Math 109, Fall 2017
Homework 8 Solutions

A. Proceed by induction on n. When n = 1, we need to show there are 2 functions \(f : \{1\} \rightarrow \{0, 1\} \). In this case, a function just corresponds to mapping 1 to 0 or 1. There are therefore two functions \(f_0 \) and \(f_1 \) defined by \(f_0(1) = 0 \) and \(f_1(1) = 1 \). For the inductive hypothesis, assume that for some \(n \geq 1 \), there are \(2^n \) functions \(f : \{1, \ldots, n\} \rightarrow \{0, 1\} \). We will show that there are \(2^{n+1} \) functions from \(\{1, \ldots, n+1\} \) to \(\{0, 1\} \).

Let \(f : \{1, \ldots, n\} \rightarrow \{0, 1\} \) be any function. We can “extend” \(f \) to a function on \(\{1, \ldots, n+1\} \) by deciding what \(f(n+1) \) should be: either 0 or 1. This leads to two functions \(f_0 : \{1, \ldots, n+1\} \rightarrow \{0, 1\} \) and \(f_1 : \{1, \ldots, n+1\} \rightarrow \{0, 1\} \) defined by

\[
f_0(x) = \begin{cases} f(x) & \text{if } 1 \leq x \leq n \\ 0 & \text{if } x = n+1 \end{cases} \quad \text{and} \quad f_1(x) = \begin{cases} f(x) & \text{if } 1 \leq x \leq n \\ 1 & \text{if } x = n+1 \end{cases}.
\]

Thus, for each of the \(2^n \) functions \(f : \{1, \ldots, n\} \rightarrow \{0, 1\} \), we can define two functions \(\{1, \ldots, n+1\} \rightarrow \{0, 1\} \). To know that we really get \(2^{n+1} \) functions this way, we need to make sure they’re all different (it is possible two different functions \(\{1, \ldots, n\} \rightarrow \{0, 1\} \) could “extend” to the same function, so we wouldn’t have defined \(2^{n+1} \) different functions. We need to show this is not the case.) Notice that if \(f, g : \{1, \ldots, n\} \rightarrow \{0, 1\} \) are two distinct functions, i.e. \(f \neq g \), then \(f_0 \neq g_0 \) and \(f_1 \neq g_1 \). This is because, since \(f \neq g \), there is some \(x \in \{1, \ldots, n\} \) such that \(f(x) \neq g(x) \). Then \(f_i(x) \neq g_i(x) \) for \(i = 0, 1 \). It is also clear that \(f_0 \neq f_1 \), since \(f_0(n+1) \neq f_1(n+1) \). Thus, we have constructed \(2^{n+1} \) functions from \(\{1, \ldots, n+1\} \rightarrow \{0, 1\} \): this means there are at least \(2^{n+1} \) such functions. We now need to show that these are actually all of them (if you are confused about this, think of this: just because we can write down 10 real numbers, it doesn't follow that there's only 10 real numbers!)

Let \(F : \{1, \ldots, n+1\} \rightarrow \{0, 1\} \). We need to show that \(F = f_0 \) or \(F = f_1 \) for some function \(f : \{1, \ldots, n\} \rightarrow \{0, 1\} \). Define \(f = F \mid_{\{1, \ldots, n\}} \), that is, let \(f \) be the function \(\{1, \ldots, n\} \rightarrow \{0, 1\} \) defined by \(f(x) = F(x) \) for all \(1 \leq x \leq n \). If \(F(n+1) = 0 \), it is then easy to verify that \(F = f_0 \). If \(F(n+1) = 1 \), \(F = f_1 \). Thus, every function \(F : \{1, \ldots, n+1\} \rightarrow \{0, 1\} \) is obtained by our construction above, and so the \(2^{n+1} \) functions we defined above are all of them, as desired.

It follows by induction that there are \(2^n \) functions \(f : \{1, \ldots, n\} \rightarrow \{0, 1\} \) for every \(n \geq 1 \).

B. This is proved in the book, see Theorem 14.1.4. The book does not provide many details for the direction of “equipotent to a proper subset implies infinite” (certainly, we would expect more details in a proof, especially on an exam). For us, a full proof would look more like this:

Suppose that \(X \) is equipotent to a proper subset of itself, call it \(Y \). Suppose for contradiction that \(X \) is finite. Then, since \(Y \) is a proper subset of \(X \), \(|Y| \leq |X| - 1 \), because there is at least one element that is in \(X \) and not in \(Y \). Since \(X \) is equipotent to \(Y \), this means by definition that there exists a bijection \(f : X \rightarrow Y \). However, by Prop.10.1.3, if there exists a bijection between two finite sets, they have the same cardinality. Hence \(|X| = |Y| \). This contradicts that \(|Y| \leq |X| - 1 \), so \(|X| \) must have been infinite, as desired.

C. Recall that \(d = \gcd(a, b) \) if and only if (1) \(d | a \) and \(d | b \) and (2) for all \(c \in \mathbb{Z} \), \(c|a \land c|b \implies c \leq d \). Let \(d' = \gcd(a', b') \). By definition, \(d'|a' \) and \(d'|b' \). Let \(k, \ell \in \mathbb{Z} \) be such that \(d' = kd' \) and \(b' = \ell d' \).

Then \(a = kdd' \) and \(b = \ell dd' \). Thus, \(dd'|a \land dd'|b \). Hence, by definition of \(d = \gcd(a, b) \), \(dd' \leq d \).
Since $d \geq 1$ (1 divides every integer, so by (2) $d \geq 1$), we can divide by d to get $d' \leq 1$. $d' \geq 1$ for the same reason that $d \geq 1$, so we have that $d' = 1$.