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Abstract. We prove effective equidistribution theorems, with poly-
nomial error rate, for orbits of the unipotent subgroups of SL2(R) in
arithmetic quotients of SL2(C) and SL2(R)× SL2(R).

The proof is based on the use of a Margulis function, tools from
incidence geometry, and the spectral gap of the ambient space.

1. Introduction

A landmark result of Ratner [Rat91b] states that if G is a Lie group, Γ
a lattice in G and if ut is a one-parameter Ad-unipotent subgroup of G,
then for any x ∈ G/Γ the orbit ut.x is equidistributed in a periodic orbit
of some subgroup L < G that contains both the one parameter group ut
and the initial point x. We say an orbit L.x of a group L in some space
X is periodic if the stabilizer of x in L is a lattice in L, equivalently that
the stabilizer of x in L is discrete and L.x supports a unique L-invariant
probability measure mL.x; and ut.x is equidistributed in L.x in the sense
that

(1.1)
1

T

∫ T

0
f(ut.x)dt→

∫
fdmL.x for any f ∈ C0(G/Γ).

In order to prove this equidistribution result, Ratner first classified the ut-
invariant probability measures on G/Γ [Rat90, Rat91a]; the proof also uses
the non-divergence properties of unipotent flows established by Dani and
Margulis [Mar71, Dan84, Dan86].

A key motivation behind Ratner’s equidistribution theorem for one pa-
rameter unipotent flows has been to establish Raghunathan’s conjecture
regarding the possible orbit closures of groups generated by one-parameter
unipotent groups; using the equidistribution theorem Ratner proved that if
G and Γ are as above, and ifH < G is generated by one parameter unipotent
groups, then for any x ∈ G/Γ one has that H.x = L.x where H < L < G
and L.x is periodic. Important special cases of Raghunathan’s conjecture
were proven earlier by Margulis and by Dani and Margulis using a different
more direct approach, which in particular gave a proof of a rather strong
form of the longstanding Oppenheim conjecture [Mar89, DM89, DM90].
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These results have had a surprisingly rich trove of applications in num-
ber theory and beyond. One drawback of this method, compared to more
traditional number theoretic techniques, is that these equidistribution re-
sults were neither effective nor quantitative. Indeed, Ratner’s proof relies
heavily on the pointwise ergodic theorem and Lusin’s theorem, both rather
fundamental theorems but that do not have good effective analogues. The
Dani-Margulis method is somewhat easier to make effective and a result in
this direction was given by Margulis and the first named author in [LM14];
moreover a general result in this direction was announced by Margulis, Shah
and two of us (E.L. and A.M.) with the first installment of this work appear-
ing in [LMMS19]. However, this only gives density properties of these flows,
not equidistribution, and the rate of density obtained in this way is far from
optimal (polylog at best, though in most cases one only has an iterative-log
type bound).

In this paper we announce a quantitative equidistribution result for orbits
of a one parameter unipotent group on quotients G/Γ where G is either
SL2(C) or SL2(R)× SL2(R) with a polynomial error rate, which is the first
quantitative equidistribution statement for individual orbits of unipotent
flows on quotients of semi-simple groups beyond the horospherical case. Our
approach builds on the paper [LM21] by the first two authors, where an
effective density result with a polynomial rate for orbits of a Borel subgroup
of a subgroup H ≃ SL2(R) of G was proved.

Recall that a group N < G is horospheric if there is some g ∈ G so that

N = {h ∈ G : g−nhgn → 1 as n→ ∞}.
For instance, the one parameter unipotent group{(

1 r
0 1

)
: r ∈ R

}
is horospheric in SL2(R) as are the groups{(

1 r + is
0 1

)
: r, s ∈ R

}
and

{((
1 r
0 1

)
,

(
1 s
0 1

))
: r, s ∈ R

}
in SL2(C) and SL2(R)×SL2(R), respectively. The classification of invariant
measures and orbit closures for horospherical flows was established prior to
Ratner’s work by Hedlund, Furstenberg, Dani, Veech and others, and this
has been understood for some time also quantitatively since one can relate
the distribution properties of individual N orbits to the ergodic theoretic
properties of the action of g on G/Γ (cf. §3 for more details).

We also mention that while our result is the first quantitative equidis-
tribution statement for individual orbits of unipotent flows on quotients
of semi-simple groups beyond the horospherical case1 there have been some

1As pointed out by Venkatesh in [Ven10], the distinction between horospheric and non-
horospheric is not completely clear cut, and indeed the results of that paper can also be
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other interesting quantitative equidistribution results. When G is unipotent,
an effective equidistribution result for unipotent flows on G/Γ was given by
Green and Tao in [GT12], and was a key ingredient in a series of works by
Green, Tao and Ziegler about linear equations in primes. In the case of quo-
tients of the skew product G = SL2(R)⋉ R2, Strombergsson [Str15] has an
effective equidistribution result for one parameter unipotent orbits (which
are not horospheric in G, but project to a horospheric group on SL2(R)), and
this has been generalized by several authors, in particular by Wooyeon Kim
[Kim21] (using a completely different argument) to SLn(R)⋉Rn. Moreover
there is an important work of Einsiedler, Margulis and Venkatesh [EMV09]
showing that periodic orbits of semisimple subgroups H of a semisimple
group G are quantitatively equidistributed in an appropriate homogeneous
subspace of G/Γ if Γ is a congruence lattice and H has finite centralizer in G.
Subsequently Einsiedler, Margulis, Venkatesh and the second named author
by using Prasad’s volume formula and a more adelic view point were able to
prove such an equidistribution result for periodic orbits of maximal semisim-
ple subgroups of G when the subgroup is allowed to vary [EMMV20] with
arithmetic applications (the equidistribution of periodic orbits of semisimple
groups is also closely connected to the equidistribution of Hecke points; a
quantitative treatment of such equidistribution was given by Clozel, Oh and
Ullmo in [COU01]).

In a slightly different direction, Bourgain, Furman, Mozes and the first
named author [BFLM11] gave a quantitative equidistribution result with
exponential rates (this is analogous to polynomial rates in our problem) for
random walks by automorphisms of the torus. In this case this equidistri-
bution result was new even without rates. There have been several exten-
sions of this result, in particular [HdS19] where a proximality assumption
was removed. Kim in [Kim21] used the techniques of [BFLM11] to study
SLn(R)⋉Rn. Our work is also heavily influenced by [BFLM11].

We now proceed to describe our results and some of the ingredients of the
proofs. Let

G = SL2(C) or G = SL2(R)× SL2(R).
Let Γ ⊂ G be a lattice, and put X = G/Γ. We let mX denote the G-
invariant probability measure on X. Throughout the paper, we will denote
by H a subgroup of G isomorphic to SL2(R), namely

SL2(R) ⊂ SL2(C) or {(g, g) : g ∈ SL2(R)} ⊂ SL2(R)× SL2(R).

For all t, r ∈ R, let at and ur denote the image of(
et/2 o

0 e−t/2

)
and

(
1 r
0 1

)
,

recast as a nonhorospheric equidistribution problem; cf. [FFT16] as well as [Kat19]. There
are also some quantitative equidistribution results for particular types of unipotent orbits,
e.g. [CY19] by Chow and Lei Yang.
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in H, respectively.
We fix maximal compact subgroups SU(2) ⊂ SL2(C) and SO(2)×SO(2) ⊂

SL2(R)× SL2(R). Let d be the right invariant metric on G which is defined
using the Killing form and the aforementioned maximal compact subgroups.
This metric induces a metric dX on X, and natural volume forms on X and
its submanifolds. We define the injectivity radius of a point x ∈ X using
this metric. In the sequel, ∥ ∥ denotes the maximum norm on Mat2(C) or
Mat2(R)×Mat2(R) with respect to the standard basis.

The following are the main results in this paper.

1.1. Theorem. Assume Γ is an arithmetic lattice. For every x0 ∈ X and
large enough R (depending explicitly on the injectivity radius of x0), for any
T ≥ R, at least one of the following holds.

(1) For every φ ∈ C∞
c (X), we have∣∣∣∫ 1

0
φ(alog Turx0) dr −

∫
φdmX

∣∣∣ ≤ C1S(φ)R−κ1

where S(φ) is a certain Sobolev norm.
(2) There exists x ∈ X such that Hx is periodic with vol(Hx) ≤ R, and

dX(x, x0) ≤ C1R
A(log T )AT−1.

The constants A, κ1, and C1 are positive, and depend on X but not on x0.

Theorem 1.1 can be viewed as an effective version of [Sha96, Thm. 1.4].
Combining Theorem 1.1 and the Dani–Margulis linearization method [DM91]
(cf. also Shah [Sha91]), that allows to control the amount of time a unipo-
tent trajectory spends near invariant subvarieties of a homogeneous space,
we also obtain an effective equidistribution theorem for long pieces of unipo-
tent orbits (more precisely, we use a sharp form of the linearization method
taken from [LMMS19]).

1.2. Theorem. Assume Γ is an arithmetic lattice. For every x0 ∈ X and
large enough R (depending explicitly on X), for any T ≥ R, at least one of
the following holds.

(1) For every φ ∈ C∞
c (X), we have∣∣∣ 1

T

∫ T

0
φ(urx0) dr −

∫
φdmX

∣∣∣ ≤ C2S(φ)R−κ2

where S(φ) is a certain Sobolev norm.
(2) There exists x ∈ G/Γ with vol(H.x) ≤ RA1, and for every r ∈ [0, T ]

there exists g ∈ G with ∥g∥ ≤ RA1 so that

dX(usx0, gH.x) ≤ C2R
A1

(
|s− r|
T

)1/A2

for all s ∈ [0, T ].

(3) For every r ∈ [0, T ] and t ∈ [logR, log T ], the injectivity radius at
a−turx0 is at most C2R

A1e−t.
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The constants A1, A2, κ2, and C2 are positive, and depend on X but not on
x0.

The assumption in Theorem 1.1 that Γ is arithmetic may be relaxed. Let
us say Γ has algebraic entries if the following is satisfied: there is a number
field F , a semisimple F -group G of adjoint type, and a place v of F so
that Fv = R and G(Fv) and G are locally isomorphic — in which case
there is a surjective homomorphism from G onto the connected component
of the identity in G(Fv) — and the image of Γ in G(Fv) (possibly after
conjugation) is contained in G(F ). Every arithmetic lattice has algebraic
entries, but there are lattices with algebraic entries that are not arithmetic.

Note that the condition that Γ has algebraic entries is automatically sat-
isfied if Γ is an irreducible lattice in SL2(R) × SL2(R) or if G = SL(2,C).
Indeed, by arithmeticity theorems of Selberg and Margulis, irreducible lat-
tices in SL2(R)×SL2(R) are arithmetic [Mar91, Ch. IX]. Moreover, by local
rigidity, lattices in SL2(C) always have algebraic entries [GR70, Thm. 0.11]
(see also [Sel60, Wei60, Wei64]).

1.3. Theorem. Assume Γ is a lattice which has algebraic entries. For every
0 < δ < 1, every x0 ∈ X and large enough T (depending explicitly on δ and
the injectivity radius of x0) at least one of the following holds.

(1) For every φ ∈ C∞
c (X), we have∣∣∣∫ 1

0
φ(alog Turx0) dr −

∫
φdmX

∣∣∣ ≤ C1S(φ)T−δ2κ1

where S(φ) is a certain Sobolev norm.
(2) There exists x ∈ X with

dX(x, x0) ≤ C1T
−1/A,

satisfying the following: there are elements γ1 and γ2 in StabH(x) with
∥γi∥ ≤ T δ for i = 1, 2 so that the group generated by {γ1, γ2} is Zariski
dense in H.

The constants A, κ1, and C1 are positive, and depend on X but not on δ
and x0.

The obstacle to effective equidistribution in Theorem 1.1 is much cleaner
and simpler than in Theorem 1.2. This is not an artifact of the proof but
a reflection of reality; a unipotent orbit may fail to equidistribute at the
expected rate without it staying near a single period orbit of some subgroup
{ut} < L < G: one must allow a slow drift of the periodic orbit in the
direction of the centralizer of ut. Unlike the work of Shah in [Sha96], where
(in particular) a non-effective version of Theorem 1.1 is proved relying on
Ratner’s measure classification theorem for unipotent flows, our proof goes
the other way, first establishing Theorem 1.1, and then reducing Theorem 1.2
from it using a linearization and non-divergence argument.

An extremely interesting analogue to unipotent flows on homogeneous
spaces is given by the action of SL2(R) and its subgroups on strata of abelian
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differentials. Let g ≥ 1, and let α = (α1, . . . , αn) be a partition of 2g−2. Let
H(α) be the corresponding stratum of abelian differentials, i.e., the space of
pairs (M,ω) whereM is a compact Riemann surface with genus g and ω is a
holomorphic 1-form on M whose zeroes have multiplicities α1, . . . , αn. The
form ω defines a canonical flat metric on M with conical singularities and
a natural area form. Let H1(α) be the space of unit area surfaces in H(α).
The space H(α) admits a natural action of SL2(R); this action preserves the
unit area hyperboloid H1(α).

A celebrated theorem of Eskin and Mirzakhani [EM18] shows that any P -
invariant ergodic measure is SL2(R)-invariant and is supported on an affine
invariant manifold, where P denotes the group of upper triangular matrices
in SL2(R). We shall refer to these measures as affine invariant measures.
Moreover if we define, for any interval I ⊂ R and x ∈ H1(α), the probability
measure µxI on H1(α) by

µxI = |I|−1

∫
I
δusx ds,

then Eskin, Mirzakhani and the second named author [EMM15] showed that
for any x ∈ H1(α) the limit

(1.2) lim
T→∞

1

T

∫ T

t=0
atµ

x
[0,1] dt exists in weak∗ sense

and is equal to an (SL(2,R)-invariant) affine invariant probability measure
with x in its support. On the other hand, there are several results, in
particular by Chaika, Smillie and B. Weiss in [CSW20], that show that an
analogue of Ratner’s equidistribution theorem (or our Theorem 1.2) fails to
hold in this setting, for instance for some x the sequence of measure µx[0,T ]

may fail to converge as T → ∞, or may converge to a non-ergodic measure.
We believe the following strengthening of (1.2), which we have learned has
already been conjectured by Forni in [For21, Conj. 1.4], should however hold:

1. Conjecture. Let H1(α) be the space of unit area surfaces in stratum
of abelian differentials on a genus g surface whose zeros have multiplicities
given by α = (α1, . . . , αn), and let x ∈ H1(α). Then limt→∞ atµ

x
[0,1] exists

in the weak∗ sense and is equal to an affine invariant measure with x in its
support.

Of course, once one establishes that limt→∞ atµ
x
[0,1] exists, the rest follows

from [EMM15].

2. Some preliminaries

We discuss the proofs of Theorems 1.1 and 1.3. As mentioned above,
Theorem 1.2 is proved by combining Theorem 1.1 and the linearization tech-
niques; in this announcement we focus on the proof of the former results.
We note that the idea of using equidistribution of expanding translates of a
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fixed piece of a U orbit of the type {atus.x : 0 ≤ s ≤ 1} to deduce equidis-
tribution of a large segment of a non-translated U orbit {us.x : 0 ≤ s ≤ T}
is quite classical.

Let U ⊂ N denote the group of upper triangular unipotent matrices in
H ⊂ G, respectively, and let A = {at : t ∈ R} ⊂ H. More explicitly, if
G = SL2(C), then

N =

{
n(r, s) =

(
1 r + is
0 1

)
: (r, s) ∈ R2

}
and U = {n(r, 0) : r ∈ R}; note that n(r, 0) = ur for r ∈ R. Let

V = {n(0, s) = vs : s ∈ R};

if G = SL2(R)× SL2(R), then

N =

{
n(r, s) =

((
1 r + s
0 1

)
,

(
1 r
0 1

))
: (r, s) ∈ R2

}
and U = {n(r, 0) : r ∈ R}. As before, n(r, 0) = ur for r ∈ R. Let

V = {n(0, s) = vs : s ∈ R}.

In both cases, we have N = UV . Let us denote the transpose of U by U−

and its elements by u−r .

Let g = Lie(G), that is, g = sl2(C) or g = sl2(R)⊕ sl2(R). Let r = isl2(R)
if g = sl2(C) and r = sl2(R) ⊕ {0} if g = sl2(R) ⊕ sl2(R). In either case
g = h⊕r where h = Lie(H) ≃ sl2(R), and both h and r are Ad(H)-invariant.

We fix a norm on h by taking the maximum norm where the coordinates
are given by Lie(U), Lie(U−) and Lie(A); similarly fix a norm on r. By
taking maximum of these two norms, we obtain a norm on g. All these
norms will be denoted by ∥ ∥.

For all β > 0, we define BG
β := exp(Bh(0, β))·exp(Br(0, β)) where B•(0, β)

denotes the ball of radius β in • with respect to ∥ ∥.
We also define

BH
β := {u−s : |s| ≤ β} · {at : |t| ≤ β} · {ur : |r| ≤ β}

for all 0 < β < 1.

For the sake of simplicity of the exposition here, let us assume X is
compact. Let 0 < η0 < 1 be so that the map g 7→ gx is injective on BG

100η0
for all x ∈ X.

3. From large dimension to equidistribution

We begin with an equidistribution theorem which is of independent inter-
est. In the proof of Theorem 1.1, this proposition will be applied to each of
the sets obtained in the bootstrap phase, see Proposition 6.1.
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Let us recall the following quantitative decay of correlations for the am-
bient space X: There exists 0 < κ0 ≤ 1 so that

(3.1)
∣∣∣∫ φ(gx)ψ(x) dmX −

∫
φdmX

∫
ψ dmX

∣∣∣ ≪ S(φ)S(ψ)e−κ0d(e,g)

for all φ,ψ ∈ C∞
c (X)+C·1, wheremX is theG-invariant probability measure

onX and d is our fixed right G-invariant metric on G. See, e.g., [KM96, §2.4]
and references there for (3.1); we note that κ0 is absolute if Γ is a congruence
subgroup. This is known in much greater generality, but the cases relevant
to our paper are due to Selberg and Jacquet-Langlands [Sel65, JL70].

The quantitative decay of correlation can be used to establish quantitative
results regarding the equidistribution of translates of pieces of an N -orbit.
Specifically we employ the results in [KM96], but there is rich literature
around the subject; a more complete list of such papers can be found in
[LM21, §1].

Now let ξ : [0, 1] → r be a smooth nonconstant curve. Then using the
quantitative results regarding equidistribution of translates of pieces of an
N -orbit such as [KM96], one can show that for every x ∈ X,

aτ
{
ur exp(ξ(s)).x : r, s ∈ [0, 1]

}
is equidistributed in X as τ → ∞ (with a rate which is polynomial in
e−τ ). The key point in the deduction of this equidistribution result from
the equidistribution of shifted N orbits is that conjugation by aτ moves
ur exp(ξ(s)) to the direction of N , hence the above average essentially re-
duces to an average on a N orbit.

Roughly speaking, the following proposition states that one may replace
the curve {ξ(s) : s ∈ [0, 1]} with a measure on r so long as the measure has
dimension ≥ 1− θ, for an appropriate choice of θ depending on κ0.

The precise formulation is the following.

3.1.Proposition. For any θ > 0 and c > 0 there is a κ3 so that the following
holds: Let 0 < ϱ < 10−6, and let F ⊂ Br

(
0, ϱ

)
be a finite set satisfying

#(F ∩Br(0, b))

#F
≤ ρ−c

(
b/ϱ

)1−θ
for all b ≥ ρ

where ρ < ϱ20.
Then for all x ∈ X and all 2 log(1/ϱ) ≤ τ ≤ 1

10 log(1/ρ), we have∣∣∣∫ 1

0

1

#F

∑
w∈F

φ(aτur exp(w)x) dr −
∫
φdmX

∣∣∣ ≪X

S(φ)max
(
(ρ/ϱ)κ3 , ρ−2ce2τθϱκ

2
0/M

)
,

where S(φ) is a certain Sobolev norm and M ≥ 100 an absolute constant.
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The proof of this proposition is significantly more delicate than that of the
“toy version” of a shifted curve, and relies on an adaptation of a projection
theorem due to Käenmäki, Orponen, and Venieri [KOV17], based on the
works of Wolff [Wol00], Schlag [Sch03], and [Zah12], in conjunction with a
sparse equidistribution argument due to Venkatesh [Ven10]. These elements
also played a crucial role in previous work by E.L. and A.M. [LM21] re-
garding quantitative density for the action of AU on the spaces we consider
here.

The goal in the remaining steps is to show that unless Theorem 1.1(2)
holds, we can find a subset J ⊂ [0, 1], where [0, 1] \ J has an exponentially
small measure, and up to an exponentially small error the uniform measure
on {aA log Turx0 : r ∈ J} can be decomposed into counting measures on sets
each of which satisfies the conditions in Proposition 3.1.

4. Inheritance of the Diophantine property

If part (2) in Theorem 1.1 holds, we are done. Let us, therefore, assume
the alternative, which gives some Diophantine condition on the point x0
in terms of its distance to nearby periodic H-orbits. The first step in the
proof is to improve this Diophantine condition, perhaps not at x0, but at
some (indeed all except a set of exponentially small measure) point on the
translation of a the U -orbit segment {ur.x0 : r ∈ [0, 1]} by a big diagonal
element at.

4.1. Proposition. There exist D0 (absolute) and C3 (depending on X) so
that the following holds. Let S ≥ R, and let x0 ∈ X be so that

dX(x, x0) ≥ log(S)D0S−1

for all x with vol(Hx) ≤ R. Then for all s ≥ logS we have the following∣∣∣{r ∈ [0, 1] :
There is x with vol(Hx) ≤ R
so that dX(x, asurx0) ≤ 1

C3RD0

}∣∣∣ ≤ C3R
−1.

In the proof of Proposition 4.1 we consider each periodic orbit individually,
and then use the fact that the number of periodic H-orbits with volume ≤ R
in X is ≪ R6, see e.g. [MO20, §10] to conclude. The desired result for an
individual orbit can be proved using Margulis functions for periodicH-orbits
similar to those which were used in [LM21, §9], see also [EMM15, Prop. 2.13].

It is worth mentioning that even though [LMMS19, Thm. 1.4] concerns
long pieces of U -orbits and Proposition 4.1 concerns translates of pieces of
U -orbits, similar tools are applicable here as well. In particular, a version
of Proposition 4.1 can also be proved using the methods of [LMMS19].

5. Closing lemma

Let t > 0 be a large parameter and fix some e−0.01t < β = e−κt < η0; in
our application, κ will be chosen to be ≪ 1/D0 where the implied constant
depends on X and D0 is as in Proposition 4.1.
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For every τ ≥ 0, put

Eτ = BH
β · aτ · {ur : r ∈ [0, 1]} ⊂ H.

If y ∈ X is so that the map h 7→ hy is injective on Eτ , then µEτ .y denotes
the pushforward of the normalized Haar measure on Eτ to Eτ .y ⊂ X.

Let τ ≥ 0 and y ∈ X. For every z ∈ Eτ .y, put

Iτ (z) :=
{
w ∈ r : 0 < ∥w∥ < η0 and exp(w)z ∈ Eτ .y

}
;

this is a finite subset of r since Eτ is bounded — we will define IE(h, z) for
all h ∈ H and more general sets E in the bootstrap phase below.

Let 0 < α < 1. Define the function fτ : Eτ .y → [1,∞) as follows

fτ (z) =

{∑
w∈Iτ (z) ∥w∥

−α if Iτ (z) ̸= ∅
η−α
0 otherwise

.

The following proposition supplies an initial dimension which we will boot-
strap in the next phase. Roughly speaking, it asserts that points in E8t.x0
(possibly after removing an exponentially small set of exceptions) are sepa-
rated transversal to H, unless x0 is extremely close to a periodic H orbit.

5.1. Proposition. Assume Γ is arithmetic. There exists D1 (which depends
on Γ explicitly) satisfying the following. Let D ≥ D1 and x1 ∈ X. Then for
all large enough t at least one of the following holds.

(1) There is a subset I(x1) ⊂ [0, 1] with |[0, 1] \ I(x1)| ≪X β such that for
all r ∈ I(x1) we have the following
(a) h 7→ h.a8turx1 is injective on Et.
(b) For all z ∈ Et.a8turx1, we have

ft(z) ≤ eDt.

(2) There is x ∈ X such that Hx is periodic with

vol(Hx) ≤ eD1t and dX(x, x1) ≤ e(−D+D1)t.

This proposition is where the arithmeticity assumption on Γ is used. The
proof is similar to the proof of [LM21, Prop. 6.1]. If we replace the assump-
tion that Γ is arithmetic with the weaker requirement that Γ has algebraic
entries, we get a version of this proposition where part (2) is replaced with
the following.

(2’) There is x ∈ X with

dX(x, x1) ≤ e(−D+D1)t,

satisfying the following: there are elements γ1 and γ2 in StabH(x) with
∥γi∥ ≤ eD1t for i = 1, 2 so that the group generated by {γ1, γ2} is Zariski
dense in H.
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6. Improving the dimension

Proposition 5.1 shows that up to an exponentially small error, the set
{a9turx0 : r ∈ [0, 1]} has a small positive dimension transversal to H at
controlled scales. The objective in this step is to show that by applying
elements of the form aℓur, for a fixed ℓ and a random r ∈ [0, 1], we can
inductively improve this dimension transversal to H at controlled scales to
α (which will be chosen to be smaller than but quite close to 1). This is
achieved by investigating the evolution of a certain Margulis function (cf.
the survey [EM22], though the Margulis function we use here is somewhat
intricate).

To state the main result which is Proposition 6.1, we need some nota-
tion. Let R be as in Theorem 1.1, and set t = 1

D1
logR with D1 as in

Proposition 5.1. We will assume R is large enough so that the conclusion of
Proposition 5.1 holds with this t.

Let

E = BH
β ·

{
ur : |r| ≤ η0

}
.

where β = e−κt for some small κ > 0. (More explicitly, we will fix some
0 < ε ≤ 10−8 which will depend on κ0, and let κ = 10−6ε/D where D =
D1(D0 + 1).)

It will be more convenient to approximate translations {asurx0 : r ∈ [0, 1]}
with sets which are a disjoint union of local E-orbits as we now define. Let
F ⊂ Br(0, β) be a finite set with #F ≥ et/2, and let y ∈ X. For every w ∈ F ,
let Ew ⊂ E be a Borel set so that mH(Ew) ≥ β4 and mH

(
Ew△(BH

β10 ·Ew)
)
≤

βmH(Ew), where mH denotes a fixed Haar measure on H. Put

(6.1) E =
⋃

Ew.{exp(w)y : w ∈ F}.

We equip E with the probability measure µE = 1∑
w mH(Ew)

∑
w µw,y where

µw,y denotes the pushforward of mH |Ew to Ew. exp(w)y for every w ∈ F .

Let θ be a small constant depending on the decay of matrix coefficients
in G/Γ (the exact value we shall use is θ = κ20/10

4M , where κ0 is as (3.1)
and M as in Proposition 3.1). Let

α = 1− θ and
√
ε = θ.

Let ℓ = 0.01εt, and let νℓ be the probability measure on H defined by

νℓ(φ) =

∫ 1

0
φ(aℓur) dr for all φ ∈ Cc(H);

let ν
(n)
ℓ = νℓ ⋆ · · · ⋆ νℓ denote the n-fold convolution of νℓ for all n ∈ N.

The following is the main statement.

6.1. Proposition. Let x1 ∈ X, and assume that Proposition 5.1(2) does not
hold for D, x1, and t. Let r1 ∈ I(x1), where I(x1) is as in Proposition 5.1(1),
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and put x2 = a8tur1x1. Let

J := [d1 − 104ε−1/2, d1] ∩ N,

where d1 = 100⌈4D−3
2ε ⌉. For every d ∈ J , there is a collection

Ξd = {Ed,i : 1 ≤ i ≤ Nd}
of sets defined as in (6.1) for some Fd,i ⊂ Br(0, β), so that both of the
following hold:

(1) Put ϱ = e−
√
εt. Let d ∈ J , 1 ≤ i ≤ Nd, and let w0 ∈ Br(0, β). Then for

every w ∈ Br(w0, ϱ) and all b ≥ e−t/2, we have

(6.2)
#
(
Br(w, b) ∩Br(w0, ϱ) ∩ Fd,i

)
#
(
B(w0, ϱ) ∩ Fd,i

) ≤ eεt(b/ϱ)α.

(2) For all s ≤ t and all r ∈ [0, 2], we have
(6.3)∣∣∣∫ φ(asurz) dν

(d1)
ℓ ⋆µEt.x2(z)−

∑
d,i

cd,i

∫
φ(asurz) dν

(d1−d)
ℓ ⋆µEd,i(z)

∣∣∣ ≪ Lip(φ)βκ4

where φ ∈ C∞
c (X), cd,i ≥ 0 and

∑
d,i cd,i = 1 − O(βκ4), Lip(φ) is the

Lipschitz norm of φ, and κ4 and the implied constants depend on X.

Roughly speaking, the proposition states that up to an exponentially

small error, ν
(d1)
ℓ ⋆µEt.x1 may be decomposed as

∑
d,i cd,iν

(d1−d)
ℓ ⋆µEd,i where∑

d,i cd,i = 1 − O(βκ4) (see (6.3)) and for all d ∈ J and 1 ≤ i ≤ Nd the

dimension of Ed,i transversal to H at controlled scales is ≥ α (see (6.2)).

Combining Proposition 6.1 with the previous discussion, we may complete
the proof of Theorem 1.1. A brief outline of this deduction follows: Let
x0 be as in the statement and suppose that part (2) in Theorem 1.1 does
not hold. We first apply Proposition 4.1 with s = log T − C logR for an
appropriate large constant C to improve the (weak) Diophantine property
of x0 provided by the failure of part (2) in Theorem 1.1 to the stronger
Diophantine property,

(6.4) dX(x, x1) ≫ R−D0 for all x with vol(Hx) ≤ R

for most points x1 on {alog T−C logRurx0 : r ∈ [0, 1]}. Thus, in order to show

that
∫ 1
0 φ(alog Turx0) dr is within R−⋆ of

∫
ϕ it is enough to show the same

for
∫ 1
0 φ(aC logRurx1) dr for x1 satisfying the stronger Diophantine property

(6.4).
The remaining time, i.e., C logR, will be divided into three phases:

Phase I. Recall that t = 1
D1

logR. We apply Proposition 5.1 with the point

x1. Then for every r1 ∈ I(x1), the conclusion of part (1) in that proposition
holds for x2 = a8tur1x1. That is, h 7→ hx2 is injective over Et and the
transverse dimension of Et.x2 is ≥ 1/D for all

(6.5) x2 ∈
{
a8tur1x1 : r1 ∈ I(x1)

}
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whereD = D0D1+D1. Therefore, in order to show that
∫ 1
0 φ(aC logRurx1) dr

is withinR−⋆ of
∫
ϕ, it is enough to show a similar estimate for

∫ 1
0 φ(aC logR−8turx2) dr

for all x2 as in (6.5).

Phase II. Let s = 2
√
εt (note that this is much larger than ℓ = 0.01εt).

Then ∫ 1

0
φ(as+d1ℓ+turx2) dr

is within R−⋆ of ∫ 1

0

∫
φ(asurz) dν

(d1)
ℓ ⋆ µEt.x2(z) dr.

We now use Proposition 6.1 to improve the small transversal dimension
from 1/D to α. More precisely, Proposition 6.1 shows that∫ 1

0

∫
φ(asurz) dν

(d1)
ℓ ⋆ µEt.x2(z) dr

is within R−⋆ of a convex combination of integrals of the form∫ 1

0

∫
φ(asurz) dν

(n)
ℓ ⋆ µE(z) dr

where 0 ≤ n = d1 − d ≤ 104ε−1/2 and E = Ed,i has dimension at least α
transversal to H at controlled scales, see (6.2).

Phase III. It now suffices to show that
∫ 1
0

∫
φ(asurz) dν

(n)
ℓ ⋆ µE(z) dr is

within R−⋆ of
∫
φ for all E and n as above. We will use Proposition 3.1

to show this. First note that∫ 1

0

∫
φ(asurz) dν

(n)
ℓ ⋆ µE(z) dr

is within R−⋆ of ∫ ∫ 1

0
φ(as+nℓurz) dr dµE(z).

Moreover, we have

2
√
εt ≤ s+ nℓ ≤ 2

√
εt+

104ℓ√
ε

= 102
√
εt;

in view of our choice of θ the right most term in the above series of inequal-

ities is ≤ κ2
0

4Mθ

√
εt. Thus, Proposition 3.1, applied with θ = 1 − α, c = 2ε,

ϱ = e−
√
εt, ρ = e−t/2, and τ = s+ nℓ, gives

(6.6)
∣∣∣∫∫ φ(as+nℓurz) dµE(z) dr −

∫
φdmX

∣∣∣ ≪ S(φ)e−⋆t = S(φ)R−⋆

where the implied constants depend on X.
Note that the total time required for these three phases is s + d1ℓ + 9t

which in view of the choices of s, ℓ and t is indeed a (large) constant times
logR. Theorem 1.1 follows.
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In the setting of Theorem 1.3, we cannot utilize Proposition 4.1 combined
with Proposition 5.1 as we did above; cf. the weaker conclusion in (2’) fol-
lowing Proposition 5.1. Thus, we only use the three phases above (with
t = ⋆δ log T ) to improve the small dimension, namely the parameter δ in
Theorem 1.3, to α. Thus the number of steps required is ≫ 1/δ which forces

κ≪ δ. Hence, we only obtain the rate T−⋆δ2 in part (1) of Theorem 1.3.

The proof of Propositions 6.1 relies on the evolution of the Margulis func-
tion f̂E,ϱ,K defined below. For every (h, z) ∈ H × E , put

IE,ϱ(h, z) :=
{
w ∈ r : 0 < ∥w∥ < ϱ and exp(w)hz ∈ hE

}
.

Since E is bounded, IE,ϱ(h, z) is a finite set for all (h, z) ∈ H × E .
For every K ≥ 0, define the modified and localized Margulis function

f̂E,ϱ,K : H × E → [1,∞) as follows2: if #IE,ϱ(h, z) ≤ K, put

f̂E,ϱ,K(h, z) = ϱ−α,

and if #IE,ϱ(h, z) > K, put

f̂E,ϱ,K(h, z) = min

{∑
w∈I

∥w∥−α :
I ⊂ IE,ϱ(h, z) and
#(IE,ϱ(h, z) \ I) = K

}
.

We begin the outline of the proof of Propositions 6.1 with the following
observation: the set Et.x1 gives rise to sets E which are defined as in (6.1)
and since we assume that Proposition 5.1(2) does not hold these satisfy

f̂E,ϱ,0(e, z) ≤ eDt for all z ∈ E .
Let E be one of these sets, then up to an exponentially small error, νℓ ⋆µE

may be decomposed into
∑
c′jµE ′

j
where c′j ≥ 0 and

∑
c′j = 1−O(β⋆). This

can be seen by first decomposing νℓ ⋆ µE into a combination of measures
supported on subsets of X which are exponentially thin in the direction of
U− (note that aℓE.y will be exponentially thin in the direction of U−), and
then smearing these measures with BH

β . Continuing inductively, we obtain

the decomposition (6.3).
The fact that the energy estimate (6.2) is also satisfied for the terms

appearing in (6.3) is at the heart of the proposition. The proof of this fact
is based on the following bootstrap step: for all but an exponentially small
set of r ∈ [0, 1] and all but an exponentially small set of z ∈ E ,

(6.7) f̂E,ϱ,β−1(aℓur, z) ≤ e−ℓ/2eDt + 4eℓϱ−αψE,ϱ(aℓur, z).

where ψE,ϱ(h, z) := max{#IE,ϱ(h, z), 1}.
The proof of (6.7) relies on the aforementioned works of Wolff, Schlag,

and Zahl [Wol00, Sch03, Zah12], see also the discussion below.

2If Γ is nonuniform, this Margulis function needs to be modified accordingly; but in
this section we limit ourselves to the compact case.
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The set aℓur.E can now be used to construct sets E ′ (defined as in (6.1)),

and in view of (6.7), the estimate for f̂E ′,ϱ,β−1 is improved. Continuing
inductively and using Dt− 0.5d1ℓ ≤ 3t/4, after d ≤ d1 steps, we have

(6.8) f̂E ′,ϱ,dβ−1(e, z) ≤ eεtϱ−αψE ′,ϱ(e, z),

which implies the dimension estimate (6.2) for the set F ′ ⊂ Br(0, β) which
is used in the definition of E ′, see (6.1).

We emphasize that our inductive scheme produces sets E ′ at every step
0 < d ≤ d1 with an improved bound on f̂E ′,ϱ,dβ−1 , however, it does not
guarantee that (6.8) is only satisfied for d ∈ J . On the other hand, and as
it was discussed above, the fact that our stopping times d satisfy d1 − d ≤
104ε−1/2 is essential for us when we apply Proposition 3.1. We remedy this
issue as follows: if (6.2) holds for some E ′ defined at step d < d1− 104ε−1/2,
then we use the above inductive scheme to show that starting with E ′, the
process again terminates (i.e., (6.8) is satisfied) in at most 104ε−1/2-many
further steps.

On a related note, it should also be mentioned that ideally one would like
to replace the interval of possible choices of d ∈ J with the singleton {d1},
i.e., to show that after exactly d1 steps, one obtains sets which satisfy (6.2).
Indeed, such statement can be obtained if one is content with restricting
to α < 1/2 — this can be achieved using estimates analogues to [EMM98,
Lemma 5.1] where one replaces the integral over [0, 1] with integrals over
much smaller intervals and by conditioning the random walk.

However, it is essential for us to work with α = 1−θ where θ > 0 is rather
small. For such choices of α, there are vectors w ∈ r where the growth of
∥aturw∥ is too slow. Indeed, in general, one can only guarantee that

(6.9)

∫ 1

0
∥aturw∥−α dr ≪ e−θt∥w∥−α.

Using this general fact (which is an exercise in linear algebra) as an input,
one can prove a version of Proposition 6.1 where

[d1 − 104√
ε
, d1] is replaced by [d1 − 36

θ
√
ε
, d1],

in particular, the length of the interval cannot be made smaller than (θ
√
ε)−1.

As it was discussed above, this improvement is pivotal to our analysis,
and it is made possible by bringing to bear [Wol00, Sch03, Zah12] in this
step of the argument as well. Indeed, the poor rate in (6.9) is closely related
to the existence of double zeroes for the map r 7→ (aturw)12 (the (1, 2)-entry
of aturw); we thus use [Wol00, Sch03, Zah12], to control tangencies between
the two parabolas {(urw1)12 : r ∈ [0, 1]} and {(urw2)12 : r ∈ [0, 1]} for
most pairs w1, w2 ∈ F and most r ∈ [0, 1]. This yields an improved version
of (6.9) which we use crucially.
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