Homework due Friday, February 2, at 3:00 pm.

A. Let

\[f(x) = \begin{cases}
 e^{-1/x} & x \neq 0 \\
 0 & x = 0
\end{cases} \]

Find (with justification), \(f^{(n)}(x) \) for all \(x \).

B. Suppose \(f \) is a differentiable function defined on \(\mathbb{R} \) and assume that \(f' \) is strictly increasing (that is: \(f(x) < f(y) \) if \(x < y \)). Prove that every tangent line of \(f \) intersects the graph of \(f \) only once.

C. Let \(f : \mathbb{R} \to \mathbb{R} \) be a functions so that

\[f = f^{(4)} \]
\[f(0) = f'(0) = f''(0) = f^{(3)}(0) = 0 \]

Prove that \(f(x) = 0 \) for all \(x \in \mathbb{R} \).

(Hint: Use Taylor’s Theorem.)

D. Rudin, Chapter 5 (page 114), problems # 26.

E. Rudin, Chapter 6 (page 147), problems # 1, 2, 5.