

f(v1, v2) = f1(v1)f2(v2).

We will work with a slight variant of polar coordinates in R2: 0 ̸= w ∈ R2

is denoted by (θw, ∥w∥) where θw ∈ [0, 2π] is so that rθww = (0, ∥w∥).

3.4. Lemma. Let the notation be as above. Let t > log(4R3ε−2), and let ξ
be a 2π-periodic non-negative smooth function. Let v = (v1, v2) ∈ R4 with
∥vi∥ ≥ R−1. Then

(3.7) qe2t
∫ 2π

0
f(∆(atrθ)v)ξ(θ) dθ ≤{

(1 +O(ε))Jf1
(
e−t ∥v1∥

)
ξ(θ1) +O

(
Lip(f1) Lip(ξ)e

−2t
)

if (3.8) holds

0 otherwise

where

(3.8)
(
−q−1Q0(v), e

−t ∥v2∥
)
∈ I

(3)
0 × I

(3)
1 and ∥v1∥ ≤ 2Ret.

If we moreover assume that e−t ∥v2∥ ∈ I1 and Q0(v) ∈ [α, β], then

(3.9) qe2t
∫ 2π

0
f(∆(atrθ)v)ξ(θ) dθ =

(1 +O(ε))Jf1
(
e−t ∥v1∥

)
ξ(θ1)f2

(
−q−1Q0(v), e

−t ∥v2∥
)

+O
(
Lip(f1) Lip(ξ)e

−2t
)
.

The implied constants depend polynomially on R.
Analogous statements hold with the roles of v1 and v2 switched.
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The proof is based on a direct computation which we will carry out in the
next lemma.

3.5. Lemma. Let the notation be as in Lemma 3.4. Let t > log(4R3ε−2). If

f(∆(atrθ)v) ̸= 0

for some v = (v1, v2) ∈ R4 with ∥vi∥ ≥ R−1 and some θ ∈ [0, 2π], then all
of the following properties hold

(1) q(1− 2ε) ≤ e−t ∥v1∥ ≤ q(1 + ε).
(2) |θ − θv1 | ≤ 2Rεe−2t,

(3) e−t ∥v2∥ ∈ I
(2)
1 , and

(4) −q−1Q0(v) ∈ I
(3)
0 .

Proof. The definitions of f1 and f2 imply that

if ∥vi∥ > (R+ 20R3ε)et, then f(∆(atrθ)v) = 0

and there is nothing to prove. We thus assume that ∥vi∥ ≤ (R + 20R3ε)et

for the rest of the argument.
For convenience, we will write θ1 = θv1 . Since θ ∈ [0, 2π] satisfies

atrθv1 ∈ [−ε−ε2

2 , ε+ε2

2 ]× [q − ε, q]

only if

(3.10) |θ − θ1| ≤ 3
2εe

−t ∥v1∥−1 ≤ 2Rεe−2t,

we see that when

(3.11) q(1− 2ε) ≤ e−t ∥v1∥ ≤ q(1 + ε)

fails, f(∆(atrθ)v) = 0.
Thus, assume that (3.10) and (3.11) hold for the rest of the argument,

which is to say the conditions (1) and (2) in the lemma are satisfied if
f(∆(atrθ)v) ̸= 0. We now show (3) and (4) must also hold.

Let us write
rθ1v2 = (x̄2, ȳ2).

Recall that ∥vi∥ ≤ (R+20R3ε)et and that θ is in the range (3.10), and write

rθv1 = (x′1, y
′
1) and rθv2 = (x′2, y

′
2).

Then |x′1| ≤ 4Rεe−t, |y′1 − ∥v1∥| ≤ 4Rεe−t,

(3.12)
∣∣x′2 − x̄2

∣∣ , ∣∣y′2 − ȳ2
∣∣ ≤ 3Rεe−t ∥v1∥−1 ∥v2∥ ≤ 4R3εe−t;

in the last inequality we used ε < R−4, ∥v2∥ ≤ (R+ 20R3ε)et, and (3.11).
Thus, we conclude that

atrθv2 = (etx′2, e
−ty′2) = (etx̄2 + x2,θ, e

−tȳ2 + y2,θ)

where |x2,θ| ≤ 4R3ε and |y2,θ| ≤ 4R3εe−2t.
In view of the definition of f2, we conclude that f2(atrθv2) = 0, unless

etx′2 ∈ (I
(1)
0 )20R3ε and e−ty′2 ∈ (I

(1)
1 )20R3ε+ ε
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These and the bound on x2,θ imply that

(3.13) etx̄2 ∈ (I
(1)
0 )24R3ε

and hence using the upper bound on |x̄2| implied by (3.13), we get

(3.14) ||ȳ2| − ∥v2∥| ≤ R4e−2t

∥v2∥ .

Since e−ty′2 ∈ (I
(1)
1 )20R3ε+ε and |y2,θ| ≤ 4R3εe−2t, we conclude from (3.14)

that if f2(atrθv2) ̸= 0, then

e−t ∥v2∥ ∈ (I
(1)
1 )21R3ε

which establishes (3) in the lemma.
Finally, combining (3.13) and (3.11), we conclude that

q−1 ∥v1∥ x̄2 ∈ (I
(1)
0 )30R3ε.

Since ∆(rθ) ∈ SO(Q0) for all θ and ∆(rθ1)v = (0, ∥v1∥ , x̄2, ȳ2), we get

−q−1Q0(v) = −q−1Q0(∆(rθ1v)) = q−1 ∥v1∥ x̄2 ∈ I
(2)
0 .

as it was claimed in (4). □

We now turn to the proof of Lemma 3.4

Proof of Lemma 3.4. For convenience we write θ1 = θv1 . By Lemma 3.5 if
f(∆(atrθ)v) ̸= 0, then all the following hold true:

q(1− 2ε) ≤ e−t ∥v1∥ ≤ q(1 + ε)(3.15a)

|θ − θ1| ≤ 2Rεe−2t(3.15b)

e−t ∥v2∥ ∈ I
(3)
1(3.15c)

− q−1Q0(v) ∈ I
(3)
0(3.15d)

We begin with the following computation which will be used in the proof
of both (3.7) and (3.9).∫ 2π

0
f1(atrθv1) dθ =

∫ 2π

0
f1(−et ∥v1∥ sin θ, e−t ∥v1∥ cos θ) dθ.

Making the change of variable z = −et ∥v1∥ sin θ, the above integral equals

(3.16)
e−t

∥v1∥

∫ ∞

−∞
f1

(
z, e−t ∥v1∥

√
1− (e−tz/ ∥v1∥)2

) 1√
1− (e−tz/ ∥v1∥)2

dz

=
e−t

∥v1∥

∫ ∞

−∞
f1(z, e

−t ∥v1∥) dz+O(R2 Lip(f1)e
−4t)

= q−1(1 +O(ε))e−2tJf1(e
−t ∥v1∥) +O(R2 Lip(f1)e

−4t)

where in the last equality we used (3.15a) and (3.6).
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Let us now begin the proof of (3.7). We can restrict the integration in
(3.7) to θ satisfying (3.15b). In this range

(3.17) |ξ(θ)− ξ(θ1)| ≤ 2Rεe−2t Lip(ξ).

Since 0 ≤ f1, f2 ≤ 1 and ξ is non-negative, we have

(3.18)

∫ 2π

0
f(∆(atrθ)v)ξ(θ) dθ ≤

∫ 2π

0
f1(atrθ)ξ(θ) dθ

Moreover, in view of (3.17), we have

f1(atrθ)ξ(θ) = f1(atrθv1)ξ(θ1) +O(R2 Lip(ξ)εe−2t)

This, (3.18) and the fact that the range of integration is (3.15b) implies

e2t
∫ 2π

0
f(∆(atrθ)v)ξ(θ) dθ ≤ ξ(θ1)e

2t

∫ 2π

0
f1(atrθv1) +O(R2 Lip(ξ)εe−2t).

This and (3.16) imply that

(3.19) e2t
∫ 2π

0
f(∆(atrθ)v)ξ(θ) dθ ≤

q−1(1 +O(ε))Jf1(e
−t ∥v1∥)ξ(θ1) +O(R2 Lip(f1) Lip(ξ)εe

−2t)

Thus (3.7) follows from (3.19) in view of (3.15c) and (3.15d).
Note that claim regarding E follows as well, indeed if either (3.15a), (3.15c)

or (3.15d) fails, both the left and right side of (3.7) equal zero.

The proof of (3.9) is similar. Indeed one argues as in the proof of
Lemma 3.5 to show that if e−t ∥v2∥ ∈ I1 and Q0(v) ∈ [α, β], then for all
θ in the range (3.15b), one has

f2(atrθv2) = 1.

One then repeats the above argument and obtains (3.9). □

3.6. A smooth cell decomposition. Let

Ω = {(w1 + w2, ω(w1 − w2)) : ∥wk∥ ≤ 1} ,
D = {(v1, v2) : ∥vk∥ ≤ 1} .

As before, write v = (v1, v2) ∈ R4 where vk ∈ R2. Let π1(v) = (v1, 0) and
π2(v) = (0, v2); abusing the notation, we also consider πk(Ω) ⊂ R2.

Write Ω \ D = Ω1 ∪ Ω2 where

Ω1 : =
{
(v1, v2) ∈ Ω : ∥v1∥ > 1

}
and

Ω2 : =
{
(v1, v2) ∈ Ω : ∥v1∥ ≤ 1, ∥v2∥ > 1

}
.

A direct computation shows that (v1, v2) ∈ Ω if and only if

∥v2∥2 ≤ 4− ∥v1∥2 − 2 |Q0(v1, v2)| .
It follows that for every v1 ∈ π1(Ω1), we have

(3.20) {∥λv1∥ : (v1, λv1) ∈ Ω1} =
[
0,
√

4− ∥v1∥2
]
,
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and for v2 ∈ π2(Ω2), we have

{∥λv2∥ : (λv2, v2) ∈ Ω2} =
[
0,min

(
1,
√

4− ∥v2∥2
)]
.

Fix some R ≥ 103 and let 0 < ε < R−20. Let E ∈ N be so that 1
E ≤

100R10ε ≤ 1
E−1 , and put

Ii = [ i−1
E , i

E ] for all 1 ≤ i ≤ E.

Fix two families of smooth functions {ξ−i } and {ξ+i } with C1 norm ≪ ε−10

satisfying the following:

(ξ-1) For all i, 0 ≤ ξ−i ≤ ξ+i ≤ 1,

ξ+i ≡ 1 on 2πIi, supp(ξ+i ) ⊂ 2π(Ii)ε2 ,

ξ−i ≡ 1 on 2π(Ii)−4ε2 , supp(ξ−i ) ⊂ 2π(Ii)−2ε2

(here we use the notation (3.4)). We extend ξ±i to 2π-periodic functions
on R.

Similarly, let E′ ∈ N be so that 1
E′ ≤ 100R9ε ≤ 1

E′−1 , and let

I ′j = [ j−1
E′ ,

j
E′ ] for all 1 ≤ j ≤ E′.

Fix two families of functions {ϱ+j } and {ϱ−j } with C1 norm ≪ ε−10 so that

(ϱ-1) For all i, 0 ≤ ϱ−j ≤ ϱ+j ≤ 1,

ϱ+j ≡ 1 on RIj , supp(ϱ+j ) ⊂ R(Ii)ε2 ,

ϱ−j ≡ 1 on R(Ij)−4ε2 , supp(ϱ−j ) ⊂ R(Ii)−2ε2 .

Extend ϱ±j to R by defining them to equal 0 outside their supports.
Define

φ+
i,j(θ, r) = ξ+i (θ)ϱ

+
j (r) and φ−

i,j(θ, r) = ξ−i (θ)ϱ
−
j (r).

We will consider φ±
i,j as functions on R2 using our slightly non-standard

polar coordinate system where any 0 ̸= w ∈ R2 corresponds to (θw, ∥w∥) if
rθww = (0, ∥w∥). Let

(3.21)
I+
1 = {(i, j) : supp(φ+

i,j) ∩ π1(Ω1) ̸= ∅}
I−
1 = {(i, j) : supp(φ−

i,j) ⊂ π1(Ω1)}.

We define I±
2 similarly with Ω2 and π2 in lieu of Ω1 and π1. Note that for

k = 1, 2 and σ = ± ∣∣∣area(πk(Ωk))−
∑

(i,j)∈Iσ
k

∫
φσ
i,j

∣∣∣ ≪ ε.

We will work with k = 1 for the remainder of this section, similar analysis
applies to k = 2 with the role of v1 and v2 switched. For all (i, j) ∈ I+

1 , let

Ω+
i,j = {(v1, v2 + w) : (v1, v2) ∈ Ω1, φ

+
i,j(v1) = 1, ∥w∥ ≤ 3Rε}.
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We will also define Ωi,j ⊂ Ω+
i,j as follows. In view of (3.20), we will call

the pair (i, j) typical if

inf
{√

4− ∥v1∥2 : v1 ∈ supp(φ+
i,j) ∩ π1(Ω1)

}
≥

√
ε.

Let I̊−
1 denote the set of (i, j) ∈ I−

1 where (i, j) is typical and for every

(v1, λv1) ∈ Ω1 ∩
(
supp(φ−

i,j)× R2
)

with ∥λv1∥ ∈
(
[0,

√
4− ∥v1∥2]

)
−20Rε

we have (v1, λv1 + w) ∈ Ω1 for all w ∈ R2 with ∥w∥ ≤ 10Rε.

For any (i, j) ∈ I̊−
1 , set

(3.22) Ωi,j :=

{
(v1, v2 + w) :

(v1, v2) ∈ Ω1 ∩
(
supp(φ−

i,j)× R2
)
,

w ∈ R2, ∥w∥ ≤ ε

}
∩ Ω1.

Since supp(φ−
i,j) ⊂ {w : φ+

i,j(w) = 1}, we have Ωi,j ⊂ Ω+
i,j . Moreover, since

{supp(φ−
i,j)} is a disjoint collection, {Ωi,j} is a disjoint collection.

In view of (ξ-1), (ϱ-1), and the above definitions,

1Ω1 ≤
∑
I+
1

1Ω+
i,j

≤ 4 · 1{(v!,v2):∥vk∥≤3}(3.23a)

∑
I̊−
1

1Ωi,j ≤ 1Ω1(3.23b)

The intervals I+i,j and I−i,j. In our application of Lemma 3.4, ξ±i will play

the role of ξ; we will also work with f = f1f2 where f1 is defined using ϱ±j
above and f2 is defined using I0 = [−q−1β,−q−1α] (for some R−1 ≤ q ≤ R)
and intervals I±i,j which we now define. Put

(3.24)
I ′i,j,+ = [0, b+i,j ], b+i,j = sup

{√
4− ∥v1∥2 :v1 ∈ supp(φ+

i,j) ∩ π1(Ω1)
}

I ′i,j,− = [0, b−i,j ], b−i,j = inf
{√

4− ∥v1∥2 :v1 ∈ supp(φ+
i,j) ∩ π1(Ω1)

}
.

If (i, j) is typical, i.e., if b−i,j ≥
√
ε, put

(3.25) I+i,j =
(
I ′i,j,+

)
10ε

and I−i,j =
(
I ′i,j,−

)
−200R10ε

.

Since supp(φ±
i,j) has diameter ≤ 200R10ε and ε < R−20, if (i, j) is not

typical, then b+i,j ≤ 2
√
ε. In this case, put I±i,j = [0, 3

√
ε].

We have the following lemma.

3.7. Lemma. Assume R ≥ max{103, |α| , |β|} and let R−1 ≤ q ≤ R. Let
t ≥ log(R2ε−1), where as before 0 < ε < R−20.

(1) Let I0 = [−q−1β,−q−1α]. Let (i, j) ∈ I̊−
1 and let f1 satisfy (3.3) with

ϱ−j (and with ε′ = 200R10ε instead of ε). If

Jf1(e
−t ∥v1∥)ξ−i (θv1)1I(3)0

(
−q−1Q0(v)

)
1(I−i,j)(3)

(
e−t ∥v2∥

)
̸= 0.

for some v = (v1, v2) ∈ R4, then all the following hold
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(a) Q0(v) ∈ ([α, β])30R4ε, and
(b) e−tv1 ∈ supp(φ−

i,j), and

(c) e−tv ∈ Ωi,j.
(2) Let (i, j) ∈ I+

1 . If v = (v1, v2) ∈ etΩ+
i,j satisfies Q0(v) ∈ [α, β], then

e−t ∥v2∥ ∈ I+i,j

Proof. We first prove part (1). If Q0(v) ̸∈ ([α, β])30R4ε, then

−q−1Q0(v) ̸∈ (I0)30R3ε = I
(3)
0 ,

hence

1
I
(3)
0

(
−q−1Q0(v)

)
= 0.

Moreover, if we put v̄1 := e−tv1, then θv̄1 = θv1 , and v̄1 ̸∈ supp(φ−
i,j) would

imply that ϱ−j (e
−t ∥v1∥)ξ−i (θv1) = 0. This in turn yields

0 ≤ f1(x, e
−t ∥v1∥)ξ−i (θv1) ≤ ϱ−j (e

−t ∥v1∥)ξ−i (θv1) = 0,

see (3.3); thus, Jf1(e
−t ∥v1∥)ξ−i (θv1) = 0. In conclusion, we may assume that

(3.26) Jf1(e
−t ∥v1∥)ξ−i (θv1)1I(3)0

(
−q−1Q0(v)

)
1(I−i,j)(3)

(
e−t ∥v2∥

)
̸= 0,

and that

Q0(v) ∈ ([α, β])30R4ε and v̄1 ∈ supp(φ−
i,j).

We need to show that (c) is also satisfied.
Since Q0(v) ∈ ([α, β])30R4ε, where R ≥ max{103, |α| , |β|} and ε < R−20,

and ∥v1∥ ≥ et, there is λ ∈ R so that

(3.27) v2 = λv1 + w, where w ⊥ v1 and ∥w∥ ≤ 2R ∥v1∥−1 ≤ 2Re−t.

Thus e−tv2 = λe−tv1 + e−tw = λv̄1 + e−tw.
Moreover, by (3.26), we have e−t ∥v2∥ ∈ (I−i,j)

(3) = (I−i,j)30R3ε, where

I−i,j = (I ′i,j,−)−200R10ε and I ′i,j,− ⊂ [0,
√

4− ∥v̄1∥2],

see (3.24) and (3.25). Since
∥∥e−tw

∥∥ ≤ 2Re−2t, we conclude that ∥λv̄1∥ ∈(
[0,

√
4− ∥v̄1∥2]

)
−20Rε

. In particular,

(v̄1, λv̄1) ∈ Ω1 ∩
(
supp(φ−

i,j)× R2
)
,

and v = et(v̄1, λv̄1+ e−tw) where
∥∥e−tw

∥∥ ≤ 2Re−2t. By the definition of I̊−
1

and Ωi,j , we conclude that e−tv ∈ Ωi,j . Thus, (c) also holds.
The proof of (2) is similar to the proof of (c), see in particular (3.27). □
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3.8. Upper bound estimates. Before starting the proof of Theorem 1.2,
we record a weaker (but more explicit) version of [EMM98, Thm. 2.3], which
will be used in the sequel — see also the very recent work of Kelmer, Kon-
torovich, and Lutsko [KKL23].

For every R > 0, let

D(R) = {(v1, v2) : ∥vk∥ ≤ R}.
Then D(R) \ D(e−1R) = D(R)1 ∪ D(R)2, where

D1(R) = {(v1, v2) ∈ D(R) : e−1R < ∥v1∥ ≤ R} and

D2(R) = {(v1, v2) ∈ D(R) : ∥v1∥ ≤ e−1R, e−1R < ∥v2∥ ≤ R}.
We constructed smooth cell decomposition for Ω1 and Ω2 in §3.6; in the
following lemma we will use a similar construction (without repeating this
construction) for D1(R) and D2(R).

3.9. Lemma. Let g = (g1, g2) ∈ G and put Λ′ = gΛ. Let

R ≥ max{103, |α| , |β| , ∥g1∥±1 , ∥g2∥±1},
and let 0 < η < 1. There exists t0 ≪ |log η| so that if t ≥ t0, then

#{v = (v1, v2) ∈ Λ′ : max(∥v1∥ , ∥v2∥) ≤ Ret, α ≤ Q0(v) ≤ β} ≪ e(2+η)t

where the implied constant depends polynomially on R.

Proof. The following basic lattice point estimate will be used:

(3.28) #{v ∈ Λ′ ∩ et/2D(R)} ≪ e2t

where the implied constant depends polynomially on R.
Since R is fixed, we will denote Dk(R) by Dk (k = 1, 2) for the rest of the

proof. Let ε = 10−6R−20. Apply the construction in §3.6 for π1(D1) with
this R and ε. In particular, the functions ξ+i are defined as in (ξ-1) with

Ii = [ i−1
E , i

E ] for all 1 ≤ i ≤ E where
1

E
≤ 100R10ε ≤ 1

E − 1
.

and ϱ+j are defined as in (ϱ-1) with

I ′j = [ j−1
E′ ,

j
E′ ] for all 1 ≤ j ≤ E′ where

1

E′ ≤ 100R9ε ≤ 1

E′ − 1
.

For all i, j as above, let ξi = ξ+i , ϱj = ϱ+j , and let φi,j = ξiϱj . Put

I+
1 = {(i, j) : supp(φi,j) ∩ π1(D1) ̸= ∅};

for all (i, j) ∈ I+
1 , we have supp(ϱj) ⊂ [e−2R,R] ⊂ [R−1, R].

For all (i, j) ∈ I+
1 , put

D̂i,j = {(v1, v2) ∈ R4 : φi,j(v1) = 1, ∥v2∥ ≤ R}.
Then 1D1 ≤

∑
I+
1
1D̂i,j

≤ 4D(2R)1 .

Define f1 as in (3.3) for q and ϱj , and with 200R10ε instead of ε. Let

(3.29) f2 = f[−q−1β,−q−1α],[0,R],
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see (3.5). Put fi,j = f1f2. By the choice of R, we have
∑

fi,j ≤ 4D(2R).

By Lemma 3.4, for any v = (v1, v2) ∈ etD̂i,j with Q0(v) ∈ [α, β], we have

(3.30) e2t
∫ 2π

0
fi,j(∆(atrθ)v)ξi(θ) dθ =

q−1(1 +O(ε))Jf1
(
e−t ∥v1∥

)
ξi(θv1)f2

(
−q−1Q0(v), e

−t ∥v2∥
)

+O(Lip(f1) Lip(ξi)e
−2t)

where the implied constant depends on R.
First note that, if t is large enough compared to R, we have

(3.31) O(Lip(f1) Lip(ξi)e
−2t) ≪ ε−20e−2t ≤ ε2.

Furthermore, for any v = (v1, v2) ∈ etD̂i,j so that Q0(v) ∈ [α, β], we have

f2
(
q−1Q0(v), e

−t ∥v2∥
)
= 1. Thus, using (3.6), we have

(3.32) Jf1
(
e−t ∥v1∥

)
ξi(θv1)f2

(
q−1Q0(v), e

−t ∥v2∥
)
= ε+O(ε2).

Put x = gΓ′. Summing (3.30), over all v ∈ Λ′∩etD̂i,j so thatQ0(v) ∈ [α, β]
and using (3.30) and (3.32), we conclude that

(3.33) ε
(
#{v ∈ Λ′ ∩ etD̂i,j : α ≤ Q0(v) ≤ β}

)
≪qe2t

∫ 2π

0
f̂i,j(∆(atrθ)x) dθ,

where we used 0 ≤ ξi ≤ 1 and replaced ε2 + ε + O(ε2) obtained from
adding (3.31) and (3.32) by O(ε).

Summing (3.33) over all (i, j) ∈ I+
1 and using

∑
i,j fi,j ≤ 4D(2R), we get

#{v ∈ Λ′ ∩ etD1 : α ≤ Q0(v) ≤ β} ≪ ε−1qe2t
∫ 2π

0
1̂D(2R)(∆(atrθ)x) dθ.

One obtains a similar bound for the number v ∈ Λ′∩etD2 withQ0(v) ∈ [α, β].
Since D \ e−1D = D1 ∪ D2 and ε = 10−6R−20, we conclude

#{v ∈ Λ′ ∩ et(D \ e−1D) : α ≤ Q0(v) ≤ β} ≪

ε−1qe2t
∫ 2π

0
1̂D(2R)(∆(atrθ)x) dθ.

Let tη be as in Lemma 3.2 applied with η and 2R, and let t > 10tη. Then
by Lemma 3.2,

#{v ∈ Λ′ ∩ et(D \ e−1D) : α ≤ Q0(v) ≤ β} ≪ e(2+η)t.

We may repeat the above with t− ℓ for all 0 ≤ ℓ ≤ t/2, and obtain

(3.34) #{v ∈ Λ′ ∩ et−ℓ(D \ e−1D) : α ≤ Q0(v) ≤ β} ≪ e(2+η)(t−ℓ),

we also used t− ℓ ≥ t/2 ≥ tη when applying Lemma 3.2 with t− ℓ.

Since et(e−ℓD) = et−ℓD, summing (3.34) over 0 ≤ ℓ ≤ t/2, we conclude

(3.35) #{v ∈ Λ′ ∩ et(D \ e−t/2D) : α ≤ Q0(v) ≤ β} ≪ e(2+η)t.

The lemma follows from (3.35) and (3.28). □
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4. Proof of Theorem 1.2

The proof relies on Theorem 3.1 and will be completed in some steps.
Recall that M = R2/∆ and that ∆∗ denotes the dual lattice. In view of our
normalization, 2π∆∗ = gMZ2 where gM ∈ SL2(R). Let

(4.1) g = (gM,−ωgMω) = (g1, g2) ∈ G where ω =

(
0 −1
1 0

)
.

4.1. Passage to Q0. As it was observed in (2.1), if λi = ∥vi∥2, where for
i = 1, 2, vi ∈ 2π∆∗ is an eigenvalue of the Laplacian of M, then

(4.2) λ1 − λ2 = Q0(v1 + v2, ω(v1 − v2)).

Define Ω = {(v1 + v2, ω(v1 − v2)) : ∥vi∥ ≤ 1}; and let

Λ′ = {(v1 + v2, ω(v1 − v2)) : v1, v2 ∈ 2π∆∗} = gΛ

where Λ = {(v1 + v2, ω(v1 − v2)) : v1, v2 ∈ Z2}.
Let T be a (large) parameter, and put t = 1

2 log T . In view of (4.2),

(4.3) RM(α, β, T ) = #{v ∈ Λ′
nz ∩ etΩ : α ≤ Q0(v) ≤ β};

recall that Λ′
nz = {(w1, w2) ∈ Λ′ : wi ̸= 0}.

Let A and δ be as in Theorem 1.2. Without loss of generality, we assume
A ≥ 105 and 0 < δ < 10−5. Let Â be given by Theorem 3.1 applied with
103A. We will show the claim in Theorem 1.2 holds with A′ = 10Â. To
simplify the notation, write Ā = 103A for the rest of the proof.

Thus let us assume (1.4) holds for A′: for T ≥ T0 (T0 is a yet to be

determined large constant) and all (p1, p2, q) ∈ Z3 with T δ/A′
< q < T δ,

(4.4)
∣∣b
a − p1

q

∣∣+ ∣∣ c
a −

p2
q

∣∣ > q−A.

This implies that so long as t = 1
2 log T is large enough (depending on a, b,

and c), we have

(4.5) g−1
2 g1 = −ωg−1

M ωgM =

(
a b
b c

)
satisfies (3.2) with t, ρ = δ/10, Â. That is: for every Q ∈ Mat2(Z) with

eρt/Â ≤ ∥Q∥ ≤ eρt and all λ ∈ R, we have

(4.6)
∥∥g−1

2 g1 − λQ
∥∥ > ∥Q∥−A = ∥Q∥−Ā/1000 .

4.2. Lemma. There are at most two gZ4-rational two dimensional subspaces
L,L′ so that if for some 2t/5 ≤ s ≤ t, Ls is a (δ1/Ā, δ1, s)-exceptional
subspace, then Ls = L or L′.

Proof. Let 2t/5 ≤ s ≤ t. Recall that a (δ1/Ā, δ1, s)-exceptional subspace is
spanned by two vectors (g1w1, 0), (0, g2w2) ∈ gZ4 satisfying

(4.7)
0 < ∥giwi∥ ≤ eδ1s/Ā, and

|Q0(g1w1, g2w2)| ≤ e−δ1s.
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We also note that

eδ1s/Ā ≤ eδ1t/Ā and e−δ1s ≤ e−2δ1t/5

for any 2t/5 ≤ s ≤ t.
Assume now that there are three pairs (possibly corresponding to different

values of 2t/5 ≤ s ≤ t) so that (4.7) is satisfied. Then Lemma 2.4, applied

with δ1/Ā and 2Ā/5, implies that there is Q ∈ Mat2(Z) with ∥Q∥ ≤ e100δ1t/Ā

so that∥∥g−1
2 g1 − λQ

∥∥ =

∥∥∥∥(a b
b c

)
− λQ

∥∥∥∥ ≤ e−( 2Ā
5
−100)(δ1/Ā) ≤

max
{
∥Q∥−Ā/1000 , 100e−ρĀt/(1000Â)

}
.

Since ρ/Â ≤ δ1/Ā ≤ ρ/100, this contradicts the fact that g−1
2 g1 satisfies (4.6)

with t, ρ, Â — note that if ∥Q∥ ≤ eρt/Â, we may replace Q by an integral

multiple nQ with eρ/Â ≤ ∥nQ∥ ≤ 2eρt/Â . The proof is complete. □

Let L and L′ be as in Lemma 4.2. For a set E ⊂ R4 and s > 0 we let

Ns(E) := #{v ∈ Λ′
nz ∩ esE : α ≤ Q0(v) ≤ β},

N ′
s(E) := #{v ∈ (Λ′

nz \ (Ls ∪ L′
s)) ∩ esE : α ≤ Q0(v) ≤ β}.

4.3. Counting and circular averages. For the rest of the proof, we fix
ε = e−η′t for some 0 < η′ < 1/100 which is small and will be optimized
later. We will also assume β − α ≥ ε otherwise Theorem 1.2 holds trivially.

Recall that

Ω = {(w1 + w2, ω(w1 − w2)) : ∥wi∥ ≤ 1},

and that Ω \ D = Ω1 ∪ Ω2 where D = {(v1, v2) ∈ R4 : ∥vk∥ ≤ 1}, and

Ω1 =
{
(v1, v2) ∈ Ω : ∥v1∥ > 1

}
and

Ω2 =
{
(v1, v2) ∈ Ω : ∥v1∥ ≤ 1, ∥v2∥ > 1

}
.

Let R be a large constant (we will always assume R < ε−1/20, hence, R
is much smaller that et), satisfying

R ≥ max{103, |α| , |β| , |a| , |b| , |c|};

note that πk(Ω) ⊂ B(0, R).
Apply the construction in §3.6 for πk(Ωk) with ε and R here. The analysis

for k = 1 and 2 are similar, thus, let k = 1 until further notice. Let

φ±
i,j = ξ±i ϱ

±
j for (i, j) ∈ I±

1 .

Note that supp(ϱ±j ) ⊂ [q − 200R10ε, q] ⊂ [R−1, R] for some R−1 ≤ q ≤ R,

see (ϱ-1) — indeed in the case at hand, we have 1 ≤ q ≤ 2.
For σ = ±, define fσ

1 as in (3.3) for q and ϱσj . Let

(4.8) fσ
2 = fIσ0 ,Iσi,j

,
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where I+0 = [−q−1β,−q−1α] and I−0 =
(
I+0

)
−100R5ε

, see (3.5) and (3.4). Put

fσ
i,j = fσ

1 f
σ
2 .

4.4. Lemma. Let the notation be as above, and let L and L′ denote (δ1/Ā, δ1, t)-
exceptional subspaces if they exist.

If (i, j) ∈ I̊−
1 , then

(4.9) qe2t
∑

v∈Λ′
nz\(L∪L′)

∫ 2π

0
f−
i,j(∆(atrθ)v)ξ

−
i (θ) dθ ≤

(ε+O(ε2)) ·N ′
t(Ωi,j) +O(ε−21).

Moreover for every (i, j) ∈ I+
1 , we have

(4.10) (ε+O(ε2)) ·N ′
t(Ω

+
i,j) ≤ qe2t

∑
v∈Λ′

nz\(L∪L′)

∫ 2π

0
f+
i,j(∆(atrθ)v)ξ

+
i (θ) dθ.

The implied constants depend polynomially on R.

The proof is similar to the proof of Lemma 3.9. More precisely, we will
use (3.7) for f−

i,j and (3.9) for f+
i,j ; let us now turn to the details.

Proof. When there is no confusion we drop i, j from the notation and denote
f±
i,j by f±, ξ±i by ξ±, etc. Also, we will put I0 = I−0 and I1 = I−i,j , but will

keep the more cumbersome notation for I+0 and I+i,j .

By (3.7) in Lemma 3.4 applied with f− = f−
i,j , for any v ∈ R4, we have

(4.11) qe2t
∫ 2π

0
f−(∆(atrθ)v)ξ

−(θ) dθ ≤

(1 +O(ε))Jf−
1

(
e−t ∥v1∥

)
ξ−(θv1)1I(3)0

(
−q−1Q0(v)

)
1
I
(3)
1

(
e−t ∥v2∥

)
+ E ,

where I(k) = I10kR3ε and

(4.12) E = O
(
Lip(f−

1 ) Lip(ξ−)e−2t
)

furthermore, E = 0 if(
−q−1Q0(v), e

−t∥v2∥) ̸∈ I
(3)
0 × I

(3)
1 or ∥v1∥ > 2Ret.

By (3.9) in Lemma 3.4 applied with f+ = f+
i,j , for any v ∈ R4 with

e−t ∥v2∥ ∈ I+i,j and Q0(v) ∈ [α, β], we have

(4.13) qe2t
∫ 2π

0
f+(∆(atrθ)v)ξ

+(θ) dθ =

(1 +O(ε))Jf+
1

(
e−t ∥v1∥

)
ξ+(θv1)f

+
2

(
−q−1Q0(v), e

−t ∥v2∥
)

+O
(
Lip(f+

1 ) Lip(ξ+)e−2t
)
.

In particular, (4.13) holds for all v ∈ etΩ+
i,j with Q0(v) ∈ [α, β] thanks to

part (2) in Lemma 3.7.



LOCAL STATISTICS OF THE SPECTRUM OF A FLAT TORUS 25

Before analysing (4.11) and (4.13) further, we record the following:

(4.14) O
(
Lip(f±

1 ) Lip(ξ±)e−2t
)
= O(ε−20e−2t) ≪ ε3,

so long as t is large enough (recall that the implied constants depend poly-
nomially on R).

Let us now begin with (4.13). In view of (3.6), for any v = (v1, v2) ∈ etΩ1

so that α ≤ Q0(v) ≤ β, we have

(4.15) Jf+
1

(
e−t ∥v1∥

)
ξ+(θv1)f

+
2

(
−q−1Q0(v), e

−t ∥v2∥
)
=

(ε+O(ε2))ϱ+(e−t ∥v1∥)ξ+(θv1)f+
2

(
−q−1Q0(v), e

−t ∥v2∥
)
.

Moreover, for every v ∈ etΩ+
i,j , satisfying α ≤ Q0(v) ≤ β,

f+
2

(
−q−1Q0(v), e

−t ∥v2∥
)
= 1, ξ+(θv1) = 1, and ϱ+(e−t ∥v1∥) = 1;

from this and (4.15), we conclude that

Jf+
1

(
e−t ∥v1∥

)
ξ+(θv1)f

+
2

(
−q−1Q0(v), e

−t ∥v2∥
)
= (ε+O(ε2)).

Together with (4.13) and (4.14), this implies that

(4.16) qe2t
∫ 2π

0
f+(∆(atrθ)v)ξ

+(θ) dθ = ε+O(ε2)

for every v ∈ etΩ+
i,j with α ≤ Q0(v) ≤ β.

Summing (4.16), over all such v ∈ Λ′
nz \ (L ∪ L′), we obtain

(4.17) (ε+O(ε2)) ·N ′
t(Ω

+
i,j) ≤ qe2t

∑
v∈Λ′

nz\(L∪L′)

∫ 2π

0
f+(∆(atrθ)v)ξ

+(θ) dθ.

This establishes (4.10).

Let us now assume (i, j) ∈ I̊−
1 and obtain a lower bound for Nt(Ωi,j). For

this, we investigate the term appearing in the second line of (4.11).
We first claim that

Jf−
1

(
e−t ∥v1∥

)
ξ−(θv1)1I(3)0

(−q−1Q0(v))1I(3)1

(e−t ∥v2∥) ̸= 0,

then Q0(v) ∈ [α, β] and v ∈ etΩi,j .
To see the claim, recall that by part (1) in Lemma 3.7, for any v ∈ R4,

Jf−
1

(
e−t ∥v1∥

)
ξ−(θv1)1I(3)0

(−q−1Q0(v))1I(3)1

(e−t ∥v2∥) = 0

unless all the following are satisfied

Q0(v) ∈ [α+ 50R5ε, β − 50R5ε],(4.18a)

v1 ∈ et supp(φ−
i,j), and(4.18b)

v ∈ etΩi,j .(4.18c)

in deducing (4.18a) from Lemma 3.7, we used the definitions

I
(3)
0 = (I−0 )30R3ε and I−0 =

(
[−q−1β,−q−1α]

)
−100R5ε

.
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We conclude from (4.18a) that Q0(v) ∈ [α, β]. Using the definition of
Ωi,j in (3.22) and since 2R3e−2t < ε, (4.18c) implies that v ∈ etΩi,j , and
completes the proof of the claim.

We now return to the proof of the lemma. Recall that

Jf−
1
(e−t ∥v1∥)ξ−(θv1)1I(3)0

(−q−1Q0(v))1I(3)1

(e−t ∥v2∥) ≤

Jf−
1
(e−t ∥v1∥) = (ε+O(ε2))ϱ−(e−t ∥v1∥) ≤ ε+O(ε2).

This and the above claim imply that

(4.19)
∑

v∈Λ′
nz\(L∪L′)

Jf−
1
(e−t ∥v1∥)ξ−(θv1)1I(3)0

(−q−1Q0(v))1I(3)1

(e−t ∥v2∥)

≤ (ε+O(ε2)) ·N ′
t(Ωi,j).

Moreover, since
(
−q−1Q0(v), e

−t∥v2∥
)
̸∈ I

(3)
0 × I

(3)
1 or ∥v1∥ > 2Ret imply

E = 0. We conclude from Lemma 3.9 applied with η = η′/10 imply that∑
v∈Λ′

E ≪ ε−20e−2te(2+η)t ≪ ε−21;

we used Lip(f−
1 ) Lip(ξ−)e−2t ≪ ε−20e−2t, see (4.14), and ε = e−η′t. This, (4.19)

and (4.11) imply that

qe2t
∑

v∈Λ′
nz\L∪L′

∫ 2π

0
f−(∆(atrθ)v)ξ(θ) dθ +O(ε−21) ≤

(ε+O(ε2)) ·N ′
t(Ωi,j),

as we claimed in (4.9). □

We will use Theorem 3.1 to reduce both (4.9) and (4.10) to the study of∫
X f̂±

i,j dmX , see (3.1). Let us begin with computing this integral.

4.5. Lemma. For σ = ± let fσ
i,j = fσ

1 f
σ
2 , where for k = 1, 2, fσ

k is as
in §4.3. There is an absolute constant cΛ so that

(4.20) q

∫
X
f̂σ
i,j dmX = cΛε(β − α)

∣∣Iσi,j∣∣ ∫ ϱσj +O(ε2)(β − α)
∣∣Iσi,j∣∣ ∫ ϱσj .

Proof. We have∫
X
f̂σ
i,j dmX = cΛ

∫
R2

fσ
1

∫
R2

fσ
2

= cΛε

∫
R
ϱσj

∫
R2

fσ
2 +O(ε2)

∫
R
ϱσj

∫
R2

fσ
2

where cΛ is absolute and the implied constants depend only on R.
Since f2 is defined as in (4.8), we conclude that∫

fσ
2 = q−1(β − α)|Iσi,j |+O

(
q−1ε(β − α)|Iσi,j |

)
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again the implied constant depends only on R. The lemma follows. □

4.6. Lemma. Let the notation be as in Lemma 4.5. In particular,

f±
i,j = f±

1 f±
2 ,

where f±
k are as in §4.3. Also put

Υ±
i,j = cΛ(β − α)

∣∣∣I±i,j∣∣∣ ∫ ξ±i

∫
ϱ±j .

If (i, j) ∈ I̊−
1 , then

(4.21) e2t
(
Υ−

i,j +O
(
S(f−

i,j)S(ξ
−
i )e

−δ2t
))

≤ (1 +O(ε)) ·N ′
t(Ωi,j)

Moreover, for every (i, j) ∈ I+
1 , we have

(4.22) (1 +O(ε)) ·N ′
t(Ω

+
i,j) ≤ e2t

(
Υ+

i,j +O
(
S(f+

i,j)S(ξ
+
i )e

−δ2t
))
.

where the implied constants depends polynomially on R.

Proof. We will prove the lemma using Lemma 4.4 and Theorem 3.1. Let us
begin with restating the main conclusion of Theorem 3.1 in the form which
will be used here. When there is no confusion, we drop i, j from the notation
and denote f±

i,j by f±, ξ±i by ξ±, etc.

Recall that Λ′ = gΛ where g = (g1, g2) is as in (4.1). Let L and L′ be as
in Lemma 4.2 if they exist. For σ = ±, put

f̂σ
sp(θ) =

∑
v∈Λ′∩(L∪L′)

fσ
sp(∆(atrθ)v)

Cσ =
{
θ ∈ [0, 2π] : f̂σ

sp(θ) ≥ eδ1t
}
,

and define

f̂σ
mod(θ) =

{
f̂σ(θ)− f̂σ

sp(θ) θ ∈ Cσ
f̂σ(θ) otherwise

where we write f̂σ(θ) = f̂σ(∆(atrθ)gΓ
′).

Since g satisfies (4.6), Theorem 3.1 and the definition of f̂σ
mod(θ) imply

(4.23)

∫ 2π

0
f̂σ
mod(θ)ξ

σ(θ) dθ=

∫
ξσdθ

∫
X
f̂σdmX +O

(
S(fσ)S(ξσ)e−δ2t

)
.

With this established, we first show (4.21). Let σ = −. Assuming η′ in

the definition of ε = e−η′t is small enough, we have

O(S(f−)S(ξ−)e−δ2t) < ε4(β − α).

Recall from §3.6 that
∫
ϱ−j ≥ ε and that

∣∣∣I−i,j∣∣∣ ≥ √
ε. Thus (4.23), together

with the above and Lemma 4.5, implies that

(4.24)

∫ 2π

0
f̂−
mod(θ)ξ

−(θ) dθ ≫ ε3(β − α).
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Moreover, by part (2) in Lemma 3.2 applied with δ1, L, and L′, we have

(4.25)

∫
[0,2π]\C−

f̂−
sp(θ) dθ ≪ e(−1+δ1)t

Recall that δ1 < 1/100, hence, if η′ < 1/100, then e(−1+δ1)t < ε4(β − α).
Thus, we get from (4.24) and (4.25)

(4.26)

∑
v∈Λ′

nz\(L∪L′)

∫ 2π

0
f−(∆(atrθ)v)ξ

−(θ) dθ

=

∫ 2π

0
f̂−
mod(θ)ξ

−(θ) dθ −
∫
[0,2π]\C−

f̂−
sp(θ)ξ

−
i (θ) dθ

= (1 +O(ε))

∫ 2π

0
f̂−
mod(θ)ξ

−(θ) dθ.

In view of (4.9) in Lemma 4.4,

qe2t
∑

v∈Λ′
nz\(L∪L′)

∫ 2π

0
f−(∆(atrθ)v)ξ

−(θ) dθ +O(ε−21) ≤

(ε+O(ε2)) ·N ′
t(Ωi,j)

Using this and (4.26) (multiplied by qe2t), we conclude

qe2t(1 +O(ε))

∫ 2π

0
f̂−
mod(θ)ξ

−(θ) dθ +O(ε−21) ≤ (ε+O(ε2)) ·N ′
t(Ωi,j).

This, (4.23) and (4.20) yield,

(4.27) e2t(Υ−
i,j +O(S(f−)S(ξ−)e−δ2t) +O(ε−21) ≤ (1 +O(ε)) ·N ′

t(Ωi,j).

Assuming η′ is small enough and t large, we have

ε−23 < e2t ·
(
cΛ(β − α) |Ii,j,−|

∫
R
ϱ−j

∫
R
ξ−i

)
.

Hence, (4.21) follows from (4.27).
We now show (4.22); the argument is similar and simpler. By (4.10),

(4.28) (ε+O(ε2)) ·N ′
t(Ω

+
i,j) ≤ qe2t

∑
v∈Λ′

nz\(L∪L′)

∫ 2π

0
f+(∆(atrθ)v)ξ

+(θ) dθ

≤ qe2t
∫ 2π

0
f̂+
mod(θ)ξ

+(θ) dθ.

Thus, (4.22) follows from (4.28), (4.23) and (4.20), applied with σ = +. □

4.7. Lemma. There exists η depending on η′ and some C̄1 so that

(4.29) Nt(Ω \ D) = C̄1(β − α)e2t +M0 +O
(
(1 + |α|+ |β|)Ne(2−2η)t

)
where N is absolute, the implied constants depend on R and

M0 = #{v ∈ Λ′
nz ∩ (L ∪ L′) ∩ et(Ω \ D) : α ≤ Q0(v) ≤ β}.
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Similar assertion holds with Ω \ D replaced by D \ e−1D.

Proof. We will prove the assertion for Ω\D, the proof for D\e−1D is similar.
Recall that Ω \ D = Ω1 ∪ Ω2 where

Ω1 =
{
(v1, v2) ∈ Ω : ∥v1∥ > 1

}
and

Ω2 =
{
(v1, v2) ∈ Ω : ∥v1∥ ≤ 1, ∥v2∥ > 1

}
.

Fix k = 1 or 2. By (4.21), for all (i, j) ∈ I̊−
k ,

(4.30) e2t
(
Υ−

i,j +O
(
S(fσ

i,j)S(ξ+i )e
−δ2t

))
≤

(1 +O(ε)) ·N ′
t(Ωi,j) ≤ (1 +O(ε)) ·Nt(Ω

+
i,j),

where we used Ωi,j ⊂ Ω+
i,j in the second inequality, (3.22).

Also by (4.22), for all φ+
i,j ∈ I+

k , we have

(4.31) (1 +O(ε)) ·N ′
t(Ω

+
i,j) ≤ e2t

(
Υ+

i,j +O
(
S(f+

i,j)S(ξ
+
i )e

−δ2t
))
.

Thus summing (4.30) over all (i, j) ∈ I̊−
k ,

(4.32) e2t
∑
I̊−
k

(
Υ−

i,j +O
(
S(f+

i,j)S(ξ
+
i )e

−δ2t
))

≤

(1 +O(ε))
∑
I̊−
k

N ′
t(Ωi,j) ≤ (1 +O(ε))

∑
I̊−
k

N ′
t(Ω

+
i,j)

Moreover, summing (4.31) over all (i, j) ∈ I+
k , we get the following:

(4.33) (1 +O(ε))
∑
I̊−
k

N ′
t(Ω

+
i,j) ≤ (1 +O(ε))

∑
I+
k

N ′
t(Ω

+
i,j) ≤

e2t
∑
I+
k

(
Υ+

i,j +O
(
S(f+

i,j)S(ξ
+
i )e

−δ2t
)
.

By (3.23a) and (3.23b), Ωi,j ⊂ Ωk are disjoint and Ωk ⊂
⋃

I+
k
Ω+
i,j .

Hence, (4.32) implies that

(4.34) (I) ≤ (1 +O(ε))N ′
t(Ωk) ≤ (II).

where (I) is the first line in (4.32) and (II) is the last line in (4.33).
Recall from Lemma 4.6 that

Υ±
i,j = cΛ(β − α) |Ii,j,±|

∫
R
ξ±i

∫
R
ϱ±j

in view of (ξ-1), (ϱ-1), and (3.25), the above implies that∑
I+
k

Υ+
i,j = (1 +O(ε))

∑
I̊−
k

Υ−
i,j = (1 +O(ε))(β − α)C̄k,1

where C̄k,1 is absolute and the implied constants depend on R.
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Furthermore, using ε = e−η′ , we conclude∑
i,j

S(f±
i,j,)S(ξ

±
i )e

−δ2t ≪ (1 + |α|+ |β|)Nε−Ne−δ2t

≪ (1 + |α|+ |β|)Ne−δ2t/2,

where the implied constant depends on R and we assume η′ is small enough
so that δ2 −Nη′ > δ2/2.

Altogether, there is some η > 0 so that for k = 1, 2, we have

N ′
t(Ωk) = C̄k,1(β − α)e2t + (1 + |α|+ |β|)Ne(2−2η)t

Since Ω \ D = Ω1 ∪ Ω2 is a disjoint union, we conclude that

(4.35) N ′
t(Ω \ D) = C̄1(β − α)e2t + (1 + |α|+ |β|)Ne(2−2η)t

where C̄1 = C̄1,1 + C̄2,1.
The lemma follows from (4.35) and the definition of M0. □

Proof of Theorem 1.2. We will again use the following

(4.36) #{v ∈ Λ′ ∩ e
2t
5 D} ≤ C ′

1e
8t
5

where C ′
1 depends on R, see (3.28).

First Apply Lemma 4.7, with t and Ω \ D. Then

(4.37) N ′
t(Ω \ D) =

C̄1(β − α)e2(t−ℓ) +M′ +O
(
(1 + |α|+ |β|)Ne(2−2η)(t−ℓ)

)
where

M′ = #
{
v ∈ Λ′

nz ∩ (L ∪ L′) ∩ et
(
Ω \ D

)
: α ≤ Q0(v) ≤ β

}
We now control the contribution of Λ′ ∩ etD to the count. Recall our

notation D(e−ℓ) = e−ℓD. Then etD(e−ℓ) = et−ℓD, and

et−ℓ
(
D \ e−1D

)
= et(D(e−ℓ) \ (e−1D(e−ℓ)).

Applying Lemma 4.7 with t− ℓ (instead of t) for ℓ ≤ 3t/5 and D \ e−1D,

(4.38) N ′
t(D(e

−ℓ) \ e−1D(e−ℓ)) =

¯̄C1(β − α)e2(t−ℓ) +Mℓ +O
(
(1 + |α|+ |β|)Ne(2−2η)(t−ℓ)

)
where

Mℓ = #
{
v ∈ Λ′

nz ∩ (L ∪ L′) ∩ et
(
D(e−ℓ) \ e−1D(e−ℓ)

)
: α ≤ Q0(v) ≤ β

}
and L,L′ are as in Lemma 4.2.

Summing (4.38) over 0 ≤ ℓ ≤ 3t/5, we get

Nt(D \ e−3t/5D) = ¯̄C1(β − α)e2t +M′′ +O((1 + |α|+ |β|)Ne(2−η)t)

where M′′ =
∑

Mℓ. This, (4.37) and (4.36) thus imply

(4.39) Nt(Ω) = C1(β − α)e2t +M+O
(
(1 + |α|+ |β|)Ne(2−η)t

)
where M = #{v ∈ Λ′

nz ∩ (L ∪ L′) ∩ etΩ : α ≤ Q0(v) ≤ β}.
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To conclude the proof, we rewrite (4.39) in the notation of Theorem 1.2
and further analyze M. Recall that t = 1

2 log T , hence, by (4.3) and (4.39),

(4.40) RM(α, β, T ) = C1(β − α)T +M+O
(
(1 + |α|+ |β|)NT 1− η

2
)
.

We now turn to the term M. Since

Q0(g1w1, g2w2) = Q0(g
−1
2 g2w1, w2) and g−1

2 g2 =

(
a b
b c

)
.

We conclude, as in the proof of Lemma 2.5, that if we put w1 = (x1, y1) and
w2 = (−y2, x2), then ui = (xi, yi) satisfy

(4.41)
∥ui∥ ≤ max{

∥∥g±1
1

∥∥ , ∥∥g±1
2

∥∥}eδ1t/Ā ≤ e2δ1t/Ā and

|BM(u1, u2)| =
∣∣Q0(g

−1
2 g1w1, w2)

∣∣ ≤ e−2δ1t/5.

where we assumed t is large in the second inequality of the first line. Thus
by Lemma 2.5, the pair (w′

1, w
′
2) is obtained from (u2, u1) using the above

relation, that is, w′
1 = (x2, y2) and w′

2 = (−y1, x1).
Let v ∈ Λ′ ∩ (L∪L′)∩ etΩ satisfy that α ≤ Q0(v) ≤ β. For simplicity, let

us assume that v ∈ L and write v = ℓ1(g1w1, 0) + ℓ2(0, g2w2). Then,

v = (v1 + v2, ω(v1 − v2)) = (ℓ1g1w1, ℓ2g2w2)

where vi ∈ 2π∆∗ and ∥vi∥ ≤ et. Recall also that (g1, g2) = (gM,−ωgMω)
and gMZ2 = 2π∆∗, hence,

v1 = gM
ℓ1w1−ℓ2ωw2

2 = gM
ℓ1u1+ℓ2u2

2

v2 = gM
ℓ1w1+ℓ2ωw2

2 = gM
ℓ1u1−ℓ2u2

2 ;

changing L to L′ yields v1 = gM
ℓ1u1+ℓ2u2

2 and v2 = gM
−ℓ1u1+ℓ2u2

2 .
Altogether, (4.2) implies that

M = #

{
(ℓ1, ℓ2) :

gM
ℓ1u1+ℓ2u2

2 = v1, gM
ℓ1u1−ℓ2u2

2 = v2
vi ∈ 2π∆∗, ∥vi∥ ≤ et, α ≤ ∥v1∥2 − ∥v2∥2 ≤ β

}
.

By Lemma 2.6, applied with 2δ1/Ā and Ā/5, we conclude that

M ≪ max(|α| , |β|)e(2−
2δ1
Ā

)t = max(|α| , |β|)T 1− δ1
Ā ,

where the implied constant depends on a, b, and c unless

|BM(u1, u2)| ≤ e(−2+
2δ1
Ā

)t ≤ T−1+δ.

Let κ = min{η/2, δ1/Ā}. Altogether, we conclude that

RM(α, β, T ) = C1(β − α)T +O
(
(1 + |α|+ |β|)NT 1−κ

)
unless {u1, u2} satisfy (1.5), in which case, we have

(4.42) RM(α, β, T ) = C1(β − α)T +M+O
(
(1 + |α|+ |β|)NT 1−κ

)
.
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We now show that M = MT (u1, u2). Let (ℓ1, ℓ2) be as in the definition of
M, then

BM( ℓ1u1+ℓ2u2
2 ) =

∥∥∥gM ℓ1u1+ℓ2u2
2

∥∥∥2 = ∥v1∥2 ≤ e2t = T

Similarly for v2 =
ℓ1u1−ℓ2u2

2 . Moreover, we have

∥v1∥2 − ∥v2∥2 = BM( ℓ1u1+ℓ2u2
2 )−BM( ℓ1u1−ℓ2u2

2 )

= BM(u1, u2)ℓ1ℓ2 ∈ [α, β].

Thus (ℓ1/2, ℓ2/2) satisfies the conditions in the definition MT (u1, u2). Sim-
ilarly if (ℓ′1, ℓ

′
2) satisfies the conditions in the definition MT (u1, u2), then

(2ℓ′1, 2ℓ
′
2) satisfy the conditions in the definition of M.

The proof is complete. □

Proof of Corollary 1.3. We first prove part (1). Recall our assumption
that there exist A, q > 0 so that for all (m,n, k) ∈ Z3 we have

(4.43) |am+ bn+ ck| > q ∥(m,n, k)∥−A .

This implies that (1.4) holds for some A′, depending on A, and all T ≥
T0(A, q). Furthermore, in view of (4.43), for ui = (xi, yi) ∈ Z2, we have

|BM(u1, u2)| = |ax1x2 + b(y1x2 + x1y2) + cy1y2| >

q ∥(x1x2, y1x2 + x1y2, y1y2)∥−A ,

which implies (1.5) does not hold so long as δ is small enough. In view of
Theorem 1.2, this finishes the proof of part (1).

The proof of part (2) is similar. Recall that b = 0 and ac = 1. By our
assumption there exist A, q > 0 so that for all (m,n) ∈ Z2, we have

(4.44)
∣∣a2m+ n

∣∣ > q ∥(m,n)∥−A .

As in the previous case, we conclude that (1.4) holds for some A′, depending
on A, and all T ≥ T0(A, q). Hence, by Theorem 1.2, either∣∣RM(α, β, T )− π2(β − α)

∣∣ ≤ C(1 + |α|+ |β|)NT−κ,

which implies the claim in this part, or there are u1, u2 ∈ Z2 \ {0} so that

(4.45) ∥u1∥ , ∥u2∥ ≤ T δ/A and |BM(u1, u2)| ≤ T−1+δ

and moreover

(4.46) RM(α, β, T )− π2(β − α) =
MT (u1, u2)

T
+O

(
C(1 + |α|+ |β|)NT−κ

)
where

MT (u1, u2) = #

(ℓ1, ℓ2) ∈ 1
2Z

2 :
ℓ1u1 ± ℓ2u2 ∈ Z2,
BM(ℓ1u1 ± ℓ2u2) ≤ T,
4BM(u1, u2)ℓ1ℓ2 ∈ [α, β]

 .
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By Lemma 2.5, if T0 is large enough, then BM(u1, u2) = 0. Hence
MT (u1, u2) does not contribute to R′

M(α, β). This and (4.46) finish the
proof of this case and of the corollary. □

5. Equidistribution of expanding circles

In this section we prove an effective equidistribution result for circular
averages; the proof is based on [LMW22].

Let G = SL2(R)× SL2(R) and let Γ ⊂ G be a lattice; put X = G/Γ. Let
mX denote the G-invariant probability measure on X.

We fix a right invariant metric on G using the Killing form and the maxi-
mal compact subgroup SO(2)×SO(2), and let dX denote the induced metric
on X. There exists D′ so that for all τ ≥ 2 and all θ ∈ R,

(5.1) dX(x, x′) ≤ eD
′τdX(∆(aτrθ)x,∆(aτrθ)x

′)

For the convenience of the reader, we give again the statement of Theo-
rem 1.4:

1.4. Theorem. Assume Γ is arithmetic. For every x0 ∈ X, and large
enough R (depending explicitly on X and the injectivity radius at x0), for
any et ≥ RD, at least one of the following holds.

(1) For every ϕ ∈ C∞
c (X) and 2π-periodic smooth function ξ on R, we have∣∣∣∫ 2π

0
ϕ(∆(atrθ)x0)ξ(θ) dθ −

∫ 2π

0
ξ(θ) dθ

∫
ϕ dmX

∣∣∣ ≤ S(ϕ)S(ξ)R−κ0

where we use S(·) to denote an appropriate Sobolev norm on both X and
R respectively.

(2) There exists x ∈ X such that Hx is periodic with vol(Hx) ≤ R, and

dX(x, x0) ≤ RDtDe−t.

The constants D and κ0 are positive and depend on X but not on x0.

Proof. Fix 0 < ζ0 < 1/10 such that the U−AU decomposition is an analytic
diffeomorphism on the identity neighborhood of radius 2ζ0 in SL2(R) where
U− is the subgroup of lower triangular unipotent matrices, U is the subgroup
of upper triangular unipotent matrices, and A is the subgroup of diagonal
matrices. In particular, there are analytic diffeomorphism s−, τ , s from
(−ζ0, ζ0) to neighborhoods of 0 in (−1, 1), such that rζ = u−

s−(ζ)
aτ(ζ)us(ζ).

Note that

(5.2) τ(ζ) = O(ζ2), s(ζ) = ζ +O(ζ2), s−(ζ) = −ζ +O(ζ2),

and d
dζ s = 1 +O(ζ).

Using this we approximate the circular average (on small intervals) with
unipotent average. First note that

∆(atrζ̂+ζ)x0 = ∆(atu
−
s−(ζ)

aτ(ζ)us(ζ)rζ̂)x0

= ∆(atu
−
s−(ζ)

a−taτ(ζ))∆(atus(ζ)rζ̂)x0
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is within distance O(e−2ts−(ζ)+τ(ζ)) = O(e−2tζ+ζ2) from ∆(atus(ζ)rζ̂)x0.

Therefore for all 0 ≤ ζ ≤ ζ0 we have

1

ζ

∫ ζ

0
ϕ(∆(atrζ̂+θ)x0) dθ =

1

ζ

∫ ζ

0
ϕ(∆(atus(θ)rζ̂)x0) dθ +O

(
S(ϕ)(e−2tζ + ζ2)

)
=

1

ζ

∫ s(ζ)

0
ϕ(∆(atuθrζ̂(x0)(s

−1(θ))′ dθ +O
(
S(ϕ)(e−2tζ + ζ2)

)
where we used the above estimate in the first equality and a change of
variable in the second equality.

Since s(ζ)− ζ = O(ζ2), see (5.2), we conclude that

1

ζ

∫ ζ

0
ϕ(∆(atrζ̂+θ)x0) dθ =

1

ζ

∫ ζ

0
ϕ(∆(atuθrζ̂)x0)(s

−1(θ))′ d θ +O
(
S(ϕ)ζ

)
where we used e−2tζ + ζ2 ≤ 2ζ.

Similarly, using supθ∈(0,ζ)
∣∣(s−1(θ))′ − 1

∣∣ ≪ ζ and a change of variable,

(5.3)

1

ζ

∫ ζ

0
ϕ(∆(atrζ̂+θ)x0) dθ =

1

ζ

∫ ζ

0
ϕ(∆(atuθrζ̂)x0) dθ +O

(
S(ϕ)ζ

)
=

∫ 1

0
ϕ(∆(atuζsrζ̂)x0) ds+O

(
S(ϕ)ζ

)
.

Let τ = −(log ζ)/2. Then

(5.4)

∫ 1

0
ϕ(∆(atuζsrζ̂)x0) ds =

∫ 1

0
ϕ(∆(at−τaτuζsa−τaτrζ̂)x0) ds

=

∫ 1

0
ϕ(∆(at−τusaτrζ̂)x0) ds.

Let D1 and κ1 be the constants given by [LMW22, Thm. 1.1] applied with
X (D1 denotes A in [LMW22, Thm. 1.1]). We will show the proposition
holds with

D = D1 +D′ + 1

where D′ is as in (5.1).

Let T = et−τ and R = eD
′′τ for some D′′ ≥ 1 which will explicated

momentarily. Assume et ≥ RD, then

(5.5) T = et−τ = etR−1/D′′ ≥ RD−1 ≥ RD1 .

Apply [LMW22, Thm. 1.1], with xζ̂ := ∆(aτrζ̂)x0, T ≥ RD1 , see (5.5),

then so long as D′′ is large enough, at least one of the following holds:

Case 1: For every ζ̂ ∈ [0, 2π] and all ϕ ∈ C∞
c (X),

(5.6)

∣∣∣∣∫ 1

0
ϕ(∆(alog Tus)xζ̂) ds−

∫
ϕ dmX

∣∣∣∣ ≤ S(ϕ)R−κ1 .
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Case 2: For some ζ̂ ∈ [0, 2π], there exists x ∈ X such that Hx is periodic
with vol(Hx) ≤ R and

(5.7) dX(x, xζ̂) ≤ RD1(log T )D1T−1.

We will show that part 1 in the proposition holds if case 1 holds and
part 2 in the proposition hols if case 2 holds.

Let us first assume that case 1 holds. We begin with the following com-
putation.∫ 2π

0
ϕ(∆(atrθ)x0)ξ(θ) dθ =

1

ζ

∫ 2π

ζ̂=0

∫ ζ

0
ϕ(∆(atrζ̂+θ)x0)ξ(ζ̂ + θ) dθ dζ̂

=
1

ζ

∫ 2π

ζ̂=0

(∫ ζ

0
ϕ(∆(atrζ̂+θ)x0) dθ

)
ξ(ζ̂) dζ̂

+O
(
sup |ϕ| · sup

ζ̂∈[0,2π],θ∈[0,ζ]
|ξ(ζ̂ + θ)− ξ(ζ̂)|

)
Thus, we conclude

(5.8)

∫ 2π

0
ϕ(∆(atrθ)x0)ξ(θ) dθ =

1

ζ

∫ 2π

ζ̂=0

(∫ ζ

0
ϕ(∆(atrζ̂+θ)x0) dθ

)
ξ(ζ̂) dζ̂ +O(S(ϕ)S(ξ)ζ).

Furthermore, by (5.3) and (5.4), we have

(5.9)
1

ζ

∫ ζ

0
ϕ(∆(atrζ̂+θ)x0) dθ =

∫ 1

0
ϕ(∆(alog Tus)xζ̂) ds+O(S(ϕ)ζ).

Altogether, using (5.6), (5.8), and (5.9), we conclude that

(5.10)
∣∣∣∫ 2π

0
ϕ(∆(at rθ)x0)ξ(θ) dθ −

∫ 2π

0
ξ(θ) dθ

∫
ϕ dmX

∣∣∣ ≤
S(ϕ)S(ξ)R−κ0 ;

where κ0 = min{κ1, 2/D′′} — we used ζ−1 = e2τ = R2/D′′
. Thus, part 1 in

the proposition holds if case 1 holds.

Let us now assume that case 2 holds and let xζ̂ = ∆(aτrζ̂)x0 be as in (5.7).

Then by (5.1), we have

dX(∆(aτrζ̂)
−1x, x0) ≤ eD

′τRD1(log T )D1T−1

≤ e(1+D′)τRD1tD1e−t ≤ RDtDe−t.

Furthermore, ∆(aτrζ̂)
−1x has a periodic H-orbit of volume ≤ R. Thus

part 2 in the proposition holds in this case. The proof is complete. □
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6. Cusp functions of Margulis and the upper bound

In this section, we put

Γ = SL2(Z)× SL2(Z) ⊂ G.

Recall the following definition.

Definition 2.3. Let g = (g1, g2) ∈ G. A two dimensional gZ4-rational linear
subspace L ⊂ R4 is called (ρ,A, t)-exceptional if there are (v1, 0), (0, v2) ∈ Z4

satisfying

(6.1) ∥g1v1∥ , ∥g2v2∥ ≤ eρt and |Q0(g1v1, g2v2)| ≤ e−Aρt

so that L ∩ gZ4 is spanned by {(g1v1, 0), (0, g2v2)}.
Given a (ρ,A, t)-special subspace L, we will refer to {(g1v1, 0), (0, g2v2)}

as a spanning set for L.

Let fi ∈ Cc(R2), and define f on R4 by f(w1, w2) = f1(w1)f2(w2). For
every h ∈ SL2(R), let

(6.2) f̃ρ,A,t(h; gΓ) =
∑

v∈Nt(gZ4)

f(∆(h)v).

where Nt

(
gZ4

)
denotes the set of vectors in gZ4 not contained in any

(ρ,A, t)-special subspace L and also not contained in R2 × {0} ∪ {0} ∪ R2.
In the sequel, we will often drop the dependence on A, ρ, and t from the
notation and denote f̃ρ,A,t(h; gΓ) by f̃(h; gΓ).

The following is one of the main results of this section.

6.1. Proposition. For all A1 ≥ 103 we have the following: Let (g1, g2) ∈
G. Then for all small enough ρ and all large enough t at least one of the
following holds:

(1) Let Ct = {θ ∈ [0, 2π] : f̃(atrθ; gΓ) ≥ eA1ρt}. Then∫
Ct
f̃(atrθ; gΓ) dθ ≪ e−ρ3t/A1 .

where f̃(h; gΓ) = f̃ρ,A1,t(h; gΓ), see (6.2).
(2) There exists Q ∈ Mat2(Z) whose entries are bounded by e100ρt and λ ∈ R

satisfying
∥∥g−1

2 g1 − λQ
∥∥ ≪ e−(A1−100)ρt.

The implied constants depend polynomially on ∥g1∥ and ∥g2∥.

The proof of this proposition occupies most of this section.

The cusp functions. Let P denote the set of primitive vectors in Z2. For
any h ∈ SL2(R), define

(6.3) ω(hSL2(Z)) = sup
{
1/ ∥hv∥ : v ∈ P

}
.

We begin with the following lemma.
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6.2. Lemma (cf. Lemma 7.4 [EM01]). For every 0 < p < 2, there exists tp
and bp so that the following holds. For every x ∈ SL2(R)/SL2(Z) and all
t ≥ tp, we have ∫ 2π

0
ω(atrθx)

p dθ ≤ 2−t/tpω(x)p + bp.

Proof. This is by now well known, see e.g. [EM22]. □

The sets Θt(δ) and Θ′
t(δ). To put an emphasis on the product structure

of G and X, we will often write X = G1/Γ1 × G2/Γ2 where Gi = SL2(R)
and Γi = SL2(Z). Moreover, given g = (g1, g2) ∈ G, we write

(6.4) ωi(giΓi) := ω(giSL2(Z)).

For i = 1, 2, let xi ∈ Gi/Γi. For all t ≥ 0 and every 0 < δ ≤ 1/10, let

(6.5) Θt(δ)=
{
θ ∈ [0, 2π] :ω2(atrθx2)

1−2δ ≤ ω1(atrθx1) ≤ ω2(atrθx2)
1+2δ

}
and let Θ′

t(δ) = [0, 2π] \Θt(δ).

We have the following

6.3. Lemma. Let 0 < δ < 1/10, and put

p1 = (2− 2δ)(1 + 1
2δ) and p2 =

(2 + 2δ)(1 + 1
2δ)

1 + 2δ
;

note that p1, p2 < 2. Let t(δ) = max(tp1 , tp2) and b(δ) = max(bp1 , bp2) where
the notation is as in Lemma 6.2. Then for all (x1, x2) ∈ X and all t ≥ t(δ)∫

Θ′
t(δ)

(
ω1(atrθx1)ω2(atrθx2)

)1+ 1
2
δ
dθ ≤ 2−t/t(δ)

(
ω1(x1) + ω2(x2)

)
+ 2b(δ).

Proof. Let us write Θ′
t(δ) = Θ′

t,1(δ) ∪Θ′
t,2(δ), where

Θ′
t,1(δ) = {θ ∈ [0, 2π] : ω2(atrθx1) < ω1(atrθx2)

1−2δ}

Θ′
t,2(δ) = {θ ∈ [0, 2π] : ω2(atrθx1) > ω1(atrθx2)

1+2δ}.

Using Lemma 6.2, for every t > tp1 we have∫
Θ′

t,1(δ)

(
ω1(atrθx1)ω2(atrθx2)

)1+ 1
2
δ
dθ ≤

∫ 2π

0
ω1(atrθx1)

p1 dθ

≤ 2−t/tp1ω2(x2) + bp1 .

Similarly, for every t > tp2 , we have∫
Θ′

t,2(δ)

(
ω1(atrθx1)ω2(atrθx2)

)1+ 1
2
δ
dθ ≤

∫ 2π

0
ω2(atrθx2)

p2 dθ

≤ 2−t/tp2ω1(x1) + bp2 .

The claim follows from these two estimates. □
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A Diophantine condition. The following lemma is a crucial input in the
proof of Proposition 6.1.

For every t ≥ 1, let

Pt = {v ∈ P : et−1 ≤ ∥v∥ < et}
P(t) = {v ∈ P : ∥v∥ < et}.

6.4. Lemma. The following holds for all A ≥ 103 and all ρ ≤ 1/(100A). Let
(g1, g2) ∈ G, there exist t1 ≥ 1, depending on ρ and polynomially on ∥gi∥,
so that if t ≥ t1, then at least one of the following holds:

(1) We have

#
{
v1 ∈ Pt : ∃v2 ∈ P(t), |Q0(g1v1, g2v2)| ≤ e−Aρt

}
≪ e(2−ρ)t

where the implied constant depends polynomially on ∥gi∥.
(2) There exist Q ∈ Mat2(Z) whose entries are bounded by e100ρt and λ ∈ R

satisfying
∥∥g−1

2 g1 − λQ
∥∥ ≤ e−(A−100)ρt.

Proof. For simplicity in the notation, let us write η = e−ρt. Let A ≥ 103,
and assume that

(6.6) #
{
v1 ∈ Pt : ∃v2 ∈ P(t), |Q0(g1v1, g2v2)| ≤ ηA

}
>

E(∥g1∥ ∥g2∥)Eηe2t.
We will show that if E is large enough, then part (2) holds.

Let us write

h := g−1
2 g1 =

(
a b
c d

)
.

Then (6.6) and the fact that for any q ∈ SL(2,R), ∆(q) ∈ SO(Q0) imply that
if t is large enough, depending on ∥h∥, for ≫ ηe2t many v1 = (x1, y1) ∈ Pt

both of the following hold

• We have |cx1 + dy1| ≥ η2et.
• There exists at least one (x2, y2) ∈ P(t) so that

(6.7) |Q0(h(x1, y1), (x2, y2))| ≤ ηA.

Moreover, the fact that there are ≫ ηe2t vectors satisfying these two
conditions implies that there are v1, v

′
1, v

′′
1 ∈ Pt satisfying the above two

conditions so that

(6.8) 1 ≤ |Q0(v, w)| ≪ η−4, for v, w ∈ {v1, v′1, v′′1}.
Let us fix three vectors v1, v

′
1, v

′′
1 satisfying (6.8), and let v2, v

′
2, v

′′
2 be the

corresponding vectors in P(t) satisfying (6.7), respectively. Then

(6.9) hv1 = µv2 + w1,2

where µ ∈ R satisfies |µ| ≍ 1 and ∥w1,2∥ ≪ ηAe−t (recall that the implicit
constants in these inequalities are allowed to depend polynomially on ∥h∥).
Similarly,

hv′1 = µ′v′2 + w′
1,2 and hv′′1 = µ′′v′′2 + w′′

1,2
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where µ′, µ′′ ∈ R satisfy |µ′| , |µ′′| ≍ 1 and
∥∥w′

1,2

∥∥ , ∥∥w′′
1,2

∥∥ ≪ ηAe−t.
With this notation we have

(6.10) h(v1 v
′
1) = (v2 v

′
2)

(
µ 0
0 µ′

)
+O(ηAe−t)

and similarly for v1, v
′′
1 and v′1, v

′′
1 . Thus by (6.8)

(6.11) 1 ≤
∣∣Q0(v2, v

′
2)
∣∣ , ∣∣Q0(v2, v

′′
2)
∣∣ , ∣∣Q0(v

′
2, v

′′
2)
∣∣ ≪ η−4.

In view of (6.8), (6.9), (6.10) and (6.11) the conditions in Lemma 2.2
hold. The claim thus follows from Lemma 2.2 so long as t is large enough
to account for the constant C in that lemma. □

Proof of Proposition 6.1. Recall that g = (g1, g2). Put

xi = giSL2(Z), for i = 1, 2.

Let A1 ≥ 104, 0 < ρ < 10−4 (small), and t ≥ 1 (large) be so that Lemma 6.4
holds for these choices. Put δ = 2ρ2/A1, and define Θt(δ) and Θ′

t(δ) as
in (6.5) with t and δ and xi. That is,

Θt(δ) =
{
θ ∈ [0, 2π] : ω2(atrθx2)

1−2δ ≤ ω1(atrθx1) ≤ ω2(atrθx2)
1+2δ

}
,

and Θ′
t(δ) = [0, 2π] \Θt(δ).

Apply Lemma 6.4 with A = A1 and ρ. If part (2) in that lemma holds,
then part (2) in Proposition 6.1 holds and the proof is complete. Thus,
assume for the rest of the argument that part (1) in Lemma 6.4 holds. We
will show that part (1) in the Proposition 6.1 holds.

Motivated by the definition of f̃ and Lemma 2.4, define

(6.12) ω̃(atrθ; gΓ) = sup
{(

∥atrθg1v1∥∥atrθg2v2∥
)−1

: (v1, v2) ∈ P2(g)
}

where P is the set of primitive vectors in Z2 and P2(g) denotes the set
of (v1, v2) ∈ P2 so that {(g1v1, 0), (0, g2v2)} is not a spanning set for any
(ρ,A1, t)-special subspace of gZ4, see Definition 2.3.

It follows from the definition that

(6.13) ω̃
(
atrθ; gΓ

)
≤ ω1(atrθx1)ω2(atrθx2).

Put Bt = {θ ∈ [0, 2π] : ω̃(atrθ; gΓ)<ω1(atrθx1)ω2(atrθx2)}.
By a variant of Schmidt’s Lemma, see also [EMM98, Lemma 3.1], and

the definition of f̃ , we have

(6.14) f̃(atrθ; gΓ) ≪ ω̃
(
atrθ; gΓ

)
.

Put C̃t = {θ ∈ [0, 2π] : ω̃(atrθ; gΓ) ≥ eA1ρt}. In view of (6.14) and with this
notation, it suffices to show that

(6.15)

∫
C̃t
ω̃(atrθ; gΓ) dθ ≪ e−ρ2t/A1 .
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Contribution of Bt. Recall that if ω(hSL2(Z)) ≥ 2 for some h ∈ SL2(R),
then there is some vh ∈ P so that

(6.16) ∥hvh∥−1 = ω(hSL2(Z)) and ∥hv∥ > 1/2 for all vh ̸= v ∈ P.

Let θ ∈ Bt. By the definition of ω̃, there exist v1, v2 ∈ P so that

ω̃(atrθ; gΓ) = ∥atrθg1v1∥−1 ∥atrθg2v2∥−1 .

Since ω̃(atrθ; gΓ) < ω1(atrθg1Γ1)ω2(atrθg2Γ2), we conclude that

min
{
∥atrθg1v1∥−1 , ∥atrθg2v2∥−1} ≤ 2.

Therefore, for all such θ, we have

ω̃(atrθ; gΓ) ≤ 2max{ω1(atrθg1Γ1), ω2(atrθg2Γ2)}.
Thus using Lemma 6.2, we have

(6.17)

∫
Bt∩C̃t

ω̃(atrθ; gΓ) dθ ≤ e−
A1ρt

2

∫
Bt

ω̃(atrθ; gΓ)
3/2 dθ

≤ 2e−
A1ρt

2

∫ 2π

0
ω1(atrθx1)

3
2 + ω1(atrθx2)

3
2 dθ ≪ e−

A1ρt
2 .

Let Θt(θ) and Θ′
t(δ) be as above, and put

C̃t(δ) := C̃t ∩ B∁
t ∩Θt(δ) and C̃′

t(δ) := C̃t ∩ B∁
t ∩Θ′

t(δ).

We consider the contribution of these two sets to
∫
ω̃ separately — indeed,

controling the contribution of C̃t(δ) occupies bulk of the proof.

Contribution of C̃′
t(δ). By Lemma 6.3, for all t large enough, we have∫

Θ′
t(δ)

(
ω1(atrθx1)ω2(atrθx2)

)1+ 1
2
δ
dθ ≪ 1

From this and (6.13), we conclude that

(6.18)

∫
C̃′
t(δ)

ω̃(atrθ; gΓ) dθ ≤
∫
C̃′
t(δ)

ω1(atrθx1)ω2(atrθx2) dθ

≤ e−δρA1t/2

∫
Θ′

t(δ)

(
ω1(atrθx1)ω2(atrθx2)

)1+ 1
2
δ
dθ ≪ e−ρ3t.

Contribution of C̃t(δ). Recall that

Θt(δ) =
{
θ ∈ [0, 2π] : ω2(atrθx2)

1−2δ ≤ ω1(atrθx1) ≤ ω2(atrθx2)
1+2δ

}
,

and C̃t(δ) = C̃t ∩ B∁
t ∩Θt(δ). Note that the vectors which contribute to

(6.19)

∫
C̃t(δ)

ω̃(atrθ; gΓ) dθ

satisfy
{
(g1v1, g2v2) : ∥g1v1∥ , ∥g2v2∥ ≤ et

}
. It is more convenient to consider

the cases ∥g1v1∥ ≥ ∥g2v2∥ and ∥g1v1∥ ≤ ∥g2v2∥ separately. As the arguments
are similar in both cases, we assume ∥g1v1∥ ≥ ∥g2v2∥ for the rest of the proof.
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Recall our notation: for t ≥ 1

Pt = {v ∈ P : et−1 ≤ ∥v∥ < et},

and P(t) = {v ∈ P : ∥v∥ ≤ et}.
For every n ∈ N with n ≤ t + log ∥g1∥ + 1 =: t1, we investigate the

contribution of Pn to (6.19). For any v1 ∈ Pn, let

Iv1 = {θ ∈ [0, 2π] : ∥atrθg1v1∥ ≤ 1/10}.

Then the intervals Iv1 are disjoint. Let P̃n = {v1 ∈ Pn : Iv1 ∩ C̃t(δ) ̸= ∅}.
Fix some n ∈ N, n ≤ t1. Let v1 ∈ P̃n, and let θ ∈ Iv1 ∩ C̃t(δ). Then there

exists v2 ∈ P so that

ω̃(atrθ; gΓ) =
1

∥atrθg1v1∥ ∥atrθg2v2∥
.

Since θ ∈ Bt, we have ω̃(atrθ; gΓ) = ω1(atrθx1)ω2(atrθx2). Thus

(6.20) ωi(atrθxi) = ∥atrθgivi∥−1 for i = 1, 2.

In view of (6.20), and the definitions of Bt and Θt(θ), thus

(6.21)

∫
C̃t(δ)

ω̃(atrθ; gΓ) dθ ≤
∑
n

∑
P̃n

∫
Iv1

∥atrθg1v1∥−2−2δ.

We also make some observations. Fix some n ∈ N, n ≤ t1. Let v1 ∈ P̃n

and θ ∈ Iv1 ∩ C̃t(δ), and let v2 ∈ P be so that (6.20) holds. That is,

ωi(atrθxi) = ∥atrθgivi∥−1, for i = 1, 2, and

ω̃(atrθ; gΓ) =
(
∥atrθg1v1∥ ∥atrθg2v2∥

)−1
.

Since θ ∈ C̃t, we have ω̃(atrθ; gΓ) ≥ eA1ρt. This gives

∥atrθg1v1∥ ∥atrθg2v2∥ ≤ e−A1ρt,

which implies that∣∣Q0

(
∆(atrθ)(g1v1, g2v2)

)∣∣ = |Q0(atrθg1v1, atrθg2v2)| ≤ e−A1ρt.

Since ∆(atrθ) ∈ SO(Q0), we conclude from the above that

(6.22) Q0(g1v1, g2v2) ≤ e−A1ρt.

We claim:

(6.23) ∥g1v1∥ ≥ eρt.

Indeed if ∥g1v1∥ < eρt, then since ∥g2v2∥ ≤ ∥g1v1∥, it follows from (6.22) that
{(g1v1, 0), (0, g2v2)} spans a (ρ,A1, t)-special subspace. This contradicts the
definition of ω̃ and establishes (6.23).

Let us now return to estimating (6.21); we will estimate the sum on the
right side of (6.21) using the following elementary fact.
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Sublemma. Let t > 0, and let w ∈ R2 be a non-zero vector. Then∫ 2π

0
∥atrθw∥−2−2δ dθ ≤ Ĉe4δt∥w∥−2−2δ

where Ĉ is absolute.

First note that (6.22) and the fact that part 1 in Lemma 6.4 holds imply
that exist t0 and C so that for all t0 ≤ n ≤ t1, we have

(6.24) #P̃n ≤ Ce(2−ρ)n.

Also recall from (6.23) that ∥g1v1∥ ≥ eρt, which in particular implies that
∥v1∥ ≫ eρt. Since v1 ∈ Pn, we conclude that n ≥ ρt + O(1). Thus (6.24)
and the Sublemma imply that

(6.25)

∑
v1∈P̃n

∫
Iv1

∥atrθg1v1∥−2−2δ dθ ≪ e(2−ρ)ne4δte(−2−2δ)n

≪ e−ρ2te4δt ≤ e−2δt

in the last inequality, we used ρ2 = A1δ/2 ≥ 100δ and assumed t is large.
We now sum over all n ≤ t1 and get that∑

n

∑
P̃n

∫
Iv1

∥atrθg1v1∥−2−2δ ≪ te−2δt ≪ e−δt.

This and (6.21) complete the proof in this case.
In combination with (6.18) and (6.17), the proof is complete. □

Proof of the Sublemma. Without loss of generality, we may assume w =
(0, 1). Put

I =
[
e(−2+2δ)t, 2π − e(−2+2δ)t

]
and I ′ = [0, 2π] \ I.

Then ∫ 2π

0

dθ

∥atrθw∥2+2δ
≪

∫
I′

dθ

∥atrθw∥2+2δ
+

∫
I

dθ

∥atrθw∥2+2δ

≪ e(−2+2δ)te(2+2δ)t +

∫
I

dθ

∥atrθw∥2+2δ

≤ e4δt +

∫
I

dθ

∥atrθw∥2+2δ
.

We now compute the integral over I. Note that ∥atrθw∥2+2δ ≫ e(2+2δ)tθ2+2θ.
Therefore, ∫

I

dθ

∥atrθw∥2+2δ
≪ e(−2−2δ)t

∫
I
θ−2−2δ dθ

≪ e(−2−2δ)te(1+2δ)(2−2δ)t ≪ e−4δ2t.

The proof is complete. □

We end this section with the proof of Lemma 3.2.
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Proof of Lemma 3.2. We begin with part (1). Recall that fi is the charac-
teristic function of {w ∈ R2 : ∥w∥ ≤ R}, and let f = f1f2. Again by a
variant of Schmidt’s Lemma, we have

f̂(∆(atrθ)gΓ
′) ≤ ω1(g1SL2(Z))ω2(g2SL2(Z))

Let δ = η/10. As it was done in (6.5), define

Θt(δ)=
{
θ ∈ [0, 2π] :ω2(atrθx2)

1−2δ ≤ ω1(atrθx1) ≤ ω2(atrθx2)
1+2δ

}
and let Θ′

t(δ) = [0, 2π] \ Θt(δ) where xi = giSL2(Z). Then by Lemma 6.3,
we have for all t ≥ t(δ)

(6.26)

∫
Θ′

t(δ)
f̂(∆(atrθ)gΓ

′) dθ ≤
∫
Θ′

t(δ)

(
ω1(atrθx1)ω2(atrθx2)

)
dθ ≪ 1

the implied constant depends polynomially on the injectivity radius of gΓ′.
We now find an upper bound for the integral over Θt(δ):∫

Θt(δ)
f̂(∆(atrθ)gΓ

′) dθ ≤
∫

ω1(atrθx1)
2+2δ dθ

This, the sublemma, and standard arguments (which simplify significantly
thanks to (6.16)), see e.g. [EM22], imply that∫

Θt(δ)
f̂(∆(atrθ)gΓ

′) dθ ≪ e4δt

The claim in part (1) of the lemma follows.
We now turn to the proof of part (2). Let (v1, 0) and (0, v2) be as in the

statement. For i = 1, 2 let wi = givi. By a variant of Schmidt’s Lemma,

(6.27) f̂(θ) ≤ ∥atrθw1∥−1 ∥atrθw2∥−1 .

For i = 1, 2, set
Ii =

{
θ : R−1e−ηt/10 ≤ ∥atrθwi∥

}
If θ ̸∈ I1 ∩ I2, then f̂(θ) > eηt. This, (6.27), and the definition of CL imply∫

CL
f̂(θ) ≤

∫
I1∩I2

1

∥atrθw1∥ ∥atrθw2∥
.

Thus, using Cauchy-Schwarz inequality, we need to find an upper bound for(∫
I1

dθ

∥atrθw1∥2
)1/2(∫

I2

dθ

∥atrθw2∥2
)1/2

.

The computation is similar to the one in the proof of the sublemma.
Indeed, we may assume wi = (0, 1); then there is R−1 ≪ c < 1 so that

Ii ⊂ [ce−(1+η)t, 2π − ce−(1+η)t].

From this, we conclude that∫
Ii

dθ

∥atrθwi∥2
≪ e(−1+η)t,

as it was claimed. □
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7. Proof of Theorem 3.1

In this section, we will prove Theorem 3.1. The proof combines a lower
bound estimate, which will be proved using Theorem 1.4, with an upper
bound estimate, which follows from Proposition 6.1, as we now explicate.

Proof of Theorem 3.1. Recall that fi ∈ C∞
c (R2), and f is defined on R4 by

f(w1, w2) = f1(w1)f2(w2). We put

(7.1) f̂(g′Γ′) =
∑

v∈g′Λnz

f(v)

where Λ = {(v1 + v2, ω(v1 − v2)) : v1, v2 ∈ Z2} ⊂ R4,

Γ′ = {(γ1, γ2) ∈ SL2(Z)× SL2(Z) : γ1 ≡ ωγ2ω (mod 2)}
stabilizes Λ, and g′ = (g′1, g

′
2) ∈ G. We also put X = G/Γ′.

Let A and ρ be as in the statement, and let t > 0 be a parameter which
is assumed to be large. Let Â be a constant which will be explicated later,
and let g = (g1, g2) ∈ G satisfy the following: for every Q ∈ Mat2(Z) with

eρt/Â ≤ ∥Q∥ ≤ eρt and all λ ∈ R we have

(7.2)
∥∥g−1

2 g1 − λQ
∥∥ > ∥Q∥−A/1000 .

We claim that (7.2) implies the following:

Sublemma. Let g = (g1, g2) satisfy (7.2). There exists A1 ≥ max(4D,A),
where D is as in Theorem 1.4 so that the following holds. For all t so that
t > 4D log t and for every x ∈ X with vol(Hx) ≤ eρt/A1, we have

d(gΓ′, x) > e−t/2.

We first assume the sublemma and complete the proof of the theorem. In
view of the sublemma, part (1) in Theorem 1.4 holds with R = eρt/A1 and

t. Indeed, Dρ/A1 ≤ 1/4 and tD ≤ et/4, which imply

RDtDe−t = eDρt/A1tDe−t ≤ e−t/2;

hence, part (2) in Theorem 1.4 cannot hold.
For every S, let 1XS

≤ φS ≤ 1XS+1
be a smooth function with S(φS) ≪

S⋆, where

X• = {x = (x1, x2) ∈ X : max(ω1(x1), ω2(x2)) ≤ •},
see (6.4) — since Γ′ is a finite index subgroup of SL2(Z) × SL2(Z) this is

well-defined. Put f̂S = φS f̂ ; we let N be so that S(f̂S) ≪ SNS(f).
Put η = κ0ρ/(2NA1), where κ0 is as in Theorem 1.4. We will show the

claim in the theorem holds with

Â = 3NAA1/κ0, δ1 = η, and δ2 = η3/A3.

First note that

(7.3) ρ/Â = κ0ρ/(3NAA′
1) ≤ η/A = δ1/A ≤ ρ/100.
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We now turn to the rest of the argument. Apply Lemma 2.4 with (g1, g2)
and the triple (η/A,A, t). In view of (7.3) and (7.2), Lemma 2.4 implies
that there are at most two (η/A,A, t)-special subspaces.

Denote these subspaces by L and L′ if they exist. For every θ ∈ [0, 2π],
we write

f̂(∆(atrθ)gΓ
′) = f̂S(∆(atrθ)gΓ

′) + f̂cusp(∆(atrθ)gΓ
′) + f̂sp(∆(atrθ)gΓ

′)

where f̂S = φS f̂ , f̂cusp is the contribution of gΛnz \ (L ∪ L′) to f̂ − f̂S , and

f̂sp is the contribution of gΛnz ∩ (L ∪ L′) to f̂ − f̂S .

By Theorem 1.4, applied with R = eρt/A
′
, for any smooth function ξ on

[0, 2π] we have

(7.4)
∣∣∣∫ 2π

0
f̂S(∆(atrθ)gΓ

′)ξ(θ) dθ −
∫ 2π

0
ξ dθ

∫
X
f̂S dmX

∣∣∣ ≪
S(f̂S)S(ξ)e−κ0ρt/A′ ≪ SNS(f)S(ξ)e−κ0ρt/A′

.

If we choose S = eηt = eκ0ρt/(2NA′), the above is ≪ S(f)S(ξ)e−ηt/2.
Moreover, by Lemma 6.2 applied with p = 3/2 and the Chebyshev’s

inequality, we have

(7.5)

∫
{θ:∆(atrθ)gΓ′ /∈XS}

S dθ ≪ S−3/2S = S−1/2.

This and (7.4), reduce the problem to investigating the integral of f̂ − f̂S =

f̂cusp + f̂sp over Ĉ := {θ ∈ [0, 2π] : f̂ − f̂S ≥ S}.
Let f̃ be as in (6.2) with η/A, A, and t. That is:

f̃(h; gΓ) =
∑

v∈Nt(gZ4)

f(∆(h)v)

where Nt

(
gZ4

)
denotes the set of vectors in gZ4 not contained in any

(η/A,A, t)-special subspaces and also not contained in R2 × {0} ∪ {0} ∪R2.

Let C̃t = {θ ∈ [0, 2π] : f̃(atrθ; gΓ) ≥ eηt = S}. By the definitions,∫
Ĉ
f̂cusp(∆(atrθ)gΓ)ξ(θ) dθ ≤ ∥ξ∥∞

∫
C̃t
f̃(atrθ; gΓ

′) dθ.

In view of (7.3), e100ηt/A is in the range where (7.2) holds, thus Proposi-
tion 6.1, applied with η/A and A, implies∫

C̃t
f̃(∆(atrθ)gΓ

′) dθ ≪ e−η3t/A3
.

From these two, we conclude that

(7.6)

∫
Ĉ
f̂cusp(∆(atrθ)gΓ) dθ ≪ ∥ξ∥∞ e−η3t/A3

.
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In view of (7.4), (7.5) and (7.6), we have∣∣∣∫ 2π

0
f̂(∆(atrθ)gΓ)ξ(θ) dθ −

∫ 2π

0
ξ dθ

∫
X
f̂R dmX

∣∣∣
=

∫
C
f̂sp(∆(atrθ)gΓ)ξ(θ) dθ +O(S(f)S(ξ)e−η2t/A3

)

where C = {θ : f̂sp(∆(atrθ) > eηt}.
This completes the proof if we let δ1 = η and δ2 = η3/A3. □

Proof of the Sublemma. Let x = (h1, h2)Γ
′ be so that Hx is periodic. In

view of (the by now standard) non-divergence results, we may assume ∥hi∥ ≪
1 where the implied constant is absolute, see e.g. [LM21, §3].

Since Γ′ is a finite index subgroup of SL2(Z)× SL2(Z), we conclude

{(h, h) : h ∈ SL2(R)}
⋂(

h1SL2(Z)h−1
1

)
×
(
h2SL2(Z)h−1

2

)
is a lattice in {(h, h) : h ∈ SL2(R)}. This implies that h1SL2(Z)h−1

1 and

h2SL2(Z)h−1
2 are commensurable. Hence, h−1

2 h1 belongs to the image of
GL+

2 (Q) in SL2(R), i.e., the commensurator of SL2(Z) in SL2(R).
Let Q′ ∈ Mat2(Z) be so that h−1

2 h1 = λQ′, where λ = (detQ′)1/2. Since
∥hi∥ ≪ 1, we have

(7.7)
∥∥Q′∥∥A2 ≪ vol(Hx) ≪

∥∥Q′∥∥A3 ,

where A2 ≤ 1 ≤ A3 and the implied constants are absolute, see e.g. [LMW22,
Lemma 16.2].

We will show the sublemma holds with A1 = 4DA/A2. Assume now

contrary to our claim in the sublemmsa that vol(Hx) ≤ eρt/A1 , for some A1

which will be determined later, and that dX(gΓ′, x) ≤ e−t/2.

Thus g1 = ϵ1h1γ1 and g2 = ϵ2h2γ2 where ∥ϵi∥ ≪ e−t/2 and (γ1, γ2) ∈ Γ′.
Since ∥hi∥ ≪ 1, we conclude ∥γi∥ ≪ ∥gi∥. Moreover, we have

(7.8) g−1
2 g1 = ϵγ−1

2 h−1
2 h1γ1

where ∥ϵ∥ ≪ e−t/2 and the implied constants depend on ∥gi∥. Put Q =
γ−1
2 Q′γ1. Then

∥Q∥ ≪
∥∥Q′∥∥ ≪ eρt/A1A2 ≤ eρt/A

where we used (7.7), vol(Hx) ≪ eρt/A1 and assumed t is large. Moreover,
using (7.8) and (7.7), we conclude that

(7.9)
∥∥g−1

2 g1 − λQ
∥∥ ≪ e−t/2

∥∥Q′∥∥ ≪ e−t/2 · eρt/(A1A2)

where the implied constants depend on ∥gi∥.
Assuming t is large enough to account for the implied constant and using

A1 = 4DA/A2, the left side of (7.9) is < e−ρt. Thus (7.9) contradicts (7.2)
and finishes the proof of the theorem. □
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