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EFFECTIVE EQUIDISTRIBUTION FOR SOME ONE
PARAMETER UNIPOTENT FLOWS

E. LINDENSTRAUSS, A. MOHAMMADI, AND Z. WANG

ABSTRACT. We prove effective equidistribution theorems, with poly-
nomial error rate, for orbits of the unipotent subgroups of SL2(R) in
arithmetic quotients of SL2(C) and SL2(R) x SLa(R).

The proof is based on the use of a Margulis function, tools from
incidence geometry, and the spectral gap of the ambient space.
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1. INTRODUCTION

A landmark result of Ratner [Rat91b] states that if G is a Lie group, I’
a lattice in G and if u; is a one-parameter Ad-unipotent subgroup of G,
then for any = € G/I' the orbit u;.z is equidistributed in a periodic orbit
of some subgroup L < G that contains both the one parameter group u,
and the initial point z. We say an orbit L.z of a group L in some space
X is periodic if the stabilizer of x in L is a lattice in L, equivalently that
the stabilizer of z in L is discrete and L.x supports a unique L-invariant
probability measure my ,; and wu;.x is equidistributed in L.z in the sense
that

T
(1.1) ;/ f(up.x)dt — /fdmL,x for any f € Co(G/T).
0

In order to prove this equidistribution result, Ratner first classified the u;-
invariant probability measures on G/T" [Rat90, Rat91a|; the proof also uses
the non-divergence properties of unipotent flows established by Dani and
Margulis [Mar71, Dan84, Dan86].

In this paper we prove a quantitative equidistribution result for orbits
of a one parameter unipotent group on quotients G/I' where G is either
SL2(C) or SLa(R) x SLa(R) with a polynomial error rate, which is the first
quantitative equidistribution statement for individual orbits of unipotent
flows on quotients of semi-simple groups beyond the horospherical case. Our
approach builds on the paper [LM21] by the first two authors, where an
effective density result with a polynomial rate for orbits of a Borel subgroup
of a subgroup H ~ SLy(R) of G was proved.

Recall that a group N < G is horospheric if there is some g € G so that
N={heG:g "hg" — 1 as n— oco}.

For instance, the one parameter unipotent group

o 1)res)

is horospheric in SLa(R) as are the groups
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in SL2(C) and SLg(R) x SLa(R), respectively. The classification of invariant
measures and orbit closures for horospherical flows was established prior to
Ratner’s work by Hedlund, Furstenberg, Dani, Veech and others, and this
has been understood for some time also quantitatively since one can relate
the distribution properties of individual N orbits to the ergodic theoretic
properties of the action of g on G/T" (cf. §5 for more details).

The non-horospheric case, on the other hand, is much more delicate, and
proving a quantitative form of Ratner’s theorem regarding equidistribution
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of unipotent orbits has been a major challenge. We survey below in §1.4
what was known before our work as well as some very recent developments
that have taken place after these results have been announced.

To state our main results we first fix some notations. Let

G = SL2 ((C) or G = SLQ(R) X SLQ(R)

Let ' C G be a lattice, and put X = G/T'. We let mx denote the G-
invariant probability measure on X. Throughout the paper, we will denote
by H a subgroup of G isomorphic to SLa(R), namely

SLQ(R) C SLQ((C) or {(g,g) S SLQ(R)} C SLQ(R) X SLQ(R)

For all t,r € R, let a; and u, denote the image of

et/? 0 1 r
0 e-t/2 and 0 1)
in H, respectively.

We fix maximal compact subgroups SU(2) C SLy(C) and SO(2) xSO(2) C
SLa(R) x SLa(R). Let d be the right invariant metric on G which is defined
using the Killing form and the aforementioned maximal compact subgroups.
This metric induces a metric dx on X, and natural volume forms on X and
its submanifolds. We define the injectivity radius of a point x € X using
this metric. In the sequel, || || denotes the maximum norm on Mats(C) or
Mata(R) x Matg(R) with respect to the standard basis.

Our main result is the following:

1.1. Theorem. Assume I' is an arithmetic lattice. For every xg € X, and
large enough R (depending explicitly on X and the injectivity radius of xg),
for any T > R4, at least one of the following holds.

(1) For every ¢ € C°(X), we have

1
’/ @(aiog TUrTQ) dr — /@de’ <S(p)R™™
0

where S(p) is a certain Sobolev norm.
(2) There exists x € X such that H.z is periodic with vol(H.z) < R, and

dx(z, ) < R logT)AT1.
The constants A and k1 are positive and depend on X but not on xg.

Theorem 1.1 can be viewed as an effective version of [Sha96, Thm. 1.4].
Combining Theorem 1.1 and the Dani-Margulis linearization method [DM91]
(cf. also Shah [Sha91]), that allows to control the amount of time a unipo-
tent trajectory spends near invariant subvarieties of a homogeneous space,
we also obtain an effective equidistribution theorem for long pieces of unipo-
tent orbits (more precisely, we use a sharp form of the linearization method
taken from [LMMS19]).
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1.2. Theorem. Assume I' is an arithmetic lattice. For every xg € X and
large enough R (depending explicitly on X ), for any T > R4, at least one
of the following holds.

(1) For every ¢ € C°(X), we have

1 T

‘T/ o(upxo)dr — /cpdmx‘ <S(p)R™"
0

where S() is a certain Sobolev norm.
(2) There exists x € G/T" with vol(H.x) < R4, and for every r € [0,T]
there exists g € G with ||g|| < R4 so that
dx (uswo, gH.x) < R™M <‘8;T’
(3) For every r € [0,T] and t € [log R,logT], the injectivity radius at
a_yupzo is at most RA4te™t,

1/As
> for all s € [0,T).

The constants A1, As, and ko are positive, and depend on X but not on xg.

The assumption in Theorem 1.1, that I' is arithmetic, may be relaxed.
Let us say I' has algebraic entries if the following is satisfied: there is a
number field F', a semisimple F-group G of adjoint type, and a place v of
F so that F,, = R and G(F},) and G are locally isomorphic — in which case
there is a surjective homomorphism from G onto the connected component
of the identity in G(F,) — and the image of I" in G(F},) (possibly after
conjugation) is contained in G(F'). Every arithmetic lattice has algebraic
entries, but there are lattices with algebraic entries that are not arithmetic.

Note that the condition that I' has algebraic entries is automatically sat-
isfied if I' is an irreducible lattice in SLa(R) x SLa(R) or if G = SLa(C).
Indeed, by arithmeticity theorems of Selberg and Margulis, irreducible lat-
tices in SLa(R) x SLy(R) are arithmetic [Mar91, Ch. IX]. Moreover, by local
rigidity, lattices in SLo(C) always have algebraic entries [GR70, Thm. 0.11]
(see also [Sel60, Wei60, Wei64]).

1.3. Theorem. Assume I is a lattice which has algebraic entries. For every
0<d<1/4, every xo € X and large enough T (depending explicitly on X,
d and the injectivity radius of xo) at least one of the following holds.

(1) For every ¢ € C°(X), we have

1
[ clangrum)dar = [ odmy| < Sy
0
where S(p) is a certain Sobolev norm.
(2) There exists x € X with
dX(x7 .’L'()) S Tﬁl/Alv

satisfying the following: there are elements v, and -2 in Stabgy(z) with
Vil < T° fori=1,2 so that the group generated by {v1,7v2} is Zariski
dense in H.
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The constants A’ and k3 are positive, and depend on X but not on & and
Zo-

The obstacle to effective equidistribution in Theorem 1.1 is much cleaner
and simpler than in Theorem 1.2. This is not an artifact of the proof but
a reflection of reality; a unipotent orbit may fail to equidistribute at the
expected rate without it staying near a single period orbit of some subgroup
{w;} < L < G: one must allow a slow drift of the periodic orbit in the
direction of the centralizer of u;. Unlike the work of Shah in [Sha96], where
(in particular) a non-effective version of Theorem 1.1 is proved relying on
Ratner’s measure classification theorem for unipotent flows, our proof goes
the other way, first establishing Theorem 1.1, and then deduce Theorem 1.2
from it using a linearization and non-divergence argument.

These results have been announced in [LMW22], as well as in a series of
three talks at the TAS in Princeton in February 2022'. The announcement
[LMW22] also contains an overview of the argument; the reader may find it
useful to consult [LMW22] before (or while) reading the full version.

1.4. Background and further discussion. Ratner’s equidistribution the-
orem implies a corresponding orbit closure classification theorem. Answer-
ing a conjecture of Raghunathan, Ratner deduced from the equidistribution
theorem a classification of orbit closures: if G is a Lie group, I' a lattice in
G, and if H < G is generated by one parameter Ad-unipotent subgroups
of G, then for any # € G/I" one has that Hx = L.x where H < L < G
and L.z is periodic. Important special cases of Raghunathan’s conjecture
were proven earlier by Margulis and by Dani and Margulis using a different
more direct approach, which in particular gave a proof of a rather strong
form of the longstanding Oppenheim conjecture [Mar89, DM89, DM90]. The
rigidity properties of unipotent flows have had many other surprising appli-
cations to number theory, from equidistribution to counting integer points
and even regarding nonvanishing of central values of L-functions, as well as
many other areas. Already the cases we study here, e.g., the action of u; on
SL2(R) x SL2(R)/SLa(Z) x SLa(Z) is of interest to some number theoretic
implications (e.g. [SU15, BSZ13]).

Both because of its intrinsic interest, but especially in view of the applica-
tions, obtaining quantitative versions of equidistribution results for unipo-
tent flows has been a well known open problem (cf. [Mar00, §1.3], in partic-
ular problem 7 there, or [Gor07, Ques. 17]).

As mentioned above, the equidistribution of orbits of horospheric groups is
by now well understood, in part using the relation between studying individ-
ual orbits of horospheric groups and mixing properties of a corresponding
diagonalizable group. The first work in this direction we are aware of is
Sarnak [Sar81] who studied periodic orbits of the horocycle flow. Burger

1https://www.ias.edu/video/effective—equidistribution—some—one—parameter—
unipotent-flows-polynomial-rates-i-ii
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[Bur90] gave a general effective treatment for quotients of SLy(R) (even
in some infinite volume cases). In [KM96], Kleinbock and Margulis use a
quantitaive equidistribution result for expanding translates of orbits of horo-
spheric groups [KM96, Proposition 2.4.8]. More recent papers in the topic
include the work of Flaminio and Forni [FF03], Strémbergsson [Str13], and
Sarnak and Ubis [SU15]. Quantitative horospheric equidistribution has now
been established in much greater generality e.g. by Kleinbock and Margulis
in [KM12], McAdam in [McA19] and by Asaf Katz [Kat19]. Moreover a
quantitative equidistribution estimate twisted by a character was proved
by Venkatesh [Venl0] and further developed by Tanis and Vishe as well as
Flaminio, Forni, and Tanis [TV15, FFT16]; this was generalized to a dis-
jointness result with a general nil-system by Asaf Katz in [Kat19]. Closely
related is the case of translates of periodic orbits of subgroups L C G which
are fixed by an involution by Duke, Rudnick and Sarnak, Eskin and Mc-
Mullen, and Benoist and Oh in [DRS93, EM93, BO12].

Unipotent dynamics have a very different flavour when the ambient group
G itself is a unipotent group (in which case the study of these flows, e.g.
the classification of invariant measures, dates back to work by Leon Green,
Parry and others from the late 1960s) on the one extreme and when G is a
semisimple group on the other. The case when G is a skew product G’ x N
with G’ semisimple and N unipotent, with the acting group U projecting to
a horospheric subgroup of G’, can be viewed as intermediate between these
two cases.

e Even when G is unipotent (and G/I" a nilmanifold) the quantitative be-
haviour of unipotent flows has only been understood relatively recently
by Green and Tao [GT12].

e In the case of quotients of the skew product G' = SLa(R) x R?, Strombergs-
son [Str15] has an effective equidistribution result for one parameter unipo-
tent orbits (which are not horospheric in G, but project to a horospheric
group on SLy(R)), and this has been generalized by several authors, in
particular by Wooyeon Kim [Kim21] (using a completely different argu-
ment) to SL, (R) x R™. The case where G is a direct product G = G’ x N
and U projects to a horospheric subgroup of G’ is discussed in Katz paper
[Kat19].

e Not quite in this framework, but also somewhat of an intermediate case
between the case of G semisimple and nilpotent is the study of random
walks by automorphisms of the torus or nilmanifold X driven by a prob-
ability measure on Aut(X) whose support generates a group with suffi-
ciently large Zariski closure. Here there is a quantitative equidistribution
result by Bourgain, Furman, Mozes and the first named author [BFLM11],
which was extended by Weikun He and de Saxce [HdS19]. Elements from
this proof were used by Wooyen Kim in [Kim21].

e When G is semisimple, there have been some results regarding effective
density of non-horospherical unipotnet flows. Specifically, for G/T" =
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SL3(R)/SL3(Z) and wy is the generic one parameter unipotent subgroup a
result towards effective density with a logarithmic error term was proved
by Margulis and the first named author [LM14] in order to give an ef-
fective and quantitative proof of the Oppenheim Conjecture. A more
general result in this direction, with iterated logarithmic rate?, was an-
nounced by Margulis, Shah and two of us (E.L. and A.M.) with the first
installment of this work appearing in [LMMS19]. An effective density
result for G = SLy(C) or SLa(R) x SLy(R) and u a one-parameter unipo-
tent (i.e. the case we consider in this paper), with a polynomial rate, was
established by the first two named authors [LM21].

e When G is semisimple, there have been some results regarding effective
equidistribution of special orbits of non-horospherical groups generated
by unipotents. In particular we note the work of Einsiedler, Margulis and
Venkatesh [EMV09] showing that periodic orbits of semisimple subgroups
H of a semisimple group G are quantitatively equidistributed in an appro-
priate homogeneous subspace of G/I' if I' is a congruence lattice and H
has finite centralizer in GG. Subsequently Einsiedler, Margulis, Venkatesh
and the second named author by using Prasad’s volume formula and a
more adelic view point were able to prove such an equidistribution result
for periodic orbits of maximal semisimple subgroups of G when the sub-
group is allowed to vary [EMMV20] with arithemetic applications. The
equidistribution of periodic orbits of semisimple groups is also closely con-
nected to the equidistribution of Hecke points; a quantitative treatment
of such equidistribution was given by Clozel, Oh and Ullmo in [COUO01].

In a different direction, but also under this general heading we note the
paper of Chow and Lei Yang [CY19] which deals with expanding translates
of special 1-parameter unipotent orbits, with applications to diophantine
approximations.

e For G semisimple and U a nonhorospheric unipotent group there were
no quantitative equidistribution results known, with any rate, before our
work (certainly not for a one parameter group U; but see e.g. [Ubil7] for
a related result in an “almost horospheric” situation). Our work was an-
nounced in [LMW22]. While we were working on finishing this paper Lei
Yang posted a very interesting preprint treating another nonhorospheric
case [Yan22] — the case of trajectories of a non-generic one-parameter
unipotent group on SL3(R)/SL3(Z). That paper uses some elements com-
mon with our approach (e.g. a similar closing lemma as a starting point
and a similar last stage), but the critical dimension increment phase seems
to be done quite differently. We note that the case treated by Lei Yang
in that paper is the same case for which Chow and Yang proved equidis-
tribution for translates of special orbits in [CY19].

An extremely interesting analogue to unipotent flows on homogeneous
spaces is given by the action of SLg(R) and its subgroups on strata of abelian

Le. very far from the right kind of dependence which should be polynomial.
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differentials. Let g > 1, and let &« = (a1, . .., oy, ) be a partition of 2g—2. Let
H () be the corresponding stratum of abelian differentials, i.e., the space of
pairs (M,w) where M is a compact Riemann surface with genus g and w is a
holomorphic 1-form on M whose zeroes have multiplicities aq, ..., a,. The
form w defines a canonical flat metric on M with conical singularities and
a natural area from. Let H1(a) be the space of unit area surfaces in H(«).
The space H(«) admits a natural action of SLa(R); this action preserves the
unit area hyperboloid H;(«).

A celebrated theorem of Eskin and Mirzakhani [EM18] shows that any P-
invariant ergodic measure is SLy(R)-invariant and is supported on an affine
invariant manifold, where P denotes the group of upper triangular matrices
in SLa(R). We shall refer to these measures as affine invariant measures.
Moreover, if we define, for any interval I C R and = € H;(«), the probability
measure pj on Hi(a) by

wi = ‘I‘il /5us:v ds,
I
then Eskin, Mirzakhani and the second named author [EMM15] showed that
for any « € Hi(a) the limit

T—o0

1 [T
(1.2) lim T / at o 17 dt exists in weak™ sense
t=0

and is equal to an (SLg(R)-invariant) affine invariant probability measure
with z in its support. Omn the other hand, there are several results, in
particular by Chaika, Smillie and B. Weiss in [CSW20], that show that an
analogue of Ratner’s equidistribution theorem (or our Theorem 1.2) fails to
hold in this setting, for instance for some = the sequence of measure “:[LE),T]
may fail to converge as T' — oo, or may converge to a non-ergodic measure.
However the following conjecture of Forni seems to us very plausible:

1.5. Conjecture ([For21, Conj. 1.4]). Let Hi(a) be the space of unit area
surfaces in stratum of abelian differentials on a genus g surface whose zeros
have multiplicities given by o = (au,..., ), and let x € Hi(a). Then
lim; 0 at,uﬁ)’l] exists in the weak™ semse and is equal to an affine invariant
measure with x in its support.

Of course, once one establishes that lim;_ o @tﬂﬁ) 1] exists, the rest follows

from [EMM15]. In this context again obtaining quantitative equidistribution
results would be very interesting.
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2. THE MAIN STEPS OF THE PROOFS

As mentioned above, Theorem 1.2 is proved by combining Theorem 1.1
and the linearization techniques [DM91] in their quantitative form [LMMS19],
see §16 for details. We note that the idea of using equidistribution of expand-
ing translates of a fixed piece of a U orbit of the type {aius.x : 0 < s <1}
to deduce equidistribution of a large segment of a non-translated U orbit
{us.x : 0 < s < T} is quite classical.

Let us now highlight some of the main ingredients used in the proof of
Theorem 1.1. Assume that part (2) in Theorem 1.1 fails for o, T, and R
as the proof is complete otherwise. We begin with a version of avoidance
principle & la linearization techniques of Dani-Margulis albeit for random
walks.

Roughly speaking, the following proposition asserts that failure of part (2)
in Theorem 1.1 may be upgraded to a Diophantine estimate with a polyno-
mial rate (whose degree is absolute) in terms of R. We will let inj(x) denote
(our slightly modified) injectivity radius of x, see §3 and §4.1.

2.1. Proposition. There exist Dy (absolute) and Ci, sy (depending on X )
so that the following holds. Let R, S > 1. Suppose xg € X is so that

dx (zg, ) > (log §)P0S~1
for all x with vol(Hz) < R. Then for all
s > max{log S, 2| log(inj(xo))|} + so
and all 0 < n <1, we have
inj(asurxg) < n or there is x with

. 1/2 ~1
Hr € [0,1]: vol(Hz) < R s.t. dx(asuyxg,x) < 01}12170 }‘S Ci(ln’*+R7).

The proof of this proposition uses Margulis functions for periodic H-orbits
and is completed in Appendix A, see also §4.5 for more details.

We will apply this proposition with » = R™* where x is a small constant.
In view of this proposition and the fact that part (2) in Theorem 1.1 does
not hold, for all but a set with measure < R~ of r € [0, 1], the point
x1 = asu,xo (where s =logT — C'log R for appropriate choice of C') satisfy

(2.1) inj(z1) >7n and d(z,z1) > R™P° for every z with vol(Hz) < R.

Thus, in order to show that fol @(aog TUrx0) dr is within R™ of [ ¢ dm,

it suffices to show that fol o(aciog Rurx1) dr is within R™* of [ ¢ dm where
x1 satisfies (2.1). We will show this statement in three phases.
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A closing lemma and the initial dimension. In this phase, we show
that the improved Diophantine condition (2.1) for z; implies that points
in {a10g RUrxo : € [0,1]} (possibly after removing an exceptional set of
measure < R™*) are separated transversal to H.

Let t > 0 be a large parameter, and fix some e 90 < 3 = ¢ (in
our application, k will be chosen to be < 1/Dy where the implied constant
depends on X and Dy is as in Proposition 4.6, moreover, we will assume
B = n? in that proposition).

For every 7 > 0, put

E-=B5"-a- {u,:r €[0,1]} C H,

—kt

where BE’H ={uy :|s| <B}-{as:|t| < B} and uy is the transpose of wus.
Let g = Lie(G), that is, g = sl2(C) or g = sla(R) @ sly(R). Let v = isly(R)
if g = s5l(C) and v = slp(R) @ {0} if g = slo(R) @ slo(R). In either case
g = h@r where h = Lie(H) ~ sl3(R), and both h and v are Ad(H )-invariant.
Let 7 > 0 and y € X. Assume that h — hy is injective over E. For every
z € E;.y, put

I:(2) == {w € v: |w|| <inj(z) and exp(w)z € E;.y};

this is a finite subset of ¢ since E; is bounded — we will define I¢(h, z) for
all h € H and more general sets £ in the bootstrap phase below.
Let 0 < a < 1. Define the function f; : E;.y — [1,00) as follows

fr(z) = {Zo;éweIT(z) |wl=* if I;(z) # {0} |

inj(z)~“ otherwise

2.2. Proposition. Assume I is arithmetic. There exists Dy (which depends
on I explicitly) satisfying the following. Let D > Dy and x € X. Then for
all large enough t at least one of the following holds.
(1) There is a subset I(x) C [0,1] with |[0,1]\ I(x)| <x BY* such that for
all r € I(x) we have the following
(a) inj(aguyx) > B2,
(b) h — h.agiu,x is injective over E;.
(c) For all z € Ey.agiurx, we have

fi(z) < elt.
(2) There is ¥’ € X such that Hx' is periodic with
vol(Hz') < eP'' and dx (2, x) < el7PHPIL,

This proposition will be proved in §4.7. We also refer to that section for
discussions regarding the assumption that T' is arithmetic.

For the rest of the argument, let ¢t = D%log R, where R is as in Theo-
rem 1.1, and let 21 be as in (2.1). Apply Proposition 2.2 with the point x.
Then for every r; € I(x1), the conclusions in part (1) of that proposition



EFFECTIVE EQUIDISTRIBUTION FOR UNIPOTENT FLOWS 11
holds for xy = agiu, 1. That is, h — hxs is injective over E; and the
transverse dimension of E;.zo is > 1/D for all
(2.2) z9 € {astup, 1 i1 € I(z1)}

where D = DyD1+2D;. Therefore, in order to show that fol o(aciog RUrx1) dr
is within R™ of [ ¢, it is enough to show a similar estimate for

1
/ ¢(aciog R—sttrx2) dr
0

for all x9 as in (2.2).

Improving the dimension. Roughly speaking, Proposition 2.2 states that
the set {agiu,x; : 7 € [0,1]} has transversal dimension 1/D. In this step,
we will improve this dimension to reach at dimension «, close to 1.

We need some notation. Recall that ¢t = D% log R. Let 8 = e " for some

small £ > 0. (More explicitly, we will fix some 0 < ¢ < 1078 to be explicated
later, and let x = 107%/(2D), D = DoD; + 2Dy). Let

E=8B5" {u:|r] <mo}.
It will be more convenient to approximate translations
{aupzo i 7 €10,1]}
with sets which are a disjoint union of local E-orbits as we now define.
Let F C B(0,3) be a finite set with #F > et/2 and let y € X with
inj(y) > BY/2. Put
(2.3) &= U E{exp(w)y : w € F}.

For every w € F, we let p, be a measure which is absolutely continuous
with respect to the pushforward of the Haar measure mgl|g to E.exp(w)y
whose density satisfies certain Lipschitz condition, see §7.6 for more details.
We equip £ with the probability measure g proportional to >, ftw-

Let 0 be a small constant; in our application, the exact choice of 6 will
depending on the decay of matrix coefficients in G/T', see (2.8). Let

a=1—-60 and e=06%

Let £ = 0.01¢t, and let vy be the probability measure on H defined by

1
ve(p) = /0 o(aguy) dr for all p € C.(H);

let yén) = vy % - - x Vp denote the n-fold convolution of vy for all n € N.

The following proposition is one of main steps in the proof.

2.3. Proposition. Let x1 € X, and assume that Proposition 2.2(2) does not
hold for D, x1, and t. Let

J = [dg,dl] NN,
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where d; = 100[428_% and do = dy — [1045—1/2].

Let m € I(x1), see Proposition 2.2(1), and put o = agiuy, 1. For every
d € J, there is a collection Zg = {4 : 1 < i < Ny} of sets

Eai = E{exp(w)yq,; : w € Fy;},

with Fy; C B(0,8) and inj(yq;) > BY2, and admissible measures HEy ;s
see §7.60, so that both of the following hold:
(1) Putb=e Ve Letde J, 1 <i< Ng and let wy € Bc(0,8). Then for
every w € Be(wo,b) and all § > e "2, we have
#(Bt(w, 5) N Bt(wo, b) N Fd7i)
#(B(wo, b) N Fdﬂ')
(2) For all s <t and all r € [0,2], we have

(2.4) < e*H(5/b)".

(2.5) /(p(asurz) dyédl) * UE, .20 (2) =
] (d1—d) : K4
S [ plawur2) ™ s pe,, (2) + O(Lin(e) )
di

where ¢ € CX(X), cay > 0 and 3, cai = 1 — O(B"), Lip(p) is the
Lipschitz norm of v, and k4 and the implied constants depend on X.

Roughly speaking, the proposition states that up to an exponentially
small error, ulgdl) * 1, 2, May be decomposed as )~ ; cdﬂ-yédl_d) * g, , where
daicdi = 1 —O(B) (see (2.5)) and for all d € J and 1 < i < Ny the
dimension of &;; transversal to H at controlled scales is > a (see (2.4)). See
Proposition 10.1 for a more precise formulation which relies on a Modified
Margulis function. The proof of Proposition 10.1 (and hence of Proposi-

tion 2.3) will be completed in §10-12.

Using this proposition we further reduce the analysis to equidistribution
of sets & satisfying part (1) in Proposition 2.3: Let s = 24/et (note that this
is much larger than ¢ = 0.01et but much smaller than t). Then

1
/ ©(asyayeqturma)dr
0
is within R~* of
L d
/ /go(asurz) dyé . HE, .z (2) dr.
0

We now use Proposition 2.3 to improve the small transversal dimension
from 1/D to a. More precisely, Proposition 2.3 shows that

1
/ /go(asuTz) dyédl) * UE, .z, (2) dr
0
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is within R of a convex combination of integrals of the form

1
(2.6) /o /go(asurz) dyén) * pie(2) dr

where 0 < n =d; —d < 10% Y2 and € = &4, has dimension at least o
transversal to H at controlled scales, see (2.4).

From large dimension to equidistribution. In this final step of the
argument, we will show that (2.6) equidistributes so long as 6 (recall that
a =1 —0) is chosen carefully.

Let begin with the following quantitative decay of correlations for the
ambient space X: There exists 0 < kg < 1 so that

(2.7) ‘/90(993)1#(:6) dmx — /@dmx/l/}dmx‘ < S(p)S()erod(e)

for all p,1 € C2°(X)+C-1, where mx is the G-invariant probability measure
on X and d is our fixed right G-invariant metric on G. See, e.g., [KM96, §2.4]
and references there for (2.7); we note that g is absolute if I' is a congruence
subgroup. This is known in much greater generality, but the cases relevant
to our paper are due to Selberg and Jacquet-Langlands [Sel65, JL70].

The quantitative decay of correlation can be used to establish quantitative
results regarding the equidistribution of translates of pieces of an N-orbit.
Specifically we employ the results in [KM96], but there is rich literature
around the subject; a more complete list can be found in §1.4.

Now let £ : [0,1] — t be a smooth non-constant curve. Then using the
quantitative results regarding equidistribution of translates of pieces of an
N-orbit such as [KM96], one can show that for every z € X,

ar{u, exp(&(s)).x i s €[0,1]}

is equidistributed in X as 7 — oo (with a rate which is polynomial in
e~ 7). The key point in the deduction of this equidistribution result from
the equidistribution of shifted N orbits is that conjugation by a, moves
urexp(£(s)) to the direction of N, hence the above average essentially re-
duces to an average on a N orbit.

Roughly speaking, the following proposition states that one may replace
the curve {{(s) : s € [0,1]} with a measure on t so long as the measure has
dimension > 1 — 0, for an appropriate choice of § depending on k.

The precise formulation is the following.

2.4. Proposition. For any 0 > 0 and ¢ > 0 there is a k5 so that the following
holds: Let 0 < by < 107°, and let F C Bt(O, bo) be a finite set satisfying
#(F N B(0,9))

e 1-0
4 < b; (6/b0) for all 6 > by

where by < b(l)o.
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Then for all x € X with inj(x) > bé/m

and every ¢ € CX(X), we have

’/01 #1F Z o(aru, exp(w)z) dr — /@dmx) <x

weF

. all [log(bg)| < 7 < 15]log(b1)],

S(sp) max ((b1 /o), by 2ee2ropro/M ).
where S(p) is a certain Sobolev norm and M an absolute constant.

The proof of this proposition is significantly more delicate than that of the
“toy version” of a shifted curve, and relies on an adaptation of a projection
theorem due to Ké&enméki, Orponen, and Venieri [KOV17], based on the
works of Wolff [Wol00], Schlag [Sch03], and [Zah12a], in conjunction with a
sparse equidistribution argument due to Venkatesh [Ven10]. These elements
also played a crucial role in previous work by E.L. and A.M. [LM21] re-
garding quantitative density for the action of AU on the spaces we consider
here. A slightly modified statement and the proof are given in §13, see in
particular Proposition 13.1.

We now use this proposition and outline the last step in the proof of
Theorem 1.1: Using the above notation, fix § and ¢ as follows

(2.8) 0<60<10%2/M and e=6°
Recall that s = 24/et. In view of (2.6), it now suffices to show that

1
/ /@(asurz) dyén) * e (z) dr
0

is within R™* of [¢@dmx for all £ and n as above. We will use Proposi-
tion 2.4 to show this. First note that

1
/ /cp(asurz) dz/én) * pe(z)dr
0
is within R~ of )
[ [ #lasemsurz) ardpea).
0

Moreover, we have

4

10%¢
2\/et < s+ nl < 2¢/et + NG = 102+/¢t;
15

in view of our choice of 6 the right most term in the above series of inequali-
ties is < (107°k3/M)t. Thus, Proposition 2.4, applied with § = \/z = 1 —q,
c=2,byp=e Vet b =e /2 and 7 = s+ nd, gives

29) | [[ At dueyar - [ pdmy] < Sl = S(o)R™

where the implied constants depend on X.
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Note that the total time required for these three phases is s + di£ + 9t
which in view of the choices of s, £ and t is indeed a (large) constant times
log R. Theorem 1.1 follows.

3. NOTATION AND PRELIMINARY RESULTS

Throughout the paper
G = SL2 (C) or G = SLQ(R) X SLQ(R)

Let I' C G be a lattice, and put X = G/I.
Let A ={a; :t € R} ¢ H. Let U C N denote the group of upper

triangular unipotent matrices in H C G, respectively. More explicitly, if
G = SL»(C), then

N= {n(r,s) - <(1) T?“”) (7, 5) GRQ}

and U = {n(r,0) : r € R}; note that n(r,0) = u, for r € R. Let
V ={n(0,s) =vs:s €R};
if G = SLQ (R) X SL2 (R), then

== 719 )]

and U = {n(r,0) : r € R}. As before, n(r,0) = u, for r € R. Let
V ={n(0,s) =vs: s € R}.

In both cases, we have N = UV. Let us denote the transpose of U by U~
and its elements by u,. .

Lie algebras and norms. Let | | denote the usual absolute value on C
(and on R). Let || || denotes the maximum norm on Maty(C) and Mats(R) x
Maty(R), with respect to the standard basis.

Let g = Lie(G), that is, g = slo(C) or g = sla(R) @ sly(R). We write
g = h v where h = Lie(H) ~ slh(R), v = islh(R) if g = sl3(C) and
t=sl(R) ® {0} if g = slh(R) @ slh(R).

Note that v is a Lie algebra in the case G = SLy(R) x SLo(R), but not
when G = SLy(C).

Throughout the paper, we will use the uniform notation

w— <w11 wu)
W21 W22
for elements w € v, where w;; € iR if G = SLy(C) and w;; € Rif G =
We fix a norm on h by taking the maximum norm where the coordinates
are given by Lie(U), Lie(U™), and Lie(A); similarly fix a norm on v. By
taking maximum of these two norms we get a norm on g. These norms will
also be denoted by || ||
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Let C3 > 1 be so that

(3.1) | hw|| < Calw| for all |h —I|| <2 and all w € g.
For all 8 > 0, we define
(3.2) BY = {u; :|s| < B} -{ar: [t| < B} {uy: |r] < B}

for all 0 < 8 < 1. Note that for all h; € (Bg) Li=1,...,5, we have
(3.3) hi -+ hs € Bijs-

We also define Bg = Bg - exp(B(0, 5)) where B.(0, 5) denotes the ball
of radius § in v with respect to || ||.

Similarly, using | | we define BY for § > 0 and L = U+ A AU, H,N.
Given an open subset B C L, and § > 0, 9sB={h € B : Bg.h ¢ B}.

We deviate slightly from the notation in the introduction, and define the
injectivity radius of x € X using Bg instead of the metric d on G. Put
(3.4) inj(z) = min {0.0l,sup {ﬁ : g+ gz is injective on B%O,B}}-

Taking a further minimum if necessary, we always assume that the injectivity
radius of x defined using the metric d dominates inj(z).
For every n > 0, let

Xy = {:E € X :inj(x) > 77}
The set E,; 5. For all n,t,8 > 0, set
(3.5) Epipi= BZ’H cag - {uy 7 €[0,n)} C H.

Then mp(Eye8) < nB2et where mpy denotes our fixed Haar measure on H.
Throughout the paper, the notation E, ; 3 will be used only for 7,t, 3 > 0
which satisfy e=%01% < 3 < n? even if this is not explicitly mentioned.
For all n, 8, m > 0, put

(36) nﬁm {U ’5‘ < Be_m} : {at : ‘t’ < 5} : {ur : |T| < T]}

Roughly speaking, anﬁ’m is a small thickening of the (3, n)-neighborhood

of the identity in AU. We write Qg’m for Qgﬁ’m.
The following lemma will also be used in the sequel.

3.1. Lemma ([LM21], Lemma 2.3). (1) Let m > 1, and let 0 < n,5 < 0.1.
Then

+1
((ngm,o.om,m) ) - ing m-
(2) For all0 < ,n <1, t,m >0, and all |r| <2, we have
(37) ((:217 82, ) amurEn/’tﬁ/ C amuTEn,twg,
where ' = n(1 —100e™") and B’ = B(1 — 1008).
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Constants and the x-notation. In our analysis, the dependence of the
exponents on I' are via the application of results in §5, see (5.1), and §4.7.

We will use the notation A < B when the ratio between the two lies in
[C~1,C] for some constant C' > 1 which depends at most on G and T in
general. We write A < B* (resp. A < B) to mean that A < CB" (resp.
A < CB) for some constant C' > 0 depending on G and I'; and x > 0 which
follows the above convention about exponents.

Commutation relations. We also record the following two lemmas.

3.2. Lemma ([LM21], Lemma 2.1). There exist absolute constants By and
C3 so that the following holds. Let 0 < 8 < [y, and let wi,wy € B(0, ).
There are h € H and w € v which satisfy

lwr —woll < lwl|l < Gllwy — w2l and  |[h ~I|| < C3B|lwl|
so that exp(wi) exp(—wsz) = hexp(w). More precisely,
[w = (w1 — wa)[| < C3B[[wr — wal

3.3. Lemma ([LM21], Lemma 2.2). There ezists By so that the following
holds for all 0 < B < By. Let x € Xyop and w € B(0,3). If there are
h,h' € B% so that exp(w’)hx = h' exp(w)x, then

W' =h and w = Ad(h)w.

Moreover, we have ||w'|| < 2||lwl]|.

4. AVOIDANCE PRINCIPLES IN HOMOGENEOUS SPACES

In this section we will collect statements concerning avoidance principles
for unipotent flows and random walks on homogeneous spaces.

4.1. Nondivergence results. This subsection, is devoted to non-divergence
results for unipotent flows. The results in this section are known to the ex-
perts and were also proved in details in [LM21, §3].

The results of this subsection are trivial when I'" a uniform lattice.

4.2. Proposition (Prop. 3.1,[LM21]). There exist C4 > 1 with the following
property. Let 0 < §,e <1 and x € X. Let I C [-10,10] be an interval with
|I| > 6. Then
[{r € I : inj(au,z) < 82}‘ < Cyell|
so0 long as t > |log(62inj(z))| + Cu.
The following is a direct corollary of Proposition 4.2.

4.3. Proposition (Prop. 3.4,[LM21]). There exists 0 < nx < 1, depending
on X, so that the following holds. Let 0 <n <1 and let x € X. Let I CR
be an interval of length at least . Then

Hrel:aqux e Xy, }| > 09I
for all t > |log(n%inj(z))| + Ci.
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Proof. Apply Proposition 4.2 with e = 0.1C4~'. The claim thus holds with
2
nx =¢&°. U

The subsets X ,; and G.p;. If X is compact, let X,y = X; otherwise, let
Xept = {92 : 2 € X, |lg — I|| <2} where X, is given by Proposition 4.3.
Note that by [LM21, Lemma 3.6], we have

(4.1) firre(Xept) > 0.9

for every periodic orbit Hz.

We also fix once and for all a compact subset with piecewise smooth
boundary & C G which projects onto Xep.

More generally, we have the following lemma which is a consequence of
reduction theory. In this form, the lemma is a spacial case of [LMMS19,
Lemma 2.8].

4.4. Lemma. There exist Dy (absolute) and Cs (depending on X ) so that
the following holds for all0 <n < nx. Let g € G be so that gI' € X,,. Then
there is some v € I' so that
lgv]l < Csn~P=.

4.5. Inheritance of the Diophantine property. As it was mentioned in
the outline given in §2, assuming part (2) in Theorem 1.1 does not hold, the
first step in the proof is to improve this Diophantine condition. The following
proposition (which was also stated in §2) is tailored for this purpose.

4.6. Proposition. There exist Dy (absolute) and Cy,sg (depending on X)
so that the following holds. Let R,S > 1. Suppose xg € X is so that

dx (zg,z) > (log §)P0§~1
for all x with vol(Hz) < R. Then for all
s > max{log S, 2| log(inj(zo))|} + so
and all 0 <n <1, we have
inj(asurzg) < n or there is x with

. 1/2 ~1
Hr € [0,1]: vol(Hz) < R s.t. dx(asuyxg,x) < lelzDo }‘S Ci(n’*+R).

In the proof of Proposition 4.6, which is given in Appendix A, we use
Margulis functions for periodic H-orbits similar to those which were used
in [LM21, §9], see also [EMM15, Prop. 2.13] and the original paper [EMM98].
This will then be combined with the fact that the number of periodic H-
orbits with volume < R in X is < RS, see e.g [MO20, §10], to conclude.
We also refer the reader to [ELMV09, §2] for results concerning isolation of
periodic orbits.

It is also worth mentioning that even though [LMMS19, Thm. 1.4] con-
cerns long pieces of U-orbits and Proposition 4.6 deals with translates of
pieces of U-orbits, similar tools are applicable here as well. In particular, a
version of Proposition 4.6 can be proved using the methods of [LMMS19].
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4.7. Closing lemma. Let ¢ > 0 be a large parameter. Fix some
e 00t - g 2 o 77%6

in our application, we will let 8 = e "' where k < 1/Dy with Dy as in
Proposition 4.6 and the implied constant depending on X.
For every 7 > 0, put

E-=B5" - a- {u, ;7 €[0,1]} C H.

If y € X is so that the map h ~ hy is injective over E., then pg_, denotes
the pushforward of the normalized Haar measure on E; to E;.y C X.
Let 7> 0 and y € X. For every z € E.y, put

I(2) == {w € v: ||w| <inj(z) and exp(w)z € E;.y};

this is a finite subset of ¢ since E; is bounded — we will define I¢(h, z) for
all h € H and more general sets £ in the bootstrap phase below.
Let 0 < a < 1. Define the function f; : E-.y — [1,00) as follows

fr(2) = {ZO;ﬁwEIT(Z) |wl~ if I-(2) # {0} |

inj(z)~“ otherwise

The following proposition supplies an initial dimension which we will
bootstrap in the next phase. Roughly speaking, it asserts that points in
{asturxo : r € [0,1]} (possibly after removing an exponentially small set of
exceptions) are separated transversal to H, unless xg is extremely close to a
periodic H orbit.

4.8. Proposition. Assume I' is arithmetic. There exists D1 (which depends
on I' explicitly) satisfying the following. Let D > Dy and x1 € X. Then for
all large enough t (depending on inj(xz1)) at least one of the following holds.

(1) There is a subset I(xz1) C [0,1] with |[0,1] \ I(z1)| <x n/? such that
for all r € I(x1) we have the following
(a) agrurxy € X,
(b) h — h.agiu,x1 is injective on Ey.
(¢) For all z € Et.agiurx1, we have

fi(z) < Pt
(2) There is x € X such that Hx is periodic with

vol(Hz) < eP* and  dx(z,x1) < e7PHDPVE,

The proof of this proposition is a minor modification of the proof of [LM21,
Prop. 6.1]. The details are provided in Appendix B.

Proposition 4.8 is where the arithmeticity assumption on I' is used. If we
replace the assumption that I' is arithmetic with the weaker requirement that
I has algebraic entries, we get a version of this proposition where part (2)
is replaced with the following.
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(2°) There is x € X with

dX(fUaiﬂl) < e(—D—l—Dl)t

)

satisfying the following: there are elements 1 and 7y in Staby (x) with
|vil| < ePrt fori = 1,2 so that the group generated by {v1,v2} is Zariski
dense in H.

See Appendix B for more details.

5. EQUIDISTRIBUTION OF TRANSLATES OF HOROSPHERES

We begin by recalling the following quantitative decay of correlations for
the ambient space X: There exists 0 < kg < 1 so that

(5.1) ‘/sO(gﬂf)w(x) dmx —/QOdmx/l/)de‘ < S(p)S()erod(e)

for all ¢, 1 € C°(X)+C-1, where mx is the G-invariant probability measure
on X and d is the right G-invariant metric on GG defined on p. 3. See, e.g.,
[KM96, §2.4] and references there for (5.1).

Here S(-) is a certain Sobolev norm on C2°(X)+C-1 which is assumed to
dominate ||||oc and the Lipschitz norm ||-||rip. Moreover, S(g.f) < ||lg]|*S(f)
where the implied constants are absolute.

We note that by the works of Selberg and Jacquet-Langlands [Sel65,
JL70], the constant kg is absolute if ' is a congruence subgroup, with the
best known constant® given by Kim and Sarnak [Kim03] (this phenomenon,
sometimes called property (1) of congruence lattices, also holds in much
greater generality).

Recall that N = {u,vs : r,s € R} is a maximal unipotent subgroup of G,
see §3. For 61,99 > 0, put B(];Yﬁ? = {urvs 0<r<61,0<s< 52}. We will
denote B{Yl by BY¥. Let dn = drds; in particular, |B§Y 5,| = 0102

It follows from Proposition 4.2, that for every € > 0 and all z € X ,

‘{s € [0,1] : inj(awsz) < 62}‘ < Cye

so long as t > |log(inj(x))| + C4. Indeed Proposition 4.2 is stated with
u, instead of vg, but the proof applies to this case as well — note that
at,vs € H where H' = gHg™! where g = diag(i, 1).

5.1. Proposition (cf. [KM96], Prop. 2.4.8). There exists kg > Ko (where
the implied constant is absolute) so that the following holds. Let 0 < n,§ <1
and x € X,,. Then for every t > 4|logn| + 2Cy we have

1
’N/ f(atn.ac)dn—/fdm)(’ < S(f)(es) "o
’Ba,1| By,
here f € C°(X) 4+ C-1 and the implied constant depends on X.

3To give a numerical value one needs to fix a normalization for d.



EFFECTIVE EQUIDISTRIBUTION FOR UNIPOTENT FLOWS 21

Proof. We may assume e'é > 1 or else the statement holds trivially. Put
di = $log(e's) and

dy =t —dy = 5(t+ |logé|) = |log§| + 5 log(e"d)
Z 2|10g77’+047

where we used ¢ > 4|logn| + 2C}4.
Now, for every u,vs € BYY, we have

Qg UrVsQdy, = QtUg—dgpVe—do g
moreover, for every u,vs € BY, we have
) 1>

N N
’uefdQT’UefdQSB&l AB&I ‘

< (e®26)71 = (et§) 712

B3
We conclude that
1 1
— flan.x)dn = —— dny flagng.x)dng =
1Bl /By, B3| By BY,

1
s [ Famensz) dndn + (0 2S().
1Bsil JBi /Y,
The above and the definition of d;, thus, reduce the proof to showing that

1 ke
5 flagniag,ne.x)dnodny — [ fdmx| < S(f)(e'6)~"e.
|B51’ B{V Bé\’l

We now turn to the proof of the above. Let € be a constant which will
be optimized and will be chosen to be (e!§)™*. Since d2 > 2|logn| + Cy,
Proposition 4.2, applied to u,x for any 0 < r < J, implies that

{5 €[0,1] : inj(ag,vsu,z) < e’} <e.
This in particular implies the following: Put
B:={n2 € B(J;Yl s inj(ag,naz) < 52},
then |B§Y1 \ B| « 5|B§\fl\.
In consequence, the following holds
1
TN flag,niag,ne.x)dna dn; =
’B5,1| BY JBJY,

é‘/BN/Bf(adlnladQng.x) dng dny + O(eS(f)).

This reduces the investigations to the study of

1
B / / f(@dl n1ad2n2.x) dng dn;.
BN JB
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Recall that d; = %log(eté). For every na € B, we have z,, = ag,nax €
X,2. Therefore, using e.g. [LM21, Prop. 4.1], we have

[ Hanmzn)dn ~ [ famy| <esiet = s

Hence, if we choose ¢ to be a small negative power of e’d, the above is
< S(f)(e!d)™*. Averaging this over B finishes the proof. O

Using Proposition 5.1 and an argument due to Venkatesh [Venl0], we
obtain the following.

5.2. Proposition. There exist k7 > Iig so that the following holds. Let
0<60,0 <1and0< 6<0.1. Let p be a probability measure on [0, 1] which
satisfies the following: there exists C' > 1 so that

(5.2) p(J) < Cp0

for every interval J of length b.
Let |log b]/4 <t < (1—0")|logb|, 0 <n,0 <1. Let x € X, and assume

(5.3) |log 6] > 16| logn| + 8C4.
Then for all f € CX(X)+ C -1, we have

(5.4) ‘5//fatu,«vs )drdp(s /fdux‘

< S(f) max{(Ch~ 12 té)*’”,ﬁal}.
where the implied constant depends on X.

Proof. We will prove this for the case G = SLa(R) x SLa(R); the proof in
the case G = SLy(C) is similar.
Without loss of generality, we may assume [y fdux = 0.

Let M € N be so that 1/M < 6 <1/(M —1). For every 1 < j < M, let
I; = [%,ﬁ), also put s; = % and ¢; = p(I;) for all j. Since I;’s are

disjoint, we have Zj c;j=1.

For all such 7, let

Bj:{urvszogrgé,ogs—sjgg}.

In view of the choice of M, we have B; N Bj; = 0 for all j # j. Let
¢ = ;(66/4)""¢;jlp,. Then [y ¢(r,s)drds = 1.

In view of (5.2), we have ¢; < C6'~% for all j. This and the fact that B;’s
are disjoint imply that
(5.5) o(n(z)) < max{(66/4) ;1 1<j< M}y < Cp 957!
for all n(z) € N; here and in what follows, z = (r,s) and dz = drds.

Using the fact that I;’s are disjoint, we have

//faturvs )drdp(s) Z// f(apupvs.z) dr dp(s);
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thus, we conclude that

(5.6) ‘5 //fatuws )drdp(s ZCJ /faturvs ) dr

§
: ; /Ij 5_1/0 ‘f(aturvs-:l:) - f(aturvsj.mﬂ drdp(s) < S(f)59'

where we used the facts that |s — s;| < 6 and ¢t < (1 — ¢')|log 6| in the last
inequality.

In view of (5.6), thus, we need to bound }; 67t [ ¢jf(arupvs,x) dr. Sim-
ilar to (5.6), we can now make the following computation.

‘Zé /c]f ain(s;,r). )dr—/ o(n(z)) f(an(z).x) dz‘

N
+4
<Z/ 66/4) cj/ | flain(sj,r).x) — flan(s,r).z)ds|dr

< S8(f)6”

where again we used the facts that [s — s;| < 6 and ¢ < (1 — 6’)|log 6].
Thus, it suffices to investigate

A = /cp(n(z))f(atn(z).x) dz.
To that end, let N > 1 be so that S(g.f) < ||lg||VS(f). Let
(5.8) T=0-" (eté)fH%,

and define .
Ag = 7'1/0 /cp(n(z))f(aturn(z).x) dzdr.

Roughly speaking, we introduce an extra averaging in the direction of U.
For every 0 < r < 7, we have |(B; + r)AB;| < |B;|7/6. Hence,

’/ flau,n(z). )dz—/gp(z)f(atn(z).x) dz
e an(z)x)| dz
< X6 /@jmsj Fam(2)a)]d
< 2(55/4)_1%‘|Bj|(7/5)\|f\|oo

J
< flloo - (7/8) < S(F) - (7/0);
we used |Bj| = 6§/4 for every j and ) ¢; = 1, in the second to the last
inequality. Averaging the above over [0, 7], we conclude that

(5.9) A1 = As| < S(f)7/0 < S(f)(ed) 7%

where we used (5.8).
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In consequence, we have reduced the proof to the study of As to which
we now turn. By the Cauchy—Schwarz inequality, we have

|A2\2§/ / f(agu,n( )dr) dz.

Now using ( 1f0 (arupn )dr) > 0, (5.5), and the above estimate,

we conclude

| Ag|?

|B y - _1/ f(aguyn( )dr) dz

ol A
(5.10 = / / / friro(aen(2).z) dzdry drg
) T2 o Jo ‘Bé\ﬂ Bé\fl 1,r2\Ut )

where Bé\fl ={uvs: 0 <r <6,0<s<1} and for all ri,7r9 € [0, 7]
Frvms W) = flaru(ri)a_r.y) famu(ra)a_r.y).
By (5.8), we have
(5.11) S(frira) €SP (TN < S(f)*('8)/2.
Now since t > 4|logn| + 2C4, by Proposition 5.1, we have

1 N . " p

N fT1,T2 (atn(z)x) dz| = le,Tz dUX + O(S(fmﬂ“Q)(et(s) 6)'
|Bs",| JBN

5,11/ Bgy X

Recall from (5.11) that S(frhrz)(et&)_”ﬁ < S(f)*(ets)~"6/2. Altogether, we
conclude that

5 12 ‘ |B / fm,rz atn dZ / fr1,r2
+O(S(f)*(e'8) /%),
We now use estimates on the decay of matrix coefficients, (5.1), and obtain
the following: If |rq — ro| > 7 - (€!6) ¥, then
(513) [ Gl x| < SCa2et)romr
X

where we used ef1T = (eté)%.

Divide now the integral [ [ in (5.10) into terms: one with |ry — ro| <
T- (etd)_%{\if and the other its complement. We thus get from (5.10), (5.12),
and (5.13) that

1/2
‘Ag’ < (0570)1/23(]0) ((et(;)fl-eeno/AlN + (et5)7”6/4N> .

This, together with (5.6), (5.7), and (5.9), implies that the proposition holds
with k7 = kgko/8N. O
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6. DISCRETIZED DIMENSION

Let 0 < a < 1. We begin by defining a modified (and localized) a-
dimensional energy for finite subsets of R%.

Fix some norm || || on R? (below we will apply this for the cases d = 3
andd =1). Let 0 < by < 1, and let © C {w € R? : ||w| < bp} be a finite
set. For R > 1, define Go g : © — (0,00) as follows: If #0 <R, put

Gor(w) =0b,“, forall we®,

and if #60 > R, put

. _ ©' C © and
Gor(w) = mln{ lw — w7 N }
2 #(610') =R

We will also use this notation for finite subsets of v, which as a vector space
is ~ R3.

6.1. A projection theorem. We now state a projection theorem which
plays a crucial role in our argument. Indeed, this theorem (as stated here)
will be used in improving the dimension phase, §9-§12; a modified version
of it (Theorem C.3) will also be used in the endgame phase, §13.

6.2. Theorem. Let 0 < a <1, and let 0 < ¢ < 0.0la. Let T > 1 be large
enough depending on c, and let © C B(0,by) be a finite set satisfying

(6.1) Gor(w) < T for every w € © and some R > 1.
Consider the one-parameter family of projections & : t — R given by
& (w) = (Ad(uy)w) 12 = —war? — 2wiir + wis.

Let J C [0,1] be an interval with |J| > 1075, There exists a subset J' C J
with |J\ J'| < LlT*CQ, where L1 = Lc™ Y for an absolute constant L, so
that the following holds. Let r € J', then there exists a subset ©, C © with

#(O©\0,) < LT (#0)
such that the projected set &.(©) satisfies that
G¢, (@) R (w) <Y1 forallwe & (O,)
where Ry = R+ L1 Y7, T, = L Y1+8¢,

This theorem will be proved in Appendix C. We also refer to that section
for references and historic comments.

6.3. Regularization lemmas. It will be more convenient to work with
finite sets which have more regular structure, see [BFLM11, Lemma 5.2]
and [BoulO, §2]. In this section we recall this construction, tailored to the
applications in our paper.
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Let t,mg > 1 and 0 < € < 1 be three parameters: t is large and arbitrary,
myp is moderate and fixed, and ¢ is small and fixed; in particular, our esti-
mates are allowed to depend on mg and ¢, but not on ¢. Let e 001t < p < 1
and let by = e~ Veiy.

Let F C B(0,1) with

el/? < HF < em™.
For all w € F, let F\, = Bi(w,by) N F, and assume that

(6.2) Gr,r(W) <Y  foralw €I,
where 1 < R < €291 and T > 0 satisfying the following
(6.3) T < elmot1)t,

Note that there is w € F so that #F,, > e?%~4e > %20, Thus (6.2) and
the the fact that 1 < R < e%01¢? imply that indeed, T > €94,

Let B = e~ " for some & satisfying 0 < s(mg + 1) < 107%. Fix M € N,
large enough, so that both of the following hold

(6.4) 2"M(mg +1) < £/100  and  6M < 2°M/100,

Define ko := [(—1logy bo)/M| and k; := [(1 4+ a~!log, T)/M] + 1; note that
(6.5) gMkr—Da

In view of (6.2) and (6.5), we have

(6.6) #(Bi(w,27M")NF) <R  forallw €.

2—Mk

For every kg < k < ki, let Qmi denote the collection of -cubes

{w € vrwys € [, "), rs = 1,2}
for some trace zero (n;;) € Mata(Z) if G = SLa(R) x SLa(R) and with the
obvious modification when G = SLy(C).

6.4. Lemma. For all large enough t, we can write F' = F’U(Uf\[:1 F;) (a
disjoint union) with
#F' < BYVA(#F)  and  #F; > 5% (#F)

so that the following holds. For every i and every kg — 10 < k < kq, there
exists some Ty, so that for every cube QQ € Qmi we have

(6.7) oMTin=2) < N Q < 2M7ik  or FNQ = 0.
Moreover, for every i and every cube QQ € Qmg,, we have
(6.8) H#FENQ>e WV (#F) or FNQ=0.

Proof. This lemma is essentially proved in [BFLM11, Lemma 5.2]. We ex-
plicate this construction for completeness. Let us begin with a preparatory

step before applying the construction in loc. cit.; this step is also present
in [BFLM11, Lemma 5.2].
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Claim. We may write F' = F”U( UF}) (disjoint union) satisfying that
#F" < B2 . (#F) and for each Fj, there exists some w; € t so that if
Q, Q' € Owmy intersect F; i+w; non-trivially, the distance between Qﬂ(F +w;)
and Q' N (Ej +w;) is at least 2-MF—M.

Proof of the Claim. For every kg — 10 < k < k1, the density of
Dy, = {w € v: 3, s, such that w,s € 274Z+[0,27M))}

in tis < 3 x2™M. Using the definition, we conclude that the density of
D=, Drintis>1—(1—3x2 Mki—hotl
Hence there exists some wy so that

#(F +w \ D) > (1 -3 x 27MM=hotl (e p) s 501 (#F),

where we used ki — ko < 2(mg -+ 1)t and the fact that 2=M(mg+1) < x/100.
Note that F'+ w; C B(0,10), and put

Fy:=(F+w \ D)~
Cover B.(0,10) with dyadic cubes {Q,} in Omg,, and set
Qi = ((F+uwi\D)NQy) —w

for any r so that (F'+ w1\ D) NQr # 0.
Assuming Fy, ..., F, are defined, repeat the above with F\ (U™ F}) if
this set has > /2. 2 - (#F) many elements. Each set thus obtain satisfies

#E5 > 06 (#F).

In consequence, this process terminates after N’ < 37°6 many steps and
yields sets Fi,. .., Fyr. Define {Q”} similarly for each F

Let F” = F\ (U E}), then #F” < /2. (#F). The claim follows. O

We now further subdivide the sets FJ so that the resulting sets satisfy (6.7)
and (6.8). Fix some j. We will begin trimming F; from the smallest cells,
i.e., 27Mk_cubes. In view of (6.6), #Q; < Rfor all 7. For £ € N, let

Fio=|J{Qj: 27" 'R< #Qj <27'R}.
Let F = U {Fjo: #Fj0 < B+ (#F))}.

Recall that 1 < R < €901t and g = e~**. Therefore,
#(UF) <D #F < N'- 3 (#F)) - logR < 8°% - (#F),

so long as t is large enough. Put F' = F”J(U F}), then #F < 23°3 - (#F).
Thanks to this and the claim we can now apply the construction in [BFLM11,
p. 246], with Fj; and dyadic cubes 2~Mk with kg — 10 < k < kq, and write

JE_ jéU Uq j€



28 E. LINDENSTRAUSS, A. MOHAMMADI, AND Z. WANG

so that #F;E < fB- (#Fjg), Moreover, for every q, F]'.IZ satisfies (6.7) and
HEL, > (6M) 7 - (#Fy) > 27 M0 (e Fy) > B0 (#Ej);

we used 6M < 26M/10 - gee (6.4), in the second inequality, and used the
definitions of k; and § together with (6.3) in the last inequality.
Recall now that #Fj, > B - (#F};) > B0 . (#F). Hence,
HET, > 7 (#F)

if we assume t is large enough to account for implied multiplicative constant.
In view of (6.7), if for some j, ¢, ¢ and 2=M*0 cube Q with ng NQ # 0 we

have #(Fi,N Q) < e~V (#F%,), then (6.7), applied with ko, implies
#FY, < e VL (#FY),

which is a contradiction if ¢ is large enough.
Finally, note that as it was done

#|JFj < N'-logR-B- (#F) < %% - (#F).
5,0

The lemma thus holds with F' = F (U, , F},) and {F7, : 5,¢,q}. O

Recall that for all w € F, we put F, = B(w,bp) N F. Assume now that
for some C < el for all w’ € F,,, we have

(6.9) Gr,R(W) < C by (#Fu).

Since e < #F < ™t and by = e~ Vetly where 5 > =001t (6.9) implies
Gr R(w/) < e(mo+2ve)t.

In particular, (6.2) holds with T = e(mo+2vE)t and Lemma 6.4 is applicable.

6.5. Lemma. Let F' = F’ U(Ufil F}) be a decomposition of F' as in Lemma 6.4.
Then for every i and all w € F; we have

Gr, ,r(w) < CB M0y - (#F; )
for allw' € F;,, := F; N Be(w, by).

Proof. Let kg < k < k; and let w € F;. Then using (6.9) and the fact that
R < 200t " we conclude that

#(B(w, 27" N F) < #B(w,27M) N F)
< 210MC i (27Mk/b0)a . (#Fw)

Let Qo € Qmp, be so that QoN F; # 0, and let w € F;. Then B(w, 2~Mko)
can be covered by at most 8 cubes in Oy, moreover, it contains at least
one cube in Qp(x,41) Which also contains w. Thus by (6.7),

(6.11) 273 M(#Qo N Fy) < #Fi0 < 2°M(#Qo N F)

(6.10)
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We claim that there exists w; € F; so that
#Fu, = #(Be(wi, bo) N F) < 872 - (#(Be(w, bo) N F;)
=B (#Fsw,)-

Let us assume (6.12) and finish the proof. Note that (6.10) applied with
w = w;, together with (6.12), implies that

(6.13) #(Be(wi, 27 N F) <2MB=3C. (27MF /b)) - (#F; w,),

(6.12)

where we assumed t is large.
Let now kg + 2 < K’ < k;. Then

#(Be(w, 27" N F) < #(Q N Fy)

where Q is a 2-M*'=1) cybe which contains B, (w, 2*Mk/). Let Q' be a cube
of same size which contains w;, then using (6.7), we have

#(QNF) <2 (#(Q N F)).
Since Q' C Be(w;, 2-M*'=2)) using (6.13) with k = k' — 2, we conclude that
#(Be(w, 27y N F)) < 22M4(Be(w;, 27M*F =) 0 Fy)
< 2MBT3C (27D Jbg) - (#F ).
This and (6.11) (whic is used to replace Fj,, with Fj,,) imply that
(6.14) #(Be(w, 27y F) < 2MB=3C- (27MF /bo) - (#F; ).

Since #(B.(w,2"M*)NF;) < #(B.(w,2~M*M)NF) < R, see (6.6), from (6.14)
we conclude that

GriR(w) < k1 2MBT3C- (b0) ™ - (#Fw)
< B7IC (bo) ™ - (#Fw)s

so long at t is large enough. This completes the proof assuming (6.12).
We now prove (6.12). Let B = {B(v,by) : v € F;} be a covering of F;
with multiplicity < K. Then

> #(Bw)NF)< K- (#|{JBw)NF)) < K- (#F)
<KB?-(#F) < KB’Q > #(B(v)nFy),
where we write B(v) for Be(v,byg). We conclude that for some w; € Fj,

#Fy, = #(B(wi) NF) < KB~ (#(B(w;) N F))
< B3 (#(B(w) NEF)) =B #F; )

as was claimed in (6.12). O
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7. BOXES, COMPLEXITY AND THE FOLNER PROPERTY

For every £ > 0, let vy be the probability measure on H defined by

1
(7.1) ve(p) = /0 o(agu,) dr for all p € C.(H).

Our goal in this section and the next is to show that Véd) (the d-fold
convolution of 1) can be approximated with a convex combination of certain
natural measures supported on a finite union of local H orbits, see §7.6.

This section will lay the groundwork for this decomposition. In partic-
ular, we will prove a covering lemma, Lemma 7.1, define the notion of an
admissible measure, §7.6, and prove a certain almost invariance property for
a class of measures appearing in our analysis, Lemmas 7.5 and 7.7.

Covering lemmas. We will fix 0 < n < 0.01nx and 8 = n? throughout
this section. For m > 0, we introduce the shorthand notation QX for

(7.2) nﬁg {u ds| < 526_7”} Aar 7| < ,82} Uy,

where for every § > 0, let Us = {u, : |r| < 0}, see (3.6).
Define Q% C G by thickening QX in the transversal direction as follows:

(7.3) Qf = Q- exp(B:(0,26%)).
We begin by fixing a particular covering of X;,.
7.1. Lemma. For every m > 0, there exists a covering
{QS.yj 1§ € Tmryj € Xayyo}

of Xo, with multiplicity K, depending only on X. In particular, #J, <
—1p—10,m
n_ B e,

Proof. We first prove the following. There exists a covering
{(BZQH Uy - exp(Be(0, 8%))) .9k : k € K, 1 € Xoy}

of X, with multiplicity O( ) depending only on X.
Let us write B g2 = B -U77 exp(B.(0,3?%)). Then

(74) (BO 1n,0. 1,32)

see Lemma 3.2.
Let {9 € Xo, : k € K} be maximal with the following property

71 — —
' (Bgm,o.lw) - (B%mog?)v

B o1n.0.0152-9i N B o1n0.0152-05 = 0 for all i # j.
In view of 7(7.4) thus {Bﬁ,@%@k : k € K} covers Xy, with multiplicity O(1).
Since mg(BgﬁQ) = nBY, we also conclude that K < n~15719.
The following generalization will also be used: for any 1 < ¢ < 100,

(7.5) {BS oo-0k : k€ K}
covers Xo, with multiplicity < K7, depending only on X.
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H

B2 Fix a subset

Let now m > 0, and recall that we write Qg for Q

H C Q¥ which is maximal with the following property
H H
Q0.017,0.0152,m7 N Qo.om,o.om?,mh/ =0,
for all h # b’ € H. Since
H - - H
mH(Q0.01n,0.01/32,m) =e "my(Qy ),

we have #H < ™ where the implied constants are absolute. Furthermore,

(ngm,o.om?,m)il : QgOln,O.OlBZ,m - le'r],O.lBQ,m‘
Thus {QEZh; : hj € H} covers Q¥ = B;’zH - Uy, with multiplicity < Ko.
Combining these two coverings, we obtain a covering
{Qnjexp(B:(0, 3%)).9x : hj € H,k € K}.
of Xy,. Note further that
Qinhj exp(Be(0, %)) = QJ} exp (Ad(hy) Be(0, 5%)) hj € Qihy;

where we used the fact that Ad(h;)B.(0,3?) C B(0,25%) in the final inclu-
sion above — this holds since ||h; — I]| < 232 and S is small.

Finally note that since g5 € X, and ||h; — I|| < 282, we have h;ji €
Xigy 10, for every j, k. Altogether, we obtain a covering

{Q5y5 14 € T,y5 € Xignji0} = {Qe-hydn : hj € H, k € K}

of XQ,].

We claim: the multiplicity of this covering is < K1 Ks. Suppose z € X
belongs to M > K1 K> sets an.hjgjk. That is, for ¢ = 1,..., M, we have

z = h;exp(w;)hj, g, € QS Iy, Gr, -

Note that QG hj, C B%mlOBQ. Thus in view of (7.5) and the fact that for all
Uk, § — gy is injective over B%n’ we conclude that for at least M/K; > Ko
many choices of ¢ we have h; exp(w;)h;, = hexp(w)h. This implies

hihj; exp(Ad(h; ) wi) = hhexp(Ad(h™")w).

Since the map (h, w) — hexp(w) is injective on Bf{mn X By(0,1007n), for more
than K5 choices of i we have h;h;, = hh. This contradicts the choice of K3
and completes the proof. ([l

A density function. For every m > 0, we fix a covering
{QSy; 1y € Xs3y/2:0 € TIm}

as in Lemma 7.1. For every z € X, let kp,(2) = #{j : z € Q%.y;}. Then
1 < kp(2) < K. Define

pm:X = {l/d:d=1,...,K} by pm(z) :=1/km(2).
For every j € Jm, put
Pm.j = PmlQE ;-
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Note that >, pm,j(z) =1 for all z € X.

7.2. Boxes and complexity. Let prd : R? — H be the map
prd(s, 7,7) = ug aru,.

A subset D C H will be called a box if there exist intervals I C R (for
« = =£,0) so that
D=prd(I~ x 1" x IT).
We say =2 C H has complexity bounded by L (or at most L) if = = U1L =
where each =; is a box.
For every interval I C R, let OI = Oygoy 1! (recall that n = B1/2), and

put I = I\ dI. Given a box D = prd(I~ x I° x I't), we let
(7.62) D =mul(I~ x I®x I*) and
(7.6b) oD =D\ D.

More generally, if D = prd(I~ x I% x I") is a box, and Z C D has
complexity bounded by L, we define 0= := | JJZ; and

(7.7) Zp = JE
where the union is taken over those i so that Z; = prd(I;” x I? x I;") with
|I;] > 100n|I| for « = +,0.

7.3. Lemma. There exists K' depending only on X so that the following
holds. Let j € Jp and w € B(0,25%). Then for every 1 < k < K, there is
=k = 2X(j,w) € QX with complexity at most K' so that

pmj(2) = 1/k  for all z € X exp(w)y; and
[{z € Q) exp(w)y; : pm,j(2) = 1/k}\ (EX. exp(w)y;)| < n|Q]
where the implied constant depends only on X.

Proof. We will use that (h,v) — hexp(v)y is injective over B{%n x B (0,10n)
for all y € X,;, and that

Q) Q)™ - Q)™ C Qi 102,  for all m > 0.

Let Vj = {yr, : Q%.y; N QS .yk,} # 0. We now find the local H-leaves in
QS .yk, (yk, € V) which intersect QX exp(w)y;. Let
Vi = {(wi, yr,) € Be(0,26%) % Yj + (Qip- exp(w)y;) N (Qpy. exp(wi)yr,) # 0}

Note that if w;, w; € B(0, 2(32) are so that h exp(w)y; = hexp(w;)yx, and
hexp(w)y; = h' exp(w;])yy,. Then

h™th exp(w;)yk, = h'"~"h" exp(w))ys,,

which implies w; = w]. Thus #V' =n<#Y; < K.

For every (wi,yx;) € Vi’, let h; € B = (QH)Y=1 - (QX) be so that

exp(w;)yr;, = h; exp(w)y;.
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Let us list these elements as {h.4} where 1 < ¢ <[ and for every such ¢ we
have 1 < d < n,, moreover, h. 4, = hc,4, and if and only if ¢; = ca.
Let Ny denote the set of L C {1,...,1} so that >~ _.; n. = k. Then
z € Qg. exp(w)y;
satisfies pp, j(2) = 1/k if and only if there exists an L € Ny so that

2 € Q/fhea. exp(w)y;

forall c € L and all 1 < d < n,, and 2z & Qh.4. exp(w)y; for any (c, d) with
c & L. Therefore, {z € QM. exp(w)y; : pmj(z) = 1/k} is the image under
the map g — gexp(w)y; of the set

(7.8) U (ﬂce L(QF N Qﬁhcd)> N (ﬂch(in \ inhcd))-

LeN,
We now study the set appearing in (7.8). Let us begin with the following
computation. Suppose h € H can be written as h = ug ar,ur,. Then
Ug arurh = uzaruy
where (8,7, 7) are given by
r
e (14 rsp)
(7.9) 7 =7(r,7) =74 10+ 3log(l +780) = T+ 10 + 7K ()7,
§=an(rmys) = s+ o = s s+ S (0 £ Fa(r )
§=38p(r,7,8) =s =5+ S0+ Sp1(r)r + Spo(r,7)T
h\T Ty GT(]. _l_ T'SO) 0 h,1 h,2\"» )
so long as these parameters are defined (which is always the case near the
identity).

Apply the above with u; a,u, € QX and h = h.g with 1 < ¢ < I. Then
|so] < 10e™™B% and |75| < 1082, see (7.2), and the functions 7, 74, Sp1,
and 5j, 2 are analytic functions satisfying the following

|7,(r)] < 10|70 < 10082,
|74(7)] < 10]so| < 100e~™ 82,

1811 (r, 7)1, |3n.2(r, T)| < 10]s0| < 100e™ 32

P =) = 10 = 1 o + (),

Therefore, there exists a box Z.q C Q7thcd so that

QT hea \ Eea| < n|QE).

Repeat this for all ¢ € L and all 1 < d < ng; let Z(L) = (e N QL.
Then

(N2 (Qfhea N Q) \E(L)]| < 1IQl.
Similarly, there is Z(LL) of complexity < 1 so that
[ (Mo (QF\ Qihea)) \E(Z)] < 0l QF
The claim in the lemma thus holds with Zk = Un; (E(L)N E(LC)). O
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Thickening in the stable direction. We now record two lemmas whose
proofs are essentially based on almost invariance (under small translations)
of the measures in question, and on commutation relations in H. Let o

. s,H
denotes the uniform measure on B 54100827 where as before,

By = {ug :]s| <} {ar : 7] < 8}

for all § > 0.
We will write V. = my- A(BZ’H) where my;— 4 denotes the left invariant
measure. Recall also the definition of 14 from (7.1):

1
ve(p) = /0 o(apu,) dr for all ¢ € C.(H).

We fixed 0 < 7 < 0.01nx and 8 = n?. In the discussion below, we will work
with 14 with large enough ¢ so that e~* < 32.
Let us begin with the following lemma.

7.4. Lemma. Let x € X. Let t1,t3 > 0, and assume that e~"* < 2. Put
=0 %y, x0x1y . For every p € C°(X), we have

[ otto) i, () = [ oth) )| < BLinte)

where the implied constant is absolute.
Proof. Let us recall the the following: for ¢,d > 0, adBi’Ha,d c B3 and

Urag = aqu,-4,. Moreover, for every r € [0,1] and h € BSY, we have

uyh = h'u, where b € B[ and |r/| < 2. Altogether, we conclude that for
s,H

si100g2 and T € [0, 1] we have

every h e B

!/
arUrhay, = W ag 4o,Up—t1 0

where || < 2. Since [[0,1]A(e™" + [0,1])| < 3, we conclude that

’/cp(hx) dvg, e, (R) — /gp(hm) duy, * 0 % ytl(h)‘ < B Lip(p).

The lemma follows. O

7.5. Lemma. Let x € X andt > 0. Assume that et < 62 and that h — hx
is injective on BZ,’H ag-Uy. Let j € Jo and w € B(0,23%) be so that
le. exp(w)y; C supp(o * v * 6,) N Qg.yj.

Put [ij = (0 %1y * 5x)|Q51 and put

.exp(w)y;
dpjw(z) = po,;(2) dftjw(2).

Then for all ¢ € CX(X), alld >0, and |r1],|r2| < 2 with |r1 —ra| < ¢f,

‘ / o(agur, z) dpjw(z) — / p(agur,z) dpjw(2)| < nLip()pjw(X)

where the implied constant depends on X and c.
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Proof. Write ro = r1+1' where || < ¢, and let hu, € Q}f = B;’QHUn. Then

(7.10) uphug = hh'ugy . where 7| < 10¢8 and ||V — I < 3,
see (7.9).
Write QY. exp(w)y; = Uﬁil{z € QI . exp(w)y; : po;(2) = 1/k}, and let
K exp(w)y; C {z € Q. exp(w)y; : poj(z) = 1/k}
be as in Lemma 7.3. By that lemma, there are collections of intervals J— =
{J= c[-8%8%}, T° ={J° C [-B%, %}, and T+ = {J* C [—n,n]} with
H#T <K' and J C T x J°x JT so that
2¢ = Jprd(J™ x JO x JF),
J

—_
(=
—

where prd(s, 7,7) = ug aru,.

Let =X denote Egéq,

and ék.exp(w)yj, respectively. Using (7.10) and the definition of =k, we
conclude that

(7.11) upn =X, c =X

j?w ‘_‘J7w

see (7.7). We will write E;w and E;‘w for 2. exp(w)y;

so long as f is small enough compared to ¢, see §7.2.
Recall now that

supp(o * 1) = B;’flooﬁQ cag - {u, 7 €10,1]}
and that V = my- A(B;floo ,6’2)’ where my;— 4 is the left invariant measure.
For |s|, || < B4 10052 and r € [0, 1],
(7.12) do x v (uy arypuy) = % dsdrdr.

Note also that Q¥ exp(w)y; C supp(a*yt*ém)ﬂQo(;.yj. Thus the definition
of fij, and the fact 1/K < po; <1, imply that

(7.13) 0 (B \ ) < j0(X).
Using (7.13), Lemma 7.3 and the definition of u;., again, we have
‘/(,O(deuriZ) dﬂj,w(z) - Z/—k @(@duriz) d/”’j,w('z)‘ < ULiP(SD)Mj,w(X)7
N 75w

for i = 1,2, where N = {1 < k < K : 2% £ 0}.
In view of this, and since 79 = r; + 7/, we need to estimate the following

L, elasunz) duto) - [

k
Jyw 3w

(7.14)

oagy, up z) dpsj(2) ‘

for all k € V.
Recall that dyj = po,j dfijw. Thus (7.14) may be written as

/é"-w o(aqtir, 2)p0.;(2) dfijw(z) — /

=k
J

laaty,uyr2)po g (2) it (2)|

;W



36 E. LINDENSTRAUSS, A. MOHAMMADI, AND Z. WANG

In view of (7.11), po,(2) = k and pg j(u,rz) = k for all z € ij Re-
call also that h +— hx is injective on supp(o * 1) C B;H -ay - Uy. Thus,
dfi; . is the restriction to Qfl.exp(w)y; of the pushforward of the measure
¢ dsdr dr under the map h +— ha. Moreover, by (7.13) and (7.11), we have

ﬂj,w(urxé;w E;‘w) < nuji(X). Altogether, we conclude that

(agtin, 2) dptj(z) — / (agtiry ) At (2)] < @ llsottjn(X)-

=k =k

7w J,w

The proof is complete. O

7.6. The set £ and the measure ug. Recall that 0 < 1 < 0.01nyx and
B = n%. Define

(7.15) E=B3" - {u: |r| <n},

where BS™ := {uy : |s| < 8} {aq : |t] < B} for all B> 0.

Let F C B¢(0, ) be a finite set, and let y € Xo,. Then exp(w)y € X,
for all w € F', moreover h + h exp( )y is injective on E. For every subset
E' c &, put

(7.16) ge = | JE {exp(w)y : w € F};

we will denote &g simply by £.
Let A, M > 0. Let £ = E{exp(w)y : w € F'}. A probability measure pg
on & is said to be (A, M)—admissible if

Zuw

pne =
ZWEF Mw wEF

where for every w € F, p,, is a measure on E.exp(w)y satisfying that if
hexp(w)y is in the support of 1,

dpw(hexp(w)y) = Aow(h) dmp(h)  where 1/M < 0,(+) < M;

. M
moreover, there is a subset E,, = Up:1

(1) o ((E\ Ew)-exp(w)y) < M By (E. exp(w)y),
(2) The complexity of E, , is bounded by M for all p, and

(3) Lip(owle, ) < M for all p.
Using the notation in (7.7), let (IOEw)E =

Ew,p C E so that

o

p(Ew,p)E- Put

£= U Je and jig = pelg,

for £ and an admissible measure g as above.
The following lemma is an analogue of Lemma 7.5.
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7.7. Lemma. Let { > 0, and let r € [0,1]. Assume that e=¢ < 2. Let ug be
an admissible measure on € = E{exp(w)y : w € F} for some F C B(0, ),
see (7.15). Let j € J; and v € B(0,25%) be so that

Q. exp(v)y; C supp(agurfie) N QF ;.

Put i) ; = (agurﬁg)\Qf.exp(v)yj, and let dy, ;(z) = pe(2) dfiy ;(2). Then for
all p € CX(X), alld >0, and all |r1 — 2| < ¢f, we have

| [ o 2) ity 2) = [ plagun) iy ()] < nLin(elns, ()

where the implied constant depends on X and c.

Proof. The proof is similar to the proof of Lemma 7.5.

Since r, v, and j are fixed throughout the proof, we will denote ,u}i j and
Ry j simply by p and fi.

Write ro = 71 + 7/ where |r/| < ¢f. Let hu; € Qf, then

(7.17)  wphup = hug arujpn  where || < B and €fs|, |7| < e 782,
see (7.9).
Let I~ = [—e %, e7'B?), I = [-2%, %], and It = [—n,n]. As it was

done in the proof of Lemma 7.5, write

K
Q/ exp(v)y; = | J{z € Q- exp(v)y; : pej(2) = 1/K},

k=1
and let Z. exp(v)y; C {z € Q. exp(v)y; : pr;(2) = 1/k} be as in Lemma 7.3.
There are collections of intervals J~ = {J~ c [-3%,8%]}, J° = {J° C
[-5%, 8%}, and JT = {Jt C [-n,n]} with #T < K',and J Cc J~ x J° x
JT so that

=¢ = Jprd(J™ x JO x JT),
J

where prd(s, 7,7) = u; aru,.

Let =X denote ég?, see (7.7). We will write EI](',U and E']‘U for ZX. exp(v)y;

and ék.exp(v)yj, respectively. Using (7.17) and the definition of =k, we
conclude that

(7.18) up =k, C =k,

so long as 3 is small enough compared to ¢, see §7.2.
In view of the definitions of i and u, there exists some w and p so that
is the restriction of the measure

Atirtwle, , expw)y

to QL. exp(v)y;. Note that agur,uw\éw is supported on ayu,E. exp(w)y,

‘ -exp(w)y
moreover, for every h € E,, ;,, we have

(7.19) Ao (hexp(w)y)] = Agu (h) dmi (h),
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and Lip(oulg, ) <M.
Recall that 1 < pyj,0 < 1. In view of the definitions of i and p, thus,
the above implies

(720) M(Ej,v \ é;’,v) < nM(X)

the implied constant depends on A, M, and X (via K and K).
Using (7.20), Lemma 7.3, and the definition of u again, we have

[ toan)anx) = Y [ plagunz) dutz) + O Lin(e)n(X).
N =5

for i = 1,2, where N = {1 < k < K : EK £ ()}
In view of this, and since ro = r1 + 1/, we need to estimate the following

L, elasumz)duto) - [

k
7,v 7,

(7.21)

o(agtip, up z) d,u(z)‘

for all k € V.
Recall that du = pgj dfi. Thus (7.21) may be written as

/ék-v o(aqup, 2)pe;(2) dfi(z) — /

[ lagunup2)pey(2) di(z)|

J,v

First note that by (7.18), pe;(2) = k and pg j(u2) =k for all z € E;v
Now let Ck C E be so that apu,CKexp(w)y = EI](',M similarly, define Ck.

Then

(7.22) urCKexp(w)y = (a_/ZXay).a_g exp(v)y;,

similarly for CK with Z* on the right side.
In view of (7.22), (7.19), and the definition of f, dﬂ|(u ,&)nE 1s a constant

Haar
w

((ueferf(ozk) N (O:k).exp(w)y.
Thus, using (7.20) and (7.18), we conclude that ﬂ(uré';wﬂé';w) <L np(X).
Altogether, we get

[, a2 dutz) = [ elagunue) du(a)] < nLin(o)n(x).

multiple of the pushforward of g, - du restricted to

Zjo Jv
The proof is complete. U
8. A CONVEX COMBINATION DECOMPOSITION

Recall that for every £ > 0, we defined

1
(8.1) ve(p) = /0 e(apu,) dr for all ¢ € C.(H).

In this section, we will show that Véd) (the d-fold convolution of vy) can be

approximated with a convex combination ) ¢;ug,, where g, is an admissible
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(d)

measure for all 4, see §7.6. Since v, ' and vy stay close to each other,
see Lemma 7.4, we thus conclude that averages of the form appearing in
Theorem 1.1 (albeit for age) can be approximated by a convex combination
of measures supported on sets which are a finite union of local H orbits.
The main results are Lemma 8.4 and Lemma 8.9; the proofs are based on
Lemmas 7.5 and 7.7.

The results of this section will be combined with Lemma 9.1 in the proof
of Proposition 10.1; see, in particular, part (2) in that proposition.

Convex combination: the base case. Let x € X, and let ¢t > 0. Assume
that e~! < 8 and that h +— hax is injective on E - a; - Uy.
By Proposition 4.2, for every interval I C [0,1] with |I| > §, we have

(8.2) [{r € I:inj(au,z) <e®}| < Cyell],

so long as t > |log(82inj(z))| + Cj.

In order to deal with boundary effects, we will consider interior points
for the supports of v; and o. Let Vt,’l be the restriction of v to {au, : r €
[e7t 1 — e}, note that for every h € supp(ytcl), we have Uy.h C supp(vy).

Applying (8.2), with e = (2n)'/2 and I = [e~*,1 — e~], we may write

Vg =vg1 + V2
where supp(v4,1.x¢) C Xap, for every h € supp(v4,1) we have Uy.h C supp(1y),
and vy o(H) < et < /2.

Recall that ¢ is the uniform measure on B%

54100827 write 0 = 01409 where

o1 = U’BS,H .
8—10082

Similarly, write 14 = 4 + Ovy where supp(.2) C Xy, for every h €
supp(i) we have Uj_190,-h C supp(v) and Oy (H) < n'/?; also write o =
& + Oo where ¢ = o|gs,n. Note that

5

supp(v¢,1) C supp(v¢) and  supp(oi) C supp(d).

For every j € Jy and every z € supp(oy * v41).2 N Qg.yj, we have z =
h exp(w)y; where w € B,(0,24%) and

heQf = {usar:|s|.|7| < B} U,

In consequence, QY. exp(w)y; C supp((& * ﬂt).m) NQ§.y;. This observation,
in particular, implies that for every j € Jp, we have

Nj
(o * 1))l .y, = 1 + Z Hji
i=1

where for all i there exists w; so that fi;; = (0 * ﬂt.a:)|Q0H and

15(QF ;) < (o2 % 11).2)(QF -y5)-

.exp(w;)y;
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For all j € Jy, put
(83) F} = {’wi Dy = (5’ * Ijt‘x”Q(I){.exp(wi)yj}'
8.1. Lemma. We have

#F; < B3

Proof. The proof is similar to [LM21, Lemmas 6.4 and 7.5], we reproduce
the argument for the convenience of the reader.
Recall from (3.4) that

inj(z) = min {0.01,sup {4 : g+~ gz is injective on B?oo&}},

where for every 0 < § < 0.1 we put B := B - exp(B,(0,9)).
Therefore, for every z € X, the map (h,w) — hexp(w)z is injective over
Bg] x exp(By(0,4n)). Hence, for all distinct w,w’ € B(0,2n), we have

BZY exp(w)z N Bﬁ exp(w')z = 0.

This, and the fact that Q. exp(w;)y; C supp(o * vp.z) N X, for every
w; € Fj, implies that

(#Fy) - (B'n) < g2
We obtain #F; < 872n7te! < B73¢t, as it was claimed. O

For any j € Jp and 1 < i < Nj, define dp;;(2) = po ;(2) dfi;i(z). Alto-
gether, we obtain

N;j
(8.4) oxvpxr =pu + Z Z,Uj,i
JjeJo 1=1

where 1/(X) < /2. Let

Nj
(8.5) cj = Z/“Lj7i(X)'
=1

8.2. Lemma. If ¢; > B, then #I; = N; > B%t. Moreover,
Y ¢ =1-0(0n"?

cj=pH
Proof. Recall that dgu;i(z) = poj(2)di;i(z), where
fiji = (0% )| Qi expuw)y, and 1/K <po; <1.
Therefore, ¢; < Nje_tﬁ_26477 = Nje_tﬁ217. Hence if ¢; > B, we have
N; > Bt

where we also used 0 < n < 1.
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To see the second claim, recall from Lemma 7.1 that #7, < n~ 15710,
Using 8 = n?, thus, we conclude

S <<
cj<B1
This and the fact that p/(X) < 7'/ imply the claim. O

For every j so that ¢; > B define
(8.6) & = E{exp(w;)y; : w; € Fj}.
Let pg; be the restriction of

N

(87) Z O * jq
i=1

to &, normalized to be a probability measure.

8.3. Lemma. The measure pg; is a (1/V,M)-admissible measure on &;

) and M depends only on X.

H
where V = meA(BZ,HOOﬁQ

Proof. For every w; € F], let fw; denote the restriction of o * u;; to
E.exp(w;)y;. Then e, = S %) uw Z ;- We will show that

dptw; = V" 0i - dmp e, exp(uy)y,

where p; satisfies the desired properties for all 7.

Recall that o is the uniform measure on B
po.j - [j; Where

ﬁHOOﬁQ Moreover, p;; =

[iji = (6 * ’jt)’Q{f-exp(wi)yj

and QY = BS H - Uy. These, together with 1/K < po; < 1, imply

dptes, = V"1 0i - dmy
where 1 < g;(h) < 1.
Let Ek-~ be as in the proof of Lemma 7.5 (and Lemma 7.7) applied with
v = wj, erte _k for ( )Qﬁ" We will show that the claim holds with

_ _ psH =k
Euw, = U Ewik  where  Eyoo= B3 00 - 25,

First note that the complexity of E,, \ is < 1 by its definition. Moreover,
=k \ =2k
15,0 (553 \ Z54)- exp(ws)y;) < i (E. exp(wy)y;).
This and Lemma 7.3 imply that

fiw; ((E\ Eu,)- exp(w;i)y;) << np; (E. exp(w;)y;).

=k

Finally, since po,; is constant on =%,

we have Lip(oi[g, ) < 1. O

The following lemma is the base case of our inductive argument.
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8.4. Lemma. Let x € X, and let t > 0. Assume that et < B and that
h > hx is injective on E-ay-Uy. Let {c;} and {pg;} be as in (8.5) and (8.7),
respectively. Then for every ¢ € C°(X), everyd > 0, and all |s| < 2,

’/(p(adusz) d((o * 1)) (2) — ch /cp(adusz) dpe, (2)| < n'/? Lip(p)

where the implied constant depends only on X.

Proof. We begin with the following observation. For every |r| < 2 and all
h e B‘;}’H, we have u,h = h'u,, where |ry, —r| < S|r| and h' € belg, see (7.9).
Moreover, agB*"a_yq C BSH. Therefore,

(8.8) ’cj/ap(adurz) dpe; (2) — //cp(adurhz) dfi;(2) da(h)‘ <x ¢jBLip(p)

. N;
where fi; = > .7 1.
Moreover, by Lemma 7.5 applied with v, and r and ¢ = 2, we have

69 | [ elaoun2) i)~ [ plasu)aps()] <x ciBLin(e).
In view of (8.4) and since 3 ¢; = 1 — O(n'/?), see Lemma 8.2, the claim
follows from (8.8) and (8.9). O

8.5. Convex combination: the inductive step. Let x € X, and let ¢
and ¢ be positive. Assume that e~*, e~¢ < 8 and that h — hz is injective
on E - a; - U;. We also assume fixed some dg > ¢, £.

For any n € N, define

(8.10) Ptgn = Vg k- % Vg% 0 % 1y

where vy appears n-times. Put p; 0 = o * 14.
Let n > 1. Assume there are 0 < cg < 1 and (Ay—1, My,—1)-admissible
measures {/ig/} supported on

& = E{exp(wy)y; : w, € Fj} C X,

so that for every 0 < d < dgy and all |s| < 2, we have

(8.11) /@(adushw) dpen—1(h) =
St [ elasusz) duey(z) + 06 Lin()

for some 0 < §,,_1 < 1.
Our goal in this section is to construct a collection of admissible measures
pe; and constants 0 < ¢; < 1 so that (8.11) holds for juiz ¢y,

We begin with the following non-divergence result.
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8.6. Lemma. For every r € [0,1] we have
per({z € & s apurz & Xop}) < n'/?
so long as € > 3|logn| + Cy.
Proof. Recall that E = B;’H Aup o || < n}. We will show that for every
h e B;’H and every w, € Fy,
(8.12) {r' € [=n.n] : agurhu exp(w))y) & Xop}| < n'/?

Since d,uw(/z = A_10dmpy and ﬁ <0< M,_1, (8.12) implies the lemma.
To see (8.12), note that u,h = h'u;, for some h’ € B‘i’og and |7| < 2. Since
agB‘ibga_g C B‘;b}é, we conclude that

(8.13) apu,hu,. exp(w;)yg C Bibga[u/ﬁ_’_r/ exp(w;)yg.
Apply Proposition (4.2) with I =7+ [-n,n] and € = 3n. Then
{r' € [=n,1] : aptjsr exp(w))y) & Xay} < n'/2.
This and (8.13) imply (8.12) and finish the proof. O

In view of this lemma, for the remainder of this section, we will assume
that ¢ > 3|logn| + Cj.

Recall that & = E.{exp(w})y; : wy € F} is equipped with the admissible
measure fig;. For every wy, € F, let ow, and By =, Euyp be as in the
definition of an admissible measure, §7.6.

Using the notation in (7.7), let IDEwg = Up(lofwé,p)E. Put

., . )
& =JEw and jig = perls
(A '

For every ¢ and r € [0, 1], put p;, = agurpg;. In view of the definition
of /?Lgl{ and Lemma 8.6, we will write p;, = pir1 + ftir2 where p;r2(X) <
max{M,_15,17"/?} and

supp(fi,r,1) C supp(agurfigr) N Xay
= apu, (U Ewé.{exp(w;)yg cwy, € F{}) N Xoy,
moreover, for every z € supp(fi 1) there are ¢ and p so that
Qé_]-z C aﬁurEwt’;,p exp(w;)yé,

where Q}f = {uga;:€'s|,|r| < 10082} - Uy,
For every j € J; as in Lemma 7.1 and every z € supp(ir,1) N Q?.yj, we
have z = hexp(v)y; where v € B;(0,28?) and h € Q}f = {u;a, : €'|s|,|7| <
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62} - U,. Thus,

H AW/ G
Q- exp(v)y; C (agurBuy pexp(wy)y;) N Qy y;

(8.14)
C supp(ir) N QF 45

This observation, in particular, implies that for every j € Jy, we have

,Uz',r|Qf.yj = :u;,r + Z ﬂf:i
where for all ¢ there exists v¢ so that i) = ,u,i,,,\Q? exp(ve)y; and
wi(QF 7)< hir2(QF ).
For all j € Jy, put
(815) F‘,ZT = {UC M'Lr = M%T)’Qf.exp(vg)yj}'

Forany j € Jpand 1 <¢ < N, M, define d,u °(2) = pej(2) dﬂg’f(z). Then

N.j
(8.16) i =1+ Zﬂiﬁ

JE€ET =1

where 1//(X) < max{n'/?, Mn_lﬁ}. For all j € J, put

(8.17) Zﬂzi

We have the following analogue of Lemma 8.2.
8.7. Lemma. Assume n is small enough compare to M,,_1. If ch > Bl2et,

then #FZ:{T = NZT > B8 (#F!). Moreover,

Sz 1 Ol 1)

cg L >p12e—t
Proof. Recall that dﬂz;(z) = pe;(2) dﬂf:(z) where

Fi'n = HigrlQH . exp(v.)y,;
and 1/K < pg; < 1. '
Since pgr is admissible, see §7.6, we have ¢/, < N}, (e=*Bn) - (#F)~!
Therefore, if czr > 12¢=¢ then

N/, > B3 (#F))

where we assume 0 < n < 1 is small enough to account for the implied
constant which depends on M,,_1.
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To see the second claim, recall from Lemma 7.1 that #7; < n~ 15710 <

B¢l therefore,
. Gsh
¢ <pl2e—t

This and the fact that p/(X) < max{n'/2, M,,_18} imply the claim. O

Let j be so that c{m > '2¢=¢. Then by Lemma 8.7, we have #Fgr
B8 (#F!). We write

Vv

j ] Mgr ',m
Fij,r = sz,r (Umzl F‘?,‘],T‘ )
where #Fir < B2 (#F) and
(8.18) B (#F)) < #FL" < 85 (#F)

for every m.
Let the notation be as in (8.16). As it was observed in the proof of

Lemma 8.7, we have i7%(X) =< ,&g’f,l(X) for all ¢,¢’. Thus, we may write

N, M) N
- o '7 : Y '7 7k
(8.19) doir =y Yl
¢=1 m=1 k=1
where u} (X)) < Bcgﬂ,. Note that for every k, there is some ¢ so that
j:mzk —_ "jy(
lui,r - Iui,r‘

Recall that diif} (=) = pe,j(2) djif;(2), we will write almt = e
For every 1 <m < Ml{T, put
N

j?m Pp— j’m’k '7m Pyp— J7m
/’Li,r T Z Iu’im ’ cg,r T Mayr (X)
k=1

Then (8.19) and (8.16) yield

M,
(8.20) pie=p" Y >
Cgr2612€7£ m=1
where ¢ (X) < max{nl'/Q,Mn,lﬁ}. A
For every j so that C‘,Z»J, > p2¢tandalll <m < MZT, define

(8.21) gl = E{exp(ur)y; : vk € F}.

Let Pgim be the restriction of
(8.22) o pl"

to Sf ™, normalized to be a probability measure.
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. 7,m ;
We will refer to (&, ,/,Lgij,:n) as an offspring of aguy g

8.8. Lemma. The measure pigjm is a (An, My)-admissible measure, where

M, depends only on X and Mn’_l.

Proof. The proof is similar to Lemma 8.3. Since 7, 4, j, and m are fixed
throughout the argument, we will drop them from the notation whenever
there is no confusion, e.g., we denote &/ by &', Mf;nk by p*, and & by €.

Recall that for every k, du* = pej di* where gF = ,u,,;’,,\Q?‘eXp(vk) nd

1/K < pyj(z) < 1. Also recall that there are wy and p so that

yja

supp(ﬂk) C aguy (Ew[],p' eXp(w;)yg)'

Moreover, oy (in the definition of Mw;) is M, _1-Lipschitz on Ew&,p.
For every vy, € F, let p,, denote the restriction of o * u* to E. exp(vk)y;-
Thus pg = m > My, and we have

iy, (+) = Aner () dmp (-).
We will show that gy, satisfies the desired properties for all k.
Recall that QI = {u; : |s| < e 8%} - {a, : |7| < 8%} - U,, and that o is

) H
the uniform measure on B

5110082" For every

hexp(vr)y; € QF . exp(vk)y; = supp(i¥),

there exists a unique h’ € Eyy , so that asuyh’exp(wy)y; = hexp(vg)y;. Let
us define g5 on Qf by

or(h) = pej(hexp(vr)y;) 0w (h' exp(wy)y;)

We note that g = o % o. Thus (KMn_l)f1 L op K M.

For every 1 < f < K, let E;Z be as in the proof of Lemma 7.5 (and
Lemma 7.7) applied with v = vy, and write Eg’k for (Eg,k)Qf In particular,
pe,; equals 1/f on Eg - We will show that the claim holds with

7H %f
Ev, = U Ev.f  where E, = 82—10052 Bk
d
To see this note that the complexity of E,, ¢ is < 1 by its definition. More-
over, pg; is constant on E} - Thus in order to control Lip(g;) on E,, ¢, we

may drop py; from the definition of g5 above. Now wu.apu, = apu, .,
Lip(0u; [Ew; p) < My—1, furthermore,

H
B3 100s2 C supp() \ O199s2 supp(0).

Altogether, we conclude that Lip(o * g;) < M,—1 on E,, ¢ for every f.
The proof is complete. O
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8.9. Lemma. Let z € X, and let £ and t be positive. Assume that e e~ <
B and that h — hzx is injective on E - a; - U.

Suppose that for every i, we have fized L; C [0,1] with |[0,1] \ L;| < 6,
and let {riqy:q=1,...,N;} be a maximal e—340 _separated subset of L;. Let
peCX(X),0<d<dyg—¥¢, and |s| < 2. Then for every r; ; we have

(8.23) ‘/ AqUs? )d(agu”qugz Z qu/ aqUs? dugjm( )’
< max{n"/?, M,_18, 8} Lip(¢)

where 3 =3_,>,,. Moreover, we have

(8.24) ‘/ (aqushx) d pig e n(h Z zmq/ (aqusz) dpigjm (z)‘

T

< max{n'/%, M,_18,8,5,-1} Lip(¢)

where 35 =324 225 > om

The implied constants depend only on X and M, _1.

Proof. The proof is similar to the proof of Lemma 8.4. Indeed loc. cit. will
be used as case n = 0 in our inductive proof of this lemma.
We will first reduce (8.24) to (8.23):

/ ‘P(adushx dﬂt /l n // adusalurhx) d,U/t {n— l(h) dr
= // (p(adJrfur—&—se*th) dlult,f,nfl(h) dr
=36 [ [ Glasrit i) dg (2)dr -+ O Lin(e):

in the last equality we used (8.11), and 0 < d + ¢ < dg and |r + se™¢| < 2.
Since |[0,1]\ Li| <6 and {riq: ¢ =1,...,N;} C L; is a maximal e~3do-
separated subset, we have

ZCQ // P(ad+ottypge-e2) dpgr () dr =
SN [ Glasrity, i) diig (2) + O(anax(s, 5} Lin().
T q

where we again used d 4+ ¢ < dg.
In view of this, let us fix some i and ¢, and investigate

[ st o) g (2) = [ plauaann, 2) dney ),

which also completes the reduction of (8.24) to (8.23).
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For simplicity, let us write r = r; 4. Using (8.16), we have

/cp(adusaeur )dpe: (2 Z/ aqusz Zu ) + O(B Lip())-

In view of (8.20), see also Lemma 8.7, it suffices to consider j’s so that
Cir > B12et, we will however need to add

O (max{n'/?, M,,_18} Lip(p))

to the error. Moreover, using (8.19), we may replace ) _ ,ul I > with > ,u

Fix one such j € Jy and let 1 <m < Mfr Then ,u,{ = u{;”k
We now compare

/ adqUsZz (Z MJ o k>

with [ ¢(aqusz) d/lzgj,m( z). Recall from (8.22) that

/ ! olaqus?) dprgy (= Z // (agush=) A (=) do (h).

For every h € BZ’H and all |s| < 2, we have ush = h'ugy,, where |sp| < S
and h' € 81057 moreover, adBi’Oga_d - B‘ib}é for all d > 0. Therefore, for
every k and all h € BS’H, we have

| / (aqush2) dyul " (2) - / p(agusis,2) Al ()] < BLip(p)ul " (X).

Finally by Lemma 7.7, we have

’/ adus-i-sh d:u]’mk( ) /@(adus-ﬁ-shz) duz,in’k(z)
< M1 BLip(@)ul " *(X)

which completes the proof. O

9. MARGULIS FUNCTIONS AND INCIDENCE GEOMETRY
In this section, we will prove Lemma 9.1 which is one of the main ingre-

dients in the proof of Proposition 10.1, see also Proposition 2.3.

The set £ and the measure pg. Let 0 < < 0.01nx and 3 = 1%, Recall
that

7H .
E:BZ Ay ] <n}
where By := {ug : [s| < 8} - {as : [t| < B}
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Let F' C B(0,08) be a finite set, and let y € Xo,. Then exp(w)y € X,
for all w € F, moreover, h — hexp(w)y is injective over E. For every subset
E' c &, put

(9.1) e = U E' {exp(w)y : w € F};

we will denote &g by £. Throughout this section, we will assume fixed an
admissible measure pg on £ whose definition we now recall from §7.6.

Let \,M > 0. A probability measure pg on £ is said to be (A, M)-
admissible if

1
M S er ru(X) 2t

weF
where for every w € F, i, is a measure on E. exp(w)y satisfying that

(9.2) dp (hexp(w)y) = Aow(h) dmpg(h)  where 1/M < g,(+) < M,
moreover, there is a subset E,, = Uﬁil Ewp C E so that

(1) o ((E\ Ew)- exp(w)y) < M By (E. exp(w)y),
(2) The complexity of E,, , is bounded by M for all p, and
(3) Lip(gw]Ew’P) < M for all p.

Regularity of £. Let 0 < 0 < inj(z) for all z € £&. We will say & is
(¢,0)-regular if for all w € F'

(9.3) #(F 1 Bu(w,6/100)) > ¢ (#(F 1 Be(w, ),

see §6.3 where similar (and finer) regularity properties are discussed.

Our goal is to show that the discretized dimension of £ at controlled scales
will improve under a certain random walk. We begin by defining a function
which encodes this discretized transversal dimension.

Let 0 < b < 1/10. For every (h, z) € H x &, define

(9.4) Iep(h,z) == {w € v: ||w| < binj(hz), exp(w)hz € hE.x}.

Note that I¢ (h, z) contains 0 for all z € £. Moreover, since E is bounded,
I¢ p(h, 2) is a finite set for all (h,2) € H x £.

Fix some 0 < o < 1. For every R > 1, define the modified and localized
Margulis function fepr: H x € — [1,00) as follows: if #I¢ ,(h, z) <R, put

fepr(h,z) = (binj(hz)) ™%
and if #1¢ p(h, z) > R, put
. —a . IC Ig’b(h, Z) and
2Py 2) = min {WZI P e\ D =R
Let us also define 1g, on H x £ by

(9.5) Yep(h,z) = (binj(hz)) ™ - (#1ep(h, 2))-
If E' C E, we define I¢_, 3, Vg, », and fe_, pr accordingly.
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Recall also the definition of G from §6. Let 0 < by < 1, and let I C
B(0,bp). For R> 1, define Grr : I — (0,00) as follows: If #I <R, put

Grr(w) =by", forall wel,
and if #1 > R, put

) _ I' c I and
ar, (w):mm{ lw—w'||~: N }
iR 2 #(I\ 1) =R

Fix a small parameter 0 < € < 1, and let 0 < x < £/10%. Throughout the
section, we assume
e et/10° < B and {=0.0let.
We will also use the following notation:
05,,6,E = (06,B5™) - (s, {ur : |7 < m}),  for 61,02 > 0

we denote 05 sE simply by OsE.
The following is the main result of this section.

9.1. Lemma. Let F' C B(0,8) be a finite set with #F > eM/10 - Assume
that F satisfies (9.3) with § = 75inj(y)b and some ¢ > emrt/4,
Let £ = |JE{exp(w)y : w € F}, and put

£= U E{exp(w)y : w € F}

where E = E \ O10bE.
Assume that for some T > 1 (large enough depending on k) some 1 <
R < et/190 and for b = e~ Ve, we have

(9.6) fepr(e,z) < T, forall z€ €&.
There exists L, C [0,1] with
[USTAV Ml
and for every r € L., there exists a subset &, C & with
pe(E\ &) < e rt/64
so that the following holds. For every z € &, we have
fe pr, (arur, 2) < 200e L Y8~ 4 200€2a£¢g7b(a[ur, z)
where L = Lk L and Ry = R+ L1Y", see Theorem 6.2.

The proof of this lemma relies on Theorem 6.2 and will be completed in
some steps. We begin with the following lemma.

9.2. Lemma. Assume (9.6) holds. Let
&= U E' {exp(w)y : w € F}
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where E' = E\ OspE. Let m € N. Put z = hexp(w,)y € &', and let I, :=
Ier mp(e, 2). Then

Gr. r(w) < (2+6m*)Y for every w € I,
where G is defined as above with by = mbinj(z).

Proof. Let w € I, then 2’ := exp(w)z € . We will estimate G, gr(w) in
terms of fepr(e, 2).
Note that for every v € I, there exists some w, € F' and some h, € E' so
that exp(v)z = h, exp(wy)y. Thus
h, exp(w, )y = exp(v)z

(9.7) = exp(v) eXp(—w)Z/ = exp(w;)z

/
where [|h" — I|| < b? and %[|v — w|| < [Jw)|| < 2|jv — w|, see Lemma 3.2.
Since h, € E/, we conclude from (9.7) that
exp(w))z’ = h' " thyexp(w,)y € €

where we used h, € E' and ||h’ — I|| < b*>. We emphasize that we can only
guarantee exp(w))z’ belongs to £ and not necessarily to &' C &.
Note that, v — w! is one-to-one. Moreover,

1
(9.8) if v —wl| < §binj(z’)7 then w), € Ig (e, 2'),

since in that case we have ||w] || < binj(2’).
Let {w1 = w,we,...,wy} C I, be a maximal b/4 separated subset; then
N < m*. Arguing as above with all w;, we also conclude that

N
(9.9) I, C U Icp(e, z;), for some {z1,...,2n} CE.
i=1

Since b = e Ve and #F > %9 we have supseg #le ple, 2) > €08
Therefore, (9.6) and the fact that 0 < R < %01 imply

(9.10) 27 > sup(binj(2)) ™ - (#lep(e, 2))

ze&
Recall now that 0.91inj(y) < inj(2) < 1.1inj(y) for all 2 € £. Therefore, (9.9)
and (9.10) imply that

9.11) binj(2") ™ (max{1, #I.}) < 5 " binj(zi) " (max{1, #I¢ p(e, 2:)})
' < 3mY.

We now consider two cases: If #I¢ (e, 2’) < R, then (9.8) implies that
#{v € L : |lv —w| < 3binj(z')} < R. Hence, using (9.11), we get

Gr.r(w) < 2(binj(2")) ™ - (max{l, #I.}) < 6m*T

This completes the proof in this case.
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Thus, let us assume #I¢ (e, 2’) > R, and let I’ C I¢ (e, 2’) be so that
D7 = fepr(e2) < T
w/'el’
Let I = {v € I : |lv — w| < binj(z') and w), ¢ I'}. Since v — wl, is
a one-to-one map from I into Ig (e, 2’) \ I’, see (9.8), we have #I < R.
Therefore,

Grrw)< Y o—wl <2 3 fu

velA\T vel\I
<2 Z |||~ + 2(binj(2")) ™ - (max{1, #L.})
w'el’
< (2+6mhH)T,

where we used |lv — w|| < [|[w}|| in the second inequality, the definition of
I in the third inequality, and (9.11) in the final inequality.
This completes the proof of this case and of the lemma. O

Let us also record the following two lemma whose proof is essentially
included in the argument at the beginning of the proof of Lemma 9.2.

9.3. Lemma. Let & C &' be as above. Let 0 < m < 100, z € 5', and
d < mbinj(z). Write z = h, exp(w,)y where h, € E and w, € F. Then
#(F N Be(w:,6/2)) < #(Igr mp(e, 2) N Be(e, 0))

(9.12) < #(F N Be(wz,26)).

Proof. Let us write I, = Ig/ mp(e, z). We will first show: there is an injective
map from I, N B,(0,d) into F'N Be(w;, 26). For every v € I, N B(0,0), there
are w, € I and h, € E' so that exp(v)z = h, exp(w,)y. Thus
h, exp(wy)y = exp(v)z

= exp(v)h, exp(w. )y = h, exp(Ad(h; ) exp(w,)y

= h'exp(wy)y
where < [[w], —w.|| < 2| Ad(h;1)v|| < 2[|v]|, see Lemma 3.2. Since the map
(h,w) — hexp(w)y is injective on BlGOn, we conclude that w, = w]. Thus
v — w, is an injection from I, N B(0,0) into F' N B(w, 29).

The other direction is similar, let w € F'N By(w;,/2). Then

exp(w)y = exp(w) exp(—w:) exp(w;)y

1 1

= exp(w) exp(—w,)h. 'z = h exp(v],)h; 'z
= h'h; ' exp(Ad(h,)v))z
where ||h' — I|| < n||lw —w,|| and || Ad(h,)v),| < 2||w— w,]|, see Lemma 3.2.
Put v, = Ad(h,)v],. Then the above implies

exp(vy)z = h.h' L exp(w)y.
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Since ||h' — I|| < n|lw —w.|| < byinj(z) and h, € E = E \ d10E, we conclude
h.h~1 € E'=E\ 05E.

Hence exp(vy)z € €. Moreover, we have ||vy| < 2||lw — w,|| < §. These
imply that v,, € I, N Be(e,d). Altogether, w — v, is an injection from
F N By(w;,0/2) into I, N Be(e,d). The proof is complete. O

Let us also record the following lemma for later use

9.4. Lemma. Assume (9.6) holds. Let m € N. For any w € F, put F,, =
Bi(w,mbinj(y)) N F. Then

G, r(W) < (24 6(4m)H)T for every w' € F,,.
Proof. Let w' € F,, and put 2z’ = exp(w')y. Then 2’ € £, and as it was done
in the proof of Lemma 9.3, for every w’ # w € F,, we have
exp(i)y = exp() exp(—w') exp(w’)y
exp () exp(—w')h ' 2" = hexp(v)h, 2/
= hh} exp(Ad(hy)v})z

where ||h —I|| < nl& —w'|| and || Ad(hy)v); || < 2] —w'||, see Lemma 3.2.
Put vy = Ad(hyy)v);. Then, as in Lemma 9.3, we have vy € Tgr amp(e, 2')
and the map W — vy is injective — note that || — w'|| < 2mbinj(y).
This and Lemma 9.2, imply that
ng,R<wl) < glg/Amb(e,z’),R(O) < (2 + 6<4m)4)T

for every w' € F,. O

Proof of Lemma 9.1. The proof will be completed in some steps.
For every w € v and all r € [0, 1], let

& (w) = (Ad(uy)w) 12 = —war? — 2wiir + wis.
Applying Theorem 6.2. As in Lemma 9.2, let
&= U E' {exp(w)y : w € F},
where E/ = E\OsE. For all z € &, put I, = Igrple,2). In view of
Lemma 9.2, we have
(9.13) Gr. r(w) <87, for all w € I,

where G is defined with by = binj(z).
Apply Theorem 6.2 with I, and ¢ = «; let J, C [0, 1] be the set J' given
by that theorem. In particular,

(9.14) 10,1]\ J.| < L=t < e 42,

To see the last inequality, recall that #F > %% Combining this with (9.10)
(and the discussion preceding (9.10)), T° < ¢ 98+" The above estimate
follows if we assume ¢ is large enough to account for the factor Le—%.
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Returning to the argument, by Theorem 6.2, we also have that for every
r € J, there exists I}, C I, with #(I,\ I ,) < e F"/2 . (#1,) so that

(9.15) Ge, ()R, (6r(w)) <Yy, foreverywe I,
where Y1 = 10L; Y185 > [, (87)1H8x,

The sets L,, and &,. Equip £ x [0,1] with o := pg x Leb where Leb
denotes the normalized Lebesgue measure on [0,1]. Let

Y = {(zjr) e€x[0,1]: #{w € I : gér(;zé)}Rl (& (w)) > T} . G_KQW} |

where £ = |JE.{exp(w)y : w € F} and E = E \ 8;03E. Then, (9.15) implies

for all z € £, we have {(z,r):re J.} C Y.

Recall moreover that ug(E \ (‘:’) < b, see the definition of an admissible
measure and in particular (9.2). We thus conclude from (9.14) that

o€ x [0,1]\Y) s b+ e W2 <y e7FU2,
This and Fubini’s theorem imply that there is a subset L,, C [0,1] with
1[0, 1]\ Ly | <m e~ **t/4 50 that for all r € L, we have
(9.16) AENY,) <ap e
where Y, = {z € € : (2,7) € Y}.
For every r € L, define
&={z¢ £ fe pr, (arur, 2) < 200e "y + 20062a£¢é7b(agur, z)}.
We will show that
(9.17) pe(EN\E) < e r /04,

Note that the lemma follows from (9.17). Thus, the rest of the argument is
devoted to the proof of (9.17).
Let r € Ly, and let z € ;.. Then (2,7) € Y, and by the definition of

Y, there exists a subset I, C I, with % < e~ "°t/2 o that for every
w € I ,, we have

(9.18) Ge,(1.)R, (&r(w)) < 1.
Claim. Let 7 = inj(y). For all w € I,, N B(0,0.17b), we have
fe pr, (aeur, exp(w)z) < 200e%7; + 200€2a£1/}é plaetr, 2).

Proof of the claim. Recall that %77 < inj(s) < 27 for all » € €. Let w €
I, N B:(0,0.17b). For ease of notation, put 2 = exp(w)z and h = au,.

First note that if #I&b(h’ z) < Ry, there is nothing to prove. Therefore,
we will assume #1I; ,(h, 2) > Ry.
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Let I;7; = {v € Iz, (h, 2) : [[v]] > 0.01e**binj(h2)}. Then

(9.19) D JJoll™* < 100e** (binj(h2)) ™ - (#17;) < 100e** 4z , (b, 2).

vely,
For any subset I C Iz, (h, 2), let
Jr={v el (e 2) : Ad(h)v € I},

and put 17V = I'\ (Ad(h)Ig (e, 2)), i.e., IV is the set of vectors in I which
do not equal Ad(h)v for any vector v € Iz (e, 2).
With this notation, we have

(9-20) Dol < Y IAdm)e =+ Y (ol

vel veJr vE [new

We first estimate the contribution of the second term on the right side
of (9.20). Recall that || Ad(a,u, )T v|| < 3e||v|| for all v € g, in particular,
we have e~‘inj(2)/3 < inj(h2) < 3e‘inj(2). Thus if v € ™Y, then |jv|| >
e~2inj(h2)b/9. In consequence, for any I we have ™V C I7., and the
second term may be controlled using (9.19).

We now turn to the first term on the right side of (9.20). The strategy is
to relate this term (for an appropriate choice of I) to (9.18).

Recall that w € I, , N B(0,0.17b) and 2 = exp(w)z. Let now

v € I(2) = Iz (e, 2) N Be(0,0.173h).
Then we have
exp(v)z = exp(v) exp(w)z = h, exp(wy)2.
We note that ||w, — (v+w)|| = ||(w, —w) —v|| < b||v|| and ||h,|| < b%. Since
exp(v)2 € &, this implies that exp(w,)z = hylexp(v)Z € &. Moreover,
|lv]], [|w|| < 0.17b implies that ||w,|| < inj(z)b. Altogether, we have w, € I.

The map v + w, is on-to-one from () into I,. Moreover, Ad(h~!)v €
I(2) for every v € I, (h, %) \ I;;. Thus if #I. <Ry, then

#(Lz,(h, 2)\ I;7;) <Ry,

and the proof is complete thanks to (9.19).
In view of this, we let K, C I, be so that #(I, \ K,) < Ry and

(9.21) > lgw) = & w7 < T,

w' €Ky

see (9.18).

Let Iexe = {v € f(,%) cwy € Ky} Since the map v — w, is one-to-one
from Ieyc into I, \ K, we have #Iox. < Ry.

As was remarked above, if v € Iz (h, 2) and Ad(h Y ¢ I¢ (e, 2), then
Ad(h)v € I;,. Therefore, using (9.21) and (9.19), we have
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Feppri(acur, 2) <% [ Ad(R)v] = + 100¢** g , (R, 2)

vel (2)\Lexc
<2 ) [ Ad(R)(wy — w) |7 + 100e** g , (h, 2)
vel (2)\Toxe
<20 ) [lef (& (wy) = & (w)) T + 100e** g (B, )
vel(2)\Loxc
<2e7 N G (') = & (w)]| 7 + 100e* g (b, 2)
w/ €L\ Ky

< 2e7T + 100e**4pg , (b, £).

We used (9.19) in the first inequality. For the second inequality we used the
following: ||(w, — w) — v|| < b||v||, moreover, the choice ¢ = 0.01en implies
that e=* > b. Consequently, we have

lazurv]) = lagur(w, — w+ w')]| > 0.5 agus (1w, — w)]
where w' = v — (w, — w) and we used ||h*!+|| < 3ef|| + || for any « € g. The
third inequality follows from (Ad(h)+)12 = €’€,(+), and the last inequality is

a consequence of (9.21).
The above and (9.19) complete the proof of the claim. O

Fubini’s theorem and the proof of (9.17). In view of the claim, for every
z € Y, and every w € I,,, we have exp(w)z € & so long as exp(w)z € £.

We will use this to show (9.17). That is,
(9.22) pe(E\ &) < e 1o,

which will complete the proof of the lemma.
Recall that 7 = inj(y) and %7’] <inj(+) <27 for all - € £. Set V' := bij/10.
The argument is based the following: For every z € Y,., we have

(9.23) #(Lr 0 B(0,0) > (1 — e "4) - (#(L N B:(0,1))),
Let us first establish (9.23). Let z € ;.. By Lemma 9.3, we have

(9.24a) #(1. N B:(0,V')) > #(F N Be(w., b'/2))

(9.24b) #1. < #(F N Be(w, 400")).

where z = h, exp(w;)y and in (9.24b) we used 37 < inj(z) < 27).
By our assumption, F satisfies (9.3) with ¢ > e~*"%/4 and 500'. Thus
using (9.24a) and (9.24b), we have

# (I N Be(0,8)) = #(F N Be(ws,0/2))
>c- (#(FﬂBt(wz,50b’))
> - (#1) > e U (#1)
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Since #(I, \ I..,) < e *1/2. (#1.), the above implies that
H(L\ L) < e V2 (#1,) < e U4 (#(1, 0 B:(0,1)).
Altogether, we conclude

#(Ler N B(0,)) 2 (1= 1) - (#(1. 0 Be(0, 1)),
as was claimed in (9.23).
Put L = £\ & and assume contrary to (9.22) that
pe(EF) > e W04 = 5,
We will repeatedly use properties of an admissible measure, see in particu-
lar (9.2). Recall from (9.16) that
pe(E\Y,) < et < 68,

Let F/ = {w € F : py(Y, NE.exp(w)y) > (1 — 6*)pw(E. exp(w)y) }. Then
by Fubini’s theorem

U E. exp(w < ot
wgF’
Points in £ are represented as h’ exp(v')y, in order to utilize (9.23), how-
ever, it is more convenient to have a representation of points in £ in the
form exp(v)hy. To that end, for every w € F’, fix a covering {B}f .2’} of

(E\ Oa0E). exp(w)y
with multiplicity < K’ (absolute constant), and let
={BJ.? : pu(Bf 2’ NY;) > (1 — 6*)pw(Bf .2') }.
Then ,uw(U{Bb, 2Bl ¢ BY}) < K62
Let B = exp(B.(0,V)) - B, and put
B={B.z: Bl eB, weF'}.

Then there is B C B so that the multiplicity of B is < K (absolute) and

pe(UsB.2) > 1 - M2KK'6? —6* > 1 — (M*KK' +1)8>
where M appears in the definition of (A, M )-admissible measure.

Recall now that pug(£) > 1 — O(b) > 1 — §'S. Therefore, if we put Beyxe =
{B.2 € B:ug(B.2’NE&) < (1 —6%)ue(B.2')}, then
Mg(U B.z’) < 2K 68,
Bexc

provided that § is small enough compared to M, K, and K'.
Since ,ug(EE) > ¢ and the multiplicity of B is at most K, there exists some
B.2' € B\ Bexc so that

(9.25) pe(B.2' NEL) > Lopg(B.2)
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Other other hand, applying the claim with hz’' € B{)L,I .2’ NY, we have: for

every v € Ihy,, exp(v)hz’ € &, so long as exp(v)hz' € £. This and the
fact that every point in B.z’ can be written uniquely as exp(v)hz’ for some
v € By(0,V') and h € B, imply

B.2' N SE c (B.2'n E:’E) U{exp(v)hz’ €B.2 1 h ¢Y,}

U{exp(v)hz’ €BZ v I, }.

We now bound the measure of the three sets appearing on the right side
of the above and obtain a contradiction with (9.25). First note that since
B.2" & Bexc, we have

(9.26) pe(B.2'N EAE) < 88ug(B.2).
Moreover, since BH.z' € B, for some w € F’, we have u,(B.2’ N YTB) <
6% (B .2"), hence
(9.27) pe({exp(v)hz’ € B.2 : ha! ¢V, }) < M25%ug(B.2'),
Finally, in view of (9.23), for every hz’ € BY.2' NY,., we have

#(Inzr . 0 Be(0,0')) > (1= 6%) - (#(Inor 0 Be(0,0))).
This and the definition of admissible measure again imply
(9.28) pe({exp(v)hy’ € B.2' v & T }) < M25%ug(B.2).

Now (9.26), (9.27) and (9.28), imply that
pe(B.2' NEL) < (M?6% + (M? +1)8%) ug(B.2"),

which contradicts (9.25) provided that ¢ is small enough.
The proof is complete. O

10. IMPROVING THE DIMENSION

In this section, we will state and begin the proof of Proposition 10.1. The
proof is based on an inductive scheme, and relies on results in §8 and §9; it
will occupy this section as well as §11 and §12.

Fix a small parameter 0 < ¢ < 1 and a large parameter t for the rest of
this section as well as §11 and §12 — in our applications, € will depend on
ko in (2.7) and ¢ will be chosen < log R where R is as in Theorem 1.1.

Put ¢ = £t/100. We will also fix a parameter 0 < x < £/10%, and put
B =e " and n? = B, see Proposition 10.1. We also recall that 0.9 < o < 1.

Let o denote the uniform measure on BZ’wa 529 where for any > 0,

H —
By ={u; :[s] <0} {ar:|7] <0}

For all d > 0, define vy by [@dyy = fol o(aqu,)dr for any ¢ € C.(H).
Recall from (8.10) that

Mg = Vg% - % Up* 0 % Uy
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where vy appears n times in the above expression.

10.1. Proposition. Let x1 € X, and assume that Proposition 4.8(2) does
not hold for the point x1, and parameters D > 10 and t. Let

dy = 100[48=31, dy = dy — [%1, and K =10"%4;";

as before, we put B = et and n? = .
Let ry € I(x1) and put o = agu,,x1, see Proposition 4.8(1). For every
dy < d < dy, there is a collection Zg = {€q; : 1 < i < Ng} of sets

Eai = E{exp(w)ya,i : w € Fy;} C Xy,

with Fg; C B(0,8), and (Agi, Mg;)-admissible measures pe,;, see §7.6,
where Mgy ; depend on di and X, so that both of the following hold:

(1) Let b = e Vet Letdy < d<dy, and let 1 < i < Ny. Then for all
w € Fy; and all z = hexp(w)yq; € Eq; with h € E\ 0104E, both of the
following hold:

(10.1) #(B(w,4binj(ya;))NFyi) > e Sup #(Be(w', 4binj(ya,i)) N Fai)
w'eFy ;

(10.2) fgd7i7b7R(e, z) < estngdyi’b(e,z) where R < 001t

(2) For every ¢ € C(X), all T < dil and |s| < 2, we have
(10.3) ‘/go(aTushxg) dpee.q, (h) — ch’i/QO(aTusz) dyédlfd) * pey ; (2)
dyi

< Lip(p)p™

where cq; >0 and 3, cai =1 — O(B"), Lip(yp) is the Lipschitz norm
of p, and k4 and the implied constants depend on X.

As it was mentioned, the proof is based on an inductive scheme. The base
case relies on Proposition 4.8(1) and Lemma 8.4. Indeed, combining Propo-
sition 4.8(1) and Lemma 8.4, the measure (o *14).x2 (up to an exponentially
small error) can be written as ) cjug, where pg, is an admissible measure
for all 4, and

fepi(e, z) < ePt for all ¢ and all z € &;.

This will serve as the base case of the induction. We will then combine
Lemma 8.9 and Lemma 9.1 to inductively improve this dimension while ob-
taining convex combinations similar to the expressions appearing in (10.3).
For technical reasons, Lemma 6.4 will be applied after every step to ensure
regularity of the sets F' which are used to define sets £ (again, we are allowed
to drop subsets of F' with exponentially small density).

We now turn to the details of the argument, beginning with some general
facts. In the next three lemmas, let

E=E{exp(w)y:we F} C X,
where F' C B(0, ).
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10.2. Lemma. Let z € &, and write z = hexp(w)y for some w € F and
heE. Then

(10.4) Ae v (e, exp(w)y) = Ye p(e, 2).

In particular, there exists some wy € F' so that

(10.5) 4e ap(e, exp(wo)y) > sup ve p(e, 2).
z

Proof. The proof is similar to the proof of Lemma 9.3. Let us write 2’ =
exp(w)y, ie., z = hz'. Let v € Igy(e, z). Then exp(v)z € &, hence, there

exist W, € F and h € E so that

(106 exp(v)z = hexp(iy)y = hexp(ib,) exp(—w) exp(w)y
' = hexp(i,) exp(—w)2z’ = hhy, exp(w,)z';

for some h, € H and w, € t so that

(10.7)  0.5[Jdy — wl| < [Jwol| < 2[jdy —w]| and  |lhy = I]| < C3]Jws]|,

see Lemma 3.2.
Using Lemma 3.3, recall that binj(z) < 0.01n, we conclude that

(10.8) [wy]| < 2Jvf| < 2binj(2).

This and (10.7) imply that ||h, — I|| < binj(z) < % where the implied
constant is absolute; hence, h! € E. Moreover, comparing the second
and the last term in (10.6), it follows that h, exp(w,)z’ = exp(w,)y. Since
w, € F,

exp(wy)z' = hy Lexp(w,)y € €.

We deduce that w, € Ig (e, z’). Furthermore, note that the map v — w,
is injective. Hence,

(10.9) #leap(e,2') > #lep(e, 2).
Recall now that 0.5inj(z’) < inj(z) < 2inj(2’), and
Yep(h,2) = (#Iep(h, 2)) - (binj(hz)) ™,
see (9.5). Therefore, (10.4) follows from (10.9).

To see the second claim, let Z be so that sup, ¥ (e, 2) = Yep(e, 2). By
the definition of £, there exists some w € F and h € E so that 2 = hexp(w)y.
The claim thus follows from (10.4). O

Cubes and the function 9. Recall that £ = {exp(w)y : w € F} C Xj,.
For a parameter M and every k € N, we let Qmi denote the collection of
2~ME_cubes, see §6.3. Let ky € N be so that

27 ko=l < pinj(y) < 270,
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10.3. Lemma. Let k1 > kg be an integer, and assume that for every integer
ko — 10 < k < kq, there exists 7. > 0 so that, for all Q € Qmg

(10.10) either 2MT =2 < (PN Q) <2M™ or FNQ =10.
Let z = hexp(w)y € € where h € E\ O10E. Then

Cs ™~ tsup e p(e, exp(w’)y) < e p(e, 2) < Cgsup e p(e, exp(w’)y)
w'eF w' eF

where Cg depends on M and the dimension.
Furthermore,

Yeple, z) < Casu% Ve p(e, exp(w)y)
w'e

holds true for all z € £.

Proof. The upper bound is a consequence of Lemma 10.2. Indeed by that
lemma, we have

Yeple, z) < 4 sup Ve (e, exp(w’)y).

w

To replace 2b with b, note that (10.10) and the definition of ¢ imply
sup g ap (e, exp(w’)y) < sup e p(e, exp(w’)y)
w’ w’

where the implied constant depends on M and the dimension. The upper
bound estimate for ¢ (e, z) follows.

As the proof shows, we did not use the condition on A for this bound,
thus the final claim follows.

We now turn to the proof of the lower bound. Since h € E\ dippE,
Lemma 9.3 applied with z, w and ¢ = binj(z), implies

#(F N Be(w, binj(2)/2)) < #Igp(e, 2)
This and the definition of v yield the following:
Veple,z) = (#lgp(e, 2)) - (binj(z)) ™"
(10.11) > (#F N Be(w', binj(2)/2)) - (binj(z)) ™"
> Su/p(#F N By(w',4binj(2))) - (binj(z))~ ¢,
where we used (10.10) in the last inequality.

Note that for all w' € F, we have inj(z)/2 < inj(exp(w')y) < 2inj(z).
Moreover, Ig (e, exp(w’)y) = Ig (e, exp(w’)y) where

& = (E\ OsE) - {exp(w”)y : w”" € F}.
Thus (10.11) and Lemma 9.3, applied with § = binj(exp(w’)y), imply
Yep(e, z) > sup Ve p(e, exp(w)y).
The proof is complete. U

We also record the following lemma which is similar to Lemma 8.1.
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10.4. Lemma. There exists C7 > 0 so that the following holds. Let 0 <
b < 5. Then for every m € N with e™ < b='/2, every |r| < 2, and every
z €& C X,, we have

Ve p(amur, z) < Crn~2e™™ - (Su,p Yep(e, 2')).

z

Proof. Let z € £, and let w € Igp(amuy, z). Then exp(w)amu,z € amu,&
which implies exp(Ad(a—mu—_r)w)z € £. Moreover, we have

| Ad(a—pmu—)w|| < 100e™inj(amu,z)b < 100e™b =: b'.
Since inj(z) > 7, we get that inj(2)d’/n > b, hence
Ad(a—mu—r)w € Iy p(e, 2).

This and the fact that e™b < b'/2 < 3 imply: w — Ad(a_pu_,)w is an
injection map from I¢ p(amuyr, 2) into Ig p sy (e, 2).

Now arguing as in the proof of Lemma 10.2, with b replaced by V' /n < 82,
we conclude that

#Ig,b’/n(e7 Z) < #(F N Bt(wz7 2b,/’l’])),

for some w, € F. Note moreover that Bi(w,, b /n) may be covered with
< n73e3™ boxes of the form B(w;,b/2); thus

#Ig,b(amura Z) < #Ig,b’/n(ea Z) < #(F N Bt(wm Qb//ﬁ))
<03 sup #(F N Be(w/, b/2))
< 77—363777, : (Sup #Ig’b(e, Z/)),

see also Lemma 9.3 for the last inequality.
Since inj(amu,z) > e~ "inj(z),

e p(h, z) = (inj(hz)b) ™ - (max{#]ab(h, z2), 1}),
and 0 < a < 1, the lemma follows. O

10.5. The dimension improvement lemma. As it was done before, let
k =107%d; < ¢/10%. Suppose

Eold = E{exp(w)yo : w € Foq}

satisfies the conditions in Lemma 9.1. That is, Foq C B(0, ) is finite with
#Foq > e™/10 and

(10.12)  # (Foia N Be(w, binj(yo)/10°)) >
e~ (#(Foa N Be(w, binj(yo)/10))).
Moreover, for all z € &4, we have
(10.13) feabr(e, 2) <7,
where T > 1, 1 <R < t/100 gnd b = e~ VEL,
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Let pg.,, be an admissible measure on £,q. By Lemma 9.1, there exists
Ly, C [0, 1] with
—k2t/4
0,1\ Ly, | <7 /4
and for every r € L, W there exists a subset
(10.14)  Eoayr C Eoa = | JEfexp(w)yo :w € F},  (E=E\ diosE)
satisfying e, (Eola \ Eold,r) K e~ Ft/64 and the following: for all 2’ € Eyar,
(10.15)  fa  uR, (acur, Z') < 200e L Y8R 4 QOOezagwgold’b(agur, 2');

where L1 = L L and Ry = R+ L1T*, and we assume 7T is large enough
compared to k, see also Theorem 6.2.

Let us put E—E \ O10352E, and define

(10.16) Eold = E.{exp(w)yg W E Fold}'

The following lemma is an important ingredient in the proof of Lemma 10.7;
the latter will be applied in every step of our inductive argument. Roughly
speaking, Lemma 10.6 states that for r € L‘u‘fold’ offsprings of ayu,Euq (see

§8.5) have improved coarse dimension, possibly after slight trimming.
Let us recall the notation

QY = {uy :|s| <8} - {ar : 7| < 7} - Uy
10.6. Lemma. With the above notation, let v € Ly, . Let (&', per),
& =E{exp(w)y:w € F'} C X,,
be an offspring of asurps,,,, see (8.21) and (8.22). Recall from (8.14) that
Qf. exp(w)y C apu,.Eqq  for allw € F',
Let F C F' satisfy that for all w € F, we have

(10.17) Q. exp(w)y N (agur.(Eoua,r N é'old)) £ 0,
and put € = E{exp(w)y : w € F'} and pg = @uﬂg.

Then for every z = hexp(w)y € € (where h € E and w € F), we have
(10.18) feb R (e,2) < 2f€01d,b,R1 (agur, z0) + 101[)571;(6, 2)

where zg € Egldy N Eoid is so that agu,zg = ho exp(w)y for some hy € Qf.

Proof. Note that

(10.19) feori(e,2) > vl ™ + 10¢e p(e, 2)
I

for every I C {v € Igp(e,2) : |jv]| < 0.1binj(z)} with #(Ig (e, 2) \ I) < Ry.
We will relate the first term on the right side of (10.19) to

fc‘fold,le (agur, 20)-
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Let us begin with the following computation. Let w # w; € F, and let
21 € Eola,r N Eyq and hy € Qf be so that hy exp(w1)y = apu,z1. Then

agurz1 = hyexp(wi)y = hy exp(wy) exp(fw)halagurzo
(10.20) = hihy ! exp(Ad(ho)wy) exp(— Ad(hg)w)asu,zo
= hlhalﬁ exp(W)agu, 2o
where h € H and o € t, moreover, by Lemma 3.2, we have

(10.21a) |h— 1] < C3p|w|  and
(1021b) 0.5 Ad(ho)(w — wn)| < [[&] < 21| Ad(ho)(w — w))]|.

Let v € Ig (e, z). Then z,exp(v)z € €, and we have

z = hexp(w)y = hhalagurzg = hayu, 2,
where h € Bf’ln, recall that zg € Ega,r N éold- Similarly, since exp(v)z € &,
there exist w, € F' and 2, € &q» N Eold so that
exp(v)z = k' exp(w,)y and  hyexp(wy)y = aptiy 2.

Thus, exp(v)z = hyapu,z, where z, € Eold,r N éold and h € Bfln. Hence
(10.22) agtyzy = hy texp(v)z = fL;l?Xp(v)BagEero
= hy thexp(Ad(h™1)v)apu, 2o

Applying (10.20) with wy = w, and hy = h,, we get that
(10.23) AplUp2y = hvhglﬁ exp(Wy ) gy 29

where h and @, satisfy (10.21a) and (10.21b), and hg, h, € QL.
Since (ﬁ, W) — fzexp(uf))aguTzo is injective over B{{)n x B(0,107n), we con-
clude from (10.23) and (10.22) that @, = Ad(h~!)v. In particular,

(10.24) [y ]| < 2Jv]].

Moreover, the elements {z, : v € Ig(e, z)} belong to different local H-
orbits, thus v — w, is well-defined and one-to-one.

Recall that £ C X,,. Assume now that |[v]| < binj(z)/10, then |, <
binj(z)/5. This estimate and (10.21a) imply that

lhy — 1] < C3plldnll < b5 < B2
recall that b < e™Ve! and e~¢, 3 > ¢ 001,
In view of the definition of &yq in (10.16), we have
Zy € gold,r N éold implies B{éoﬂz.zv C éold~
Moreover, hg, h, € Q} and [|h, — I|| < f2e~*. Therefore,

h_lhohglagu,,zv € apurEold,
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see (3.7). This and (10.23) yield
exp(Wy)aguyzo = H_lhohglagurzv € apu,Eog.
This and [|dy || < binj(2)/5 < binj(asurzo) imply @y € Iz (asur, z0).
Let now J C Iz i (agur, 29) be a subset so that

#Iéold,b(afu“zo) \J=R; and fé’om,b Ry (agur, o) Z ||| ~.
weJ

Put I; = {v € Igp(e,z) : ||v|| < 0.1binj(z),w, & J}. Since v +— b,
is a one-to-one map from I into I plaeur, z0) \ J, we have #1; < Ry.
Applying (10.19) with

I={velgyle, z):|lv|| <0.1b}\ 1,
and using (10.24), we conclude
fepri(e 2) <2fs g (arur, z0) +100¢ (e, 2),

as it was claimed in the lemma. O

Recall that d; = 100[(4D — 3)/2¢], x = 107%d;!, and £ = 0.01¢t, see
Proposition 10.1. From this point to the end of this section, we will assume

(10.25) T < /190,
Moreover, we assume that ¢ is large enough so that
(10.26) Ly = Lt < /100

— this amounts to ¢ > |loge|/e, later we will choose € to depend only on
ko in (5.1). We will also assume that 0.9 < o < 1.

The following lemma combines the results in this section, and will be
applied in every step of our inductive proof of Proposition 10.1.

10.7. Lemma. Let the notation be as in Lemma 10.6. In particular,
Li=Lc% and Ry=R+ LT~

Assume further that (10.10) (with some parameter M) holds true for Fyq.
Let wg € Fyq be so that

Ve a(€; exp(wo)yo) = sup e, (€, exp(w’)yo)-
Then we have the following.
1) If T > et 2 (e, exp(wo)yo), then
old’
(10.27) fepri(e,2) < e 060y 4 10¢ep(e,2)  for all z € £.

(2) If T < e/24e_ (e, exp(wo)yo), then both of the following hold
(a) For every 2 = hexp()yo € Eoq with h € E\ O105E, we have

(10.28)  feunr(e, 2) < e, b(e, exp(wo)yo) < Coe™ e, p(e, 2)
where Cg is as in Lemma 10.3 (which depends on M ).
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(b) For every z € £, we have

(10.29)  fepr,(e,2) < e 00 (/2 qpe, (e, exp(wo)yo)) + 10 b e, 2).

Proof. Since (10.10) holds true for F,)q, Lemma 10.3 is applicable with £yq;
we will utilize that lemma several times in the course of the proof.

Let z = hexp(w)y € &, and let 2/ € Egar N E,1q be so that apu,2’ =
hexp(w)y for some h € Q. By Lemma 10.6, we have

(10.30) fenRre (e,2) < 2féold:va1 (apuy, z’) + 1077[15,1,(6, z).
Moreover, since z' € Egq.r, we conclude from (10.15) that
(10.31)  fa g, (@etr, ') <200e™ LY 4 2006* s | (aguy, 2').

We give initial bounds for the two terms on the right side of (10.31). In
view of (10.25) and (10.26), we have

(10.32) 200e L Y8R < o070y

where we also used 0.9 < a < 1 and assumed ¢ = ¢t/100 is large enough to
account for the factor 200. R
As for the second term, using the fact that .9 C Egq, we obtain

200€2a£¢g L placur, 2') < 200e*ye, p(apuy, 2')

-3 60 "
(10.33) < 20007 7€ - sup Y (€, 27)

< /10 sup e, b (e, exp(w)yo);
w/

we used Lemma 10.4 in the second inequality and used (the final claim in)
Lemma 10.3 to replace sup,. by sup,,, we also used n > e 001 and assumed
t is large to account for the constants Cg and 200C.

We now begin the proof of the estimates in the lemma. Let us first assume

(10.34) T > e 4he,, b(e, expwo)yo),

where 9¢_, p(€, exp(wo)yo) = sup,, Ve, ,.5(€;, exp(w)yo), as in the statement
of the lemma. Then (10.33) and (10.34) imply that

2006z (agur, 2) < 10 sup e, (e, exp(w)yo)
(10.35) w'
< eet/lO . (e—st/2fr) < e—éfr

where we used ¢ = £t/100.
Thus, combining (10.30), (10.31), (10.32), and (10.35), one gets

feprile,2) < 2fg g (avur, ) +100g (e, 2)
<e 0T L ety 4 10¢g (e, 2)
< e 06y 4 10%¢ p (e, 2).
This establishes part (1).
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Let us now turn to the proof of part (2). Therefore, we assume
(10.36) T < 2 g, (e, exp(wo)yo)-
First note that by Lemma 10.3, if 2 = ﬁexp(lf))yo € €14 where h € E\ O104E,
(10.37) Cs™ ", 4 (e, exp(wo)yo) < Ve, q0(e,2) < Cothe,q p(€, exp(wo)yo).-
We conclude that
feaanr(e:2) T < e e (e, exp(wo)yo)
< Ceeft? - ae, b, 2),

where we used (10.13) in the first inequality, used (10.36) in the second
inequality, and used (10.37) in the final inequality. This gives (10.28).
We now turn to the proof of (10.29). Recall from (10.32) and (10.33),

fe. bR, (actr, Z') < 200e LT8R 4 20062a[1/1501d’b(a5ur, 2
<e 0T+ €€t/10¢gold,b(€, exp(wo)yo)-
In view of (10.36) and since ¢ = €t/100, we have
e 0T 4 10, (e, exp(wo)y) < e (/2 e, , (e, exp(wo)yo) ).
Finally, using (10.30) and the above, we conclude that
fepri(e,2) < 2fg g, (acur, ") +10¢¢ (e, 2)

< e M0 (2 gy, (e exp(wo)yo)) + 108 p(e, 2).
The proof is complete. (I

11. AN INDUCTIVE CONSTRUCTION

As it was mentioned, the proof of Proposition 10.1 is based on an induc-
tive construction. We will carry out this construction in this section and
complete the proof of Proposition 10.1 in the next section.

Recall that 0 < £ < 1 is a small parameter (in our application, ¢ will
depend on k7, see (13.1)) and ¢ > 1 is a large parameter (which will be
chosen to be =< log R where R is as in Theorem 1.1). Recall also that

(11.1) K =10"% 1 <107 %,

where d; = 100[(4D — 3)/(2¢)], see Proposition 10.1.

Set b=e Vel B =t and n? = B.

From now until the end of §12, we fix some M so that
(11.2) 27M(D+1) < k/100 and 6M < 28M/100,
That is, conditions in (6.4) are satisfied with x = 107%d; ! and mq = D; note
that (D 4 1) < 1075¢. In particular, Lemma 6.4 is applicable with M and
any F C B.(0, ) satisfying e"/? < #F < ¢* and (6.2) with T < e(P+11,
This lemma will be applied, several times, in this section.
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11.1. Consequences of Proposition 4.8. Let x1, ¢, and D be as in Propo-
sition 10.1. By our assumption, Proposition 4.8(1) holds for these choices.
Recall that zo = agiu,,©1 where r1 € I(x1). Then the map h — hxo is
injective over BZ’H -ay - Uy, see Proposition 4.8(1). In particular, Lemma 8.4
may be applied with xy, and yields the following: for every ¢ € C°(X),
every 7 > 0, and all |s| < 2,

(11.3) ‘/ (arushzs) d(o * vg)( ch/ arusz) due, (2)

< BLip(p)

where the implied constant depends only on X.
Recall from (8.6) that & = E.{exp(w)y; : w € F;} where y; € X3, /5. In
particular, & C X,,. Recall also from Lemma 8.1 and Lemma 8.2 that

(11.4) B! < #F; < p36L.
Moreover, in view of the definition of £ and Proposition 4.8(1), we have
(11.5) fepale,z) < et

for all z € &;.

11.2. Regular tree decomposition of F;. We will decompose F; into
subsets which are homogeneous in all relevant scales. First note that in
view of (11.5) and Lemma 9.4 applied with m = 4, we have

(11.6) Gr,,r(w') < 1050 for every w' € F

where for all w € F;, we put F; ,, = F; N B(w, 4binj(y;)).
Let k1 > ki be positive integers defined as follows:

(11.7) 2ki0 < (binj(y;)) 7t < 280 and 2% < 105ePt < 2kt

Let M be as above, see (11.2). For every i as above, apply Lemma 6.4 to
F;. Then we can write

(11.8) Fi=FJU F)
where #F, < gy (#F;). Furthermore, for every i and ¢ we have
(11.9) Bllet < B2 (#F;) < #4F; < #F, < B3,

(where we used (11.4)), and for every k; o — 10 < k < ky, there exists some
75, so that for all Q € Qumy we have

(11.10) cither 2MT=2 < #FNQ <2M7k or FFNQ =0.
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11.3. Initial dimension. Put & = E.{exp(w)y; : w € F;} for all i and <.
Then both of the following hold

(1) Let z = hexp(w) € & where h € E\ 0104E, then
Cs! sup 4gs p (e, exp(w’)y) < s p(e, 2)

F
(11.11) e

< Cgsup es p(e, exp(w)y).
w'€F;

(2) For all z € &, we have
(11.12) fespole, z) < ePh.

Note that (11.11) is a consequence of Lemma 10.3, and (11.12) follows from
(11.5) since & C &. We also note that the second inequality in (11.11)
holds true for all z € £;, see Lemma 10.3.

With this notation, (11.3) may be rewritten as follows: for all 7 > 0 and
|s] <2, we have

(11.13) ’/ (arushxa)d i o0(h ZZCN/ (arusz) dugic(z)

< BLip(p),

here ¢;c = cipg,(€;); pes denotes pgles normalized to be a probability
measure; for any integer n > 0, we put i ¢, = Vg * - -+ % Vg x 0 * 14 Where 1y
appears n-times; and the implied constant depends only on X.

For notational convenience, let us write

(1114) {(5faM£;) :ivg}:{(gCnu’C) 34—62},

for an index set Z.

11.4. Random walk trajectories: one step. Beginning with & for
some (g € Z as above, we will use Lemma 8.9 to construct sets £. Then
Lemma 10.6 implies that the estimate on the corresponding Margulis func-

tion exponentially improves after each step.
Let us begin by fixing some notation. Let {y € Z be as above. Put

Ago = {CO}a
and recall (5C0> “540) from above. Using an inductive construction, we will

define A5 and (£(Z), ug(z)) for all n > 1 and all = € AY.
Let us begin with the definition in the case n = 1. Put

(goldv :ué'old) = (gCov :Ufgo ) .

In view of (11.12) and (11.10), (Eola, €., ) satisfies the conditions in Lemma
9.1 with ¥ = eP*, R = 0, and ¢ depending only on M. Recall also that
0 < k < g/10% By Lemma 9.1, thus, there exists Ly, C [0, 1] with

10,1\ Ly, | < 7%,
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and for every r € Lﬂfold’ there exists a subset

Eold,r C gold = U E.{exp(w)yo cw € Foa}, (E = m)
satisfying pe_, (Eotd \ Eoldr) K e~ "t/64 and the following: for all z € Eqq,,
(11.15)  fe g, (aeur,z) < 200Lye~riHsr 4 20062a£1/1501d7b<agu7«, 2);

where Ly = L% and Ry = 1 + L1 T". We assumed Y is large (depending
on k) and the fact that R = 1 in the above bound, see also Theorem 6.2.

Recall that di = 100[4D2€_3L and fix a maximal e~%%1‘_separated subset

Leya = {rold,q} C Ly,
let
{(gQMSg) QIS g),ro}

be the set of offsprings of apu,,Eod, see (8.21) and (8.22). In particular,
& = E{exp(w)y¢ : w € F¢} where

old ©

For every 79 € L¢_,,

Fe C {w € B:(0,0) : Qf.exp(w)yg C agurougold},
and y¢ € Xg, /2. Moreover, (8.18) implies that for every ¢ € 2/

¢os70?
(11.16) B (#Foa) < #F; < B (#Foa).

Let us put E = E \ O10052E, and define

Eold = E{exp(v)yo : v € Fyiq}-

Then, we have
(11.17) 116,14 (Eotd \ (Eotd,rg N Eold)) < B+ e o,

Let Fepy, = {w € F Qf.exp(w)yg N apiiy, (5old,r0 N éold) = @}. If
#F¢ ry <1070 - (#F;), replace & with

E{exp(w)yc : w € F¢ \ F¢ o}

otherwise, discard the set & entirely. Such replacements will increase the
set agtir,Eold\ UC Ec. But thanks to (11.17), this doesn’t affect the properties
that we will need later, or more precisely the inequality (11.26) in Lemma
11.6 below.
Let ZéOa'rO C Zé/O:TO
Abusing the notation, for every ¢ € Zéwo, we denote F¢ \ F¢r, by Fr and
denote E.{exp(w)yc : w € F¢ \ F¢ry} by &E.

Thus, we obtain a collection {(&¢, pe.) : € Z,
ing: If ¢ € 2, and w € Fg, then

be the set of indices which survive the above process.

} satisfying the follow-

0,70

QF. exp(w)ye N agtiry (Eord,rg N Eota) # 0;
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moreover, the following analogue of (11.16) holds

(11.18) 0.58” - (#Foq) < #F; <28° - (#Fa).
With this notation, define
(11.19) BY" = {(C0,70:Q) : 70 € Ley,C € 2y 0o}

and for every Z = ((o,70,() € B%O, put
&= = E{exp(w)yz : w € F=},

where y= = y; and Fz = F¢.
11.5. Lemma. Let E = (g, r0,¢) € B%O, and write F = Fz, y = y=, and
& =E&=z. Let wg € Fy, be so that

e, b(e: exp(un)yo) = sup e, p(e. exp(w)yo)-
Then one of the following properties holds:
(1) If €P' > /24 (e, exp(wo)yo), then
(11.20) fenry(e,2) < e 0Pt L 100g (e, 2)  for all 2 € €,

where Ry = 1 + LrLerlt,
(2) If Pt < eat/2wggo7b(e,exp(wg)yo), then both of the following hold

(a) Let z = hexp(w)yo € &, where h € E\ 0105E, then

(11.21)  fe wrle,2) < P ple,exp(wo)yo) < Coe™ e, ble, 2),

(indeed the first inequality above holds for every z € &, ).
(b) For all z € £, we have

(11.22)  fepr, (e, 2) < e 082 ghe y(e,exp(wo)yo)) + 10¢e b(e, 2).
Indeed case (2) does not hold and we are always in case (1).

Proof. Note that Pt < /190 Moreover, in view of (11.10) and the fact
that for every w € F¢,, we have

QY. exp(w)y N agtyy (Eotar N Eola) # 0,

Lemma 10.7 is applicable with &£ and £. Applying loc. cit. with &, and &
thus implies all but the final claim in this lemma.
To see the final claim, note that by (11.4), we have

e 1pe, ble, exp(w)yo) < /7 - (2pb~) - (B~%€’) < €

Moreover, D > 10, see Proposition 4.8, hence, case (2) cannot hold. O
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Let Yo = ePt. For every Z = (g, 70,¢) € Bgo, define Tz ; as follows: if

e 066Dt > sup ez p(e€, 2),

z€E=
then we put
(11.23) Tz, = e /2P,
Otherwise, i.e., if e=0-6¢Pt < 10 SUp,ce. Ve p(e, 2), then we put
(11.24) T=1 = 20 sup ve (e, 2).
z€E=

11.6. Lemma. The following three statements hold:
(1) For every Z = ({p,70,() € Bgo, we have Y=1 < ePt.
(2) Let = = ({o,70,¢) € Bgo, then

(11.25) fezpri(e,2) < Tz,

where Ry = 1+ LrLerPt,
(3) Letrg € Eggo. Then

[ elare) dasinie, )= 3 cxr [ olarunz) dne, 2)]
(11.26) B0
< max{nl/z, e‘”Qt/M} Lip(¢p),
for every ¢ € C°(X), every 0 < 7 < 2d14, and all |s| < 2,
Proof. The claim in part (1) is clear if Tz = e~/2¢P!. Assume thus that

TEJ =20 sup wg:,b(ea Z)'
2655 -

Then by the definition of 1, (11.4) and (11.18), we have
Tz < b % " (#Fx) < €,

where we also used b = e~ Vet and n> e~ 001t The claim follows as D > 10.
Part (2) follows from the definition of Tz ; and Lemma 11.5.
To see part (3), apply Lemma 8.9, with dy = 3d;¢ (note that 7 + ¢ < dy)
and rg. By that lemma thus

[ el dlaniie, )= 3 e [ plan) dus, ()
< max{n"/?, e~ %} Lip(p),

0,70 "
We can replace the summation over Z[ = by summation over Z/
K b

(hence over B%O) in view of (11.17) and the definition of Z O

¢osm0”

where the sum is over { € Zé’
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11.7. Regularizing Fz. In preparation for the next step of the inductive
construction, we will refine the set B$® by decomposing Fz (for E € BY)
into sets satisfying estimates similar to those in (6.7).

To that end, let = = ({o,70,(1) € B%O, and let F = F=, y = y=, and
&€ = &=. In view of Lemma 11.6(2) and Lemma 9.4,

Gr,r (W) <100z for every w' € F,

where Fy, = F N B(w, 4binj(y)).
Let k1 > kg be positive integers defined as follows:

(11.27) 2k < (binj(y)) P < 2P and 20 < 1057z < 2MtL
Let M be as above, see (11.2). Applying Lemma 6.4, we can write
(11.28) F=F{]JUF)

where #F' < V4. (#F) and #F;, > 2 (#F). In view of (11.18), we have
0.58M - (#F,) < B2 - (#F) < #
< HF < 2B° - (#F,),
and for every kg — 10 < k < k1, there exists some 7, = T]i so that
(11.30) either 2ME =2 < NQ <2M™* or FNQ =0,

for all @ € Omy.
Let us also note that combining (11.29) and (11.9), we conclude

(11.29)

1
(11.31) 552% < #F < 2B
Let Z¢,r, be an enumeration of {(¢',1) : (" € 2,1 € K¢y ro,cry} Where
for every = = (p,70,(’) € Bgo, we let
Kz ={l:F asin (11.28)}.

If ( € Z¢,r, corresponds to (¢',1), put yo = ye and Fr = (F¢);, see (11.28).
Define

(11.32) AL = {(Co,70,C1) 70 € Ley 61 € Zeor bs
and for every = = ({o,r0,(1) € A§07 put

&= = E{exp(w)yz : w € F=},
where y= = y¢, and F=z = Fg,.

11.8. Lemma. Let = = ({g,r0,(1) € A%O, and suppose (1 correspond to (¢',1)

as above. Put Yz = Y=y where ' = ({o,70,() € Bgo. Then both of the
following hold:

(1) We have
(11.33) JezpRri(e,2) < Tz,

where Ry = 1 + Lr~LerPt,
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(2) Letro € Le . Then

(11.34) ’/ SO(aTuS'Z)d(azuro,uggo)(z)—AXE;CE / o(arusz) d,uga(z)‘

< max{nl/Q, 67”%/64} Lip(y),
for every ¢ € C°(X), every 0 < 7 < 2d1¢, and all |s| < 2,
Proof. Part (1) follows from Lemma 11.6(2) and the fact that &= C &=.
Part (2) follows from Lemma 11.6(3) in view of (11.28) if we put
cz = czrpe,, (E=)

and use the fact that ue_, is admissible, see Lemma 8.8. O

11.9. Random walk trajectories: n-steps. We now assume that AL is
defined for some n > 1, and will define AfLOH. The construction is similar
to the case n = 1. Indeed, as it was done in that case, we will define Ag‘)ﬂ

using the collection of 2n + 3 tuples

(Cov LA TR C’nv Tn, Cn-i—l)
satisfying the following properties

L é = (C07T07 .. -’Cn) S A%O)
o, € Eg(é), and

® (nt1 € Z?”L,Tn7
where Eg(é) C L

for Lg(é), and

—6d1

is a maximal e -separated subset, see Lemma 9.1

He@)

! 1!
Z - Zn’rn

n,rn

where Z; . is the index set enumerating the offsprings of ayu;,, & (2), see (8.21)
and (8.22) for offsprings.
We now turn to the details: Recall that 0 < k < 5/106, for all m € N put

(11.35) Ry =1+ mLk TerPt

see Lemma 11.8 for Rj.
Let =2 = (Co,70,.--,Cn) € AL, and put

(golda ,U’So]d) = (gé) :U’gé)a
note that £z = E.{exp(w)yz : w € Fz}, where
(1136) 2inﬁ11(n+1)et < #Fé < 2n58n73et,

see (11.4) and (11.31).
Then, by inductive hypothesis, we have

(11.37) fSé,b,Rn (e, z) < Tén for all z € (c/é,
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where Tz is defined inductively. Recall that To = ePt also see (11.23)
and (11. 24) for the definition of Tz . In particular, we have

(11.38) T-

<P
n — ’

see Lemma 11.6(1).
Recall that d; = 10022

0=3]. Fix a maximal e~ 0%

-separated subset
Leyg C Lugold'

For every r, € Lg ., let

old?
{(Epe):Ce 2L, }
be the set of all offsprings of asu;,,Eq = asur, £, see (8.21) and (8.22). In
particular, & = E.{exp(w)y¢ : w € F¢} where
Fe c {w e B:(0,8) : Qf . exp(w)y: C Ay, P }

for some y; € X3, /0.
Moreover, (8.18) implies that for every ¢ € ZZ L5 we have

(11.39) B (#Foa) < #F; < B% (#Fon).

Let us put E—E \ D100p2E, and define

gold = E.{exp(v)yold NS Fold}'

Then, we have

2
(11.40) 16 (Eota \ (Eorar, N 501d)) < B+ e w6

Let F¢,, = {w € Fe: Qf.exp(w)yg N aguy, (Sold,rn N E:'Old) = @}. If
#Fe, <107 6 - (#F¢), replace & with

E{exp(w)yc : w € F¢ \ Fep, }

otherwise, discard the set & entirely. As in how (11.17) was used, the
inequality (11.40) assures that such replacements causes no damage later.
Let Z.  C Z! be the set of indices which survive the above process.

2,rn Z,rn

Abusing the notation, for every ¢ € Z’ , we denote F¢ \ F¢ ., by F¢ and

denote E.{exp(w)y¢ : w € F¢ \ F¢r, } by EC
Thus, we obtain a collection { (& ugg) (e Z’ } satisfying the follow-

ing: If ( € ZL . and w € F¢, then

Q. exp(w)yc N aguyr, (Eoid,rm N Eola) # 0;

moreover, the following analogue of (11.39) holds

(11.41) 0.58% - (#Fpa) < #F: < 26° - (#Fq).
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With this notation, define

é = C07T0,...,<ﬁ EAA%%
(1142) Bf&,l - {(CO;TO)' . -aCnﬂ%vC) : 7'75 c ﬁgé,c S Z)é '

=,T'n

For every E = ((o,...,Cn, T, () € Bgoﬂv put
EE — E,{exp(w)yg LW E FE},
where y= = y¢ and Fz = F¢.

11.10. Lemma. Let == ((o,...,Cn,Tn, () € BS’H, and write
E=(Co,---1Cn), F=Fs, y=yz, and & = &=.
Let wo € Fz be so that
Ve v(e; exp(wo)yz) = S;llp Pe. ble, exp(w’)yz).
Then one of the following properties holds:
(A-1) If Té,n > est/2¢gé,b(e,exp(wg)yé), then
(11.43) Je bRy (e, 2) < e_O'MTém + 10¢gp(e, z)  for all z € &,
where Ry11 =1+ (n+ 1)L~ LePt see (11.35).
(A-2) If Tz, < est/2¢gé,b(e,exp(wg)yé), then both of the following hold
(a) Let z = hexp(w)yz € Ez where h € E\ O104E, then
(1144)  feo bR (e, 2) < e, p(e, exp(wo)yz) < Coe™/ e y(e, 2),

(indeed the first inequality above holds for every z € Ez).
(b) For all z € £, we have

(11.45)  fepRro (e 2) < e 060 (eat/2- ¢gé7b(€, exp(wo)yé)) + 10¢¢ p(e, 2).

Proof. Recall that Yz < eP’, see (11.38); we have e"P! < /190 More-
over, note that for every w € F:, we have

Q;I eXP(w)y N AUy, (gold,rn N é‘old) 7& @
Moreover, using Tz, < ePt again, we have
R, + LR_LTgm <Rpy1.

The claims in the lemma thus follow from Lemma 10.7 applied with &=, £
and R =R,,. O

Let Z = (Co,- -y Cny7ny €) € B, | and put E = (Co, ..., ). We define
Y= 41 as follows: If case (A-1) holds and

e_O'GETg’n > 10 sup ez p(e, 2),
z€€=



EFFECTIVE EQUIDISTRIBUTION FOR UNIPOTENT FLOWS

then we put

(11.46) Yo =e Te -
If case (A-1) holds and e*O'GeTé’n < 10sup,ce_ Ve (e, 2), then we put
(11.47) Tz nt1 = 20 sup Ve p(e, 2).

z€E=

If case (A-2) holds and

o—0-6¢ (est/2, wgéyb(e, exp(wo)yé)) > 10 sugp e p(e, 2),
zelz

we put
(11.48) Yenr1 = e 2 (52 ahe_ (e, exp(wo)yz)).
If case (A-2) holds and

670'68 (eEt/2' wgé,b(e7 eXp(w())yé)) < 10 Suép ¢85,b(€> Z):
zelz=

then we put

(11.49) Y= n+1 = 20 sup e (e, 2).
z€E=

11.11. Lemma. The following three statements hold:

(1) For every Z = (Co,...,C(n,Tn,C) € BfLOH, we have Yz 41 < el
(2) Let == (Coy- -y CnyTnyC) € BfLOH, then
(11.50) ng,b,RrH»l (6,2’) < TE’nJrl’

where Ry11 = 1+ (n+ 1) Le~LerPt,

7

(8) Let = e AY and let r, € Le.. Then for every ¢ € Cg°(X), every

0 <7 <2di4, and all |s| <2, we have

) ‘/@(arus.z) d(agurmugé)(z)—ZcE/gp(aTuSz) dpe_(2)

< max{n'/?, =%} Lip(y),

(11.51

where the sum is over ZL . » and for every ¢ € Z’&T , we let

== (CO,T’O, B ;Cnyrnvg)'

Proof. Let = = (o, ...,C(n,"Tn,¢) and put E = (Coy---,Cn). The claim in

part (1) follows from (11.38) if Yz, 11 = B_Z/2Tén.
We now consider the other two possibilities. First suppose that

Yo i1 = 20 sup ez ple, 2).
z€E=

Then by the definition of ¢, (11.36) and (11.41), we have
Yoyl KOO0 - (#Fz) < e,
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0.01et

where we also used b = e~ Vet and n>e The claim in this case also

follows as D > 10.
Finally, let us assume

Tenp1 = e 2 ("% sup voe_p(e, exp(w)yz)).

Then again using the definition of ¢, and (11.36), we have
T < 27~ (#Fz) < e*,
which completes the proof of part (1).
Part (2) follows from the definition of Y=, and Lemma 11.10.

To see part (3), apply Lemma 8.9, with dy = 3d;¢ (note that 7+ ¢ < d)
and 7. The claim then follows from Lemma 8.9 and (11.40). O

11.12. Regularizing F=. Similar to what was done in §11.7, we will define
the set Af;O_H by decomposing Fz (for = € szo+1
similar to those in (6.7).

To that end, let = = (Co, -, Gus Ty Got1) € B, 1, and let F = Fz, y = y=,
&€ = &=. In view of Lemma 11.11(2) and Lemma 9.4,

) into sets satisfying estimates

Gr, Ry (W) < 106T57n+1 for every w' € F,,

where Fy, = F' N B(w, 4binj(y)).
Let k1 > ko be positive integers defined as follows:

(11.52) 2% < (binj(y))~! < 2ko+t and 28 <1097z, < 20!
Let M be as above, see (11.2). Applying Lemma 6.4, we can write

(11.53) F=F|JUHR)
where #F' < Y4 (#F) and #F; > B2 (#F). In view of (11.41), we have
0.56" - (#Fz) < B2 (#F) < #5,
< H#F <28°- (#F),
and for every kg — 10 < k < kq, there exists some 7, = T,lC so that
(11.55) either 2M=2 < NQ<2M™* o FNQ =0,

for all Q) € Omg.
Let us also note that combining (11.54) and (11.36), we conclude
1

on+1

(11.54)

(1156) /811(77*+2)€t < #P"l < 27’1-&-1/88(71-&—1)—3615.

Let = = (Coy---5Cn) € A%O, and let r, € Lg.. We let Zz ~ denote an
enumeration of
AN / _
{({,1): (' € Zé,rn’l € K=}
where for £ = (Co, - -, Cny7n, (') € B, |, we let Kz = {I: Fj as in (11.53)}.
If ( € Zz, corresponds to (¢',1), then we put yc = yor and F¢ = (Fer)y,
see (11.53) and the discussion leading to Lemma 11.10.
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Define

Tn € ﬁgé, Cnt1 € Zéﬂ"n

S o
(11.57) A?%O—H = {(CO,TO, cois Gy Ty Cpg1) + (Cos 705 - -+, Cn) € AR, } 7

and for every Z = (0,70, - Cny Tns Cnt1) € AfLO_H, put
&= = E{exp(w)y=z : w € F=},
where y= = y¢,,, and Fz = F¢, ;.

11.13. Lemma. Let & = ({0,705 - CnsTn, Cnt1) € A . Suppose Cnr1
corresponds to (¢',1) as above, i.e., ' = (Cg,ro,...,Cn,rn,C) OH and
l € Kgr. Put Yg 41 = Yerpp1. Both of the following hold:

(1) Let Z = (0,704 5+ Cns Ty Cnt1) € Af;oﬂ, then

(11.58) Je=bRusi(€,2) < Tz pq,

where Ryy1 = 14 (n+ 1)Le~FerPt,
(2) Let = = (Co,70,...,Cn) € AL and let r, € Le.. Then for every ¢ €
CX(X), every 0 < 17 < 2d1¥, and all |s| < 2, we have

‘/ Arlg.2 agum,ug_ ZC”/ arusz) dpe= (2 )‘

< max{n1/2 e "® t/64} Lip(yp)

(11.59)

where the sum is over Z we let

_T;

E= (CO:T()a e 7Cn7rn7c>'

Proof. Part (1) follows from Lemma 11.11(2) and the fact that &= C &=.
As for part (2), we again use the above notation, i.e.,

== (COJ’O, B ;Cnyrnvg)'

and for every ( € Z=

"'T"

where = = (C0y70y -+ -5 Cn)- Suppose ¢ corresponds to ({’,1) as above, that is,
E = (C0,70s--+,CnyTn, () € OH and [ € K=/. Then part (2) in the lemma

follows from Lemma 11.11(3) in view of (11.53) if we put
cz = czrpie, (Ez)

and use the fact that pe_, is admissible, see Lemma 8.8. O

12. FINAL SETS AND THE PROOF OF PROPOSITION 10.1

We will complete the proof of Proposition 10.1 in this section. Let (o € Z,
see §11.1 in particular (11.14), and let A% be defined as in (11.57).

Recall that 0 < £ < 1 is a small parameter (in our application, ¢ will
depend on k7, see (13.1)) and ¢t > 1 is a large parameter (which will be
chosen to be < log R where R is as in Theorem 1.1); let b = e~ Ve Recall
also from Proposition 10.1 that we fixed

12.1 k=10"%"1 <107
1
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where d; = 100[(4D — 3)/(2¢)], see Proposition 10.1.

Set B = e and n? = 8. Recall from (11.35) that

R, =1+ nLx Le Pt

In particular, so long as t is large enough, we have
(12.2) Ra, = 1+ dy L~ EerPt < 0018t

Recall also our assumption that Proposition 4.8(1) holds, and that

Ty = agiy, T1

where 1 € I(z1). Then zo € Xy, and the map h ~ hxs is injective over
B;’H - ay - Uy, see Proposition 4.8(1).

Motivated by the conditions in (A-1) and (A-2) of Lemma 11.10, we make
the following definition.

Definition 12.1. Let dy :=d; — {ﬁ] where dy = 100[4D—31, and let

Ve 2e
do < d<dj.
Let (p € Z. An element = € Ago is said to be final if
(12.3) T=4 < ect/2 sup Ve p(e, exp(w)y=),
’U)GFE

where &z = E.{exp(w)y=z : w € Fz}.

It will be more convenient to distinguish elements of Afl‘) satisfying (12.3)
for d < ds as well. Thus, for every 0 < d < dy, let

Aflo ={E¢ Aflo : E satisfies (12.3)}.
Note that if dy < d < dy, then = € Ago if and only if it is final.
12.2. Lemma. If = € Ago, then

fezpRale;2) < Coe™ ez e, 2)

for all z = hexp(w)y= € E= with h € E \ O10pE.
Proof. Let z be as in the statement. Then by Lemma 10.3, we have

sup ez (¢; exp(w)y) < Covez ple, 2)-
Moreover, by (11.25), we have

febry(e,2') <Tzg4, forall 2 €&z
The claim in the lemma follows from these, in view of (12.3). O

We fix the following notation: Let 0 < d < dy, for any

E= (C07T07 . . ')Cd—lvrd—hgd) S ACO7
and 0 <n <d, put Z,, := (0,70, --,Cn)-
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12.3. Lemma. Let Z € Ay, and let dy < d < di. Let ' € A be so that
=/

Ey, = 2. Then at least one of the following holds.

(1) There exists da < mn < d so that Z), € A%
(2) There exists d < d' < d; and E" € AC, so that =) = =/
In particular,

=/

(3) For every = € Afl‘; and every SIS /-\fl? with =, = E, there exists
dy < d < dy so that 2 € AY.
Proof. First note that (3) is a direct consequence of (1)-(2). Thus it is

enough to prove the latter.
For every = € A% 4,0 but

(12.4) past(Z {nl <dy:E, € ACO}

if such n; exists, otherwise put past(:) = (); in the former case, we will write
past(Z) = {n1 < --- < nyz}. It follows from the definition (see (12.3)) that
if n € past(Z), then

Tz, n < e=t/2 sup wgan,b(e, exp(w)ys,,).

w

Let d and ' € Ago be as in the statement; note that for every d < d’ < dy,
we have
=" €AY =T} 40,
see the discussion leading to (11.57).
We will consider two cases, past(Z) = @ and past(Z) # (), separately
(though the argument in both cases is similar).

Case 1. Assume that past(Z) = ().
Suppose that the claim in the lemma fails. Then for every =" € Afg with
B =2 and all 0 < n < d; we have

(12.5) Yoo > e/ sup e, (e, exp(w)yzy).
w n

For 0 < n < dy, (12.5) follows from past(") = and EgQ =H;fordy <n<

dy, it follows from the fact that = ¢ AY, see (12.3).
We will show that (12.5) leads to a contradiction. To that end, put

E" =E=n = E{exp(w)y :w e F"}.
Recall that £ = 0.01et and dy = 100[45=2]. Thus > @ and

(12.6) e~ld1/2,Dt < —(AD=3)t/4,Dt  3t/4

In view of (12.5), we have (A-1) and (11.46) hold for all 0 < n < d;. That
is Tz, = 6*5/2'1’5%717”_1 for all 0 < n < d;. Since Yo = eP?, we conclude
from (12.6) that

(12.7) TE”,dl = e~ ht/2Dt < e3t/4,
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We will compare (12.7) with a lower bound for )¢~ ;, which we now obtain.
In view of (11.36), we have
#F// > (05)d1 511(d1+1)€t.
This and (6.8) imply that for all w € F”,
(128)  denple,exp(w)y) = eV (HF) > e WVEHGHATIZE > O

where in the last inequality we used 8 = e~ and 100d;x < 0.01, see (12.1).
We conclude from (12.7) and (12.8) that

Y=r g, < suptpen p(e, exp(w)y).
w

This contradicts Z” ¢ Afl?’ and completes the proof in this case.

Case 2. Assume that past(Z) # (.

Let us write past(Z) = {n1 < -+ < nyz}, and let 2’ be as in the state-
ment. We will write n,, = ny,. for simplicity in the notation. Assume
again that the claim in the lemma fails. First note that n,, < do otherwise
part (1) would hold with n = da, which contradicts our assumption. Similar

to (12.5), for every =" € Ag(i with 2 = =’ and all n,, <n < d; we have
(12.9) Yep > e“t/? sup Ve, b(e, exp(w)yzr).
w n

="

For n, < n < dy, this follows from past(Z) = {n1,...,n,} and =) = =;

for dy < mn < dj, it follows from our assumption that =/ & A%O
As in Case 1, we will show that (12.9) leads to a contradiction. Put

E" = E=n = E{exp(w)y : w € F"}.
We will now inductively estimate Yz, for n, < mn < d;. Since Z,,, =
= e AL and B/ ., & Aszerl (see (12.4)), we conclude that (A-2

—Nm “Nnm+

and (11.48) are used to define Yz» ;. Thus there exists some wy €
nm+1:7m
Fz, = ~so that

_ 7@/268t/2¢5:

Engm

b(eu exp(wo)yanm)
< 26—&/26515/27,’—&()—0& X (#FEnm)

where we used the definition of v in the last inequality.
We now turn to Yzu, for n > ny, + 1. In view of (12.9) applied for n
and n — 1, we have (A-1) and (11.46) hold. Thus

Yeyn=e"Yar 1 forallng+1<n<d.
This and (12.10), imply that
(1211) TE”,dl < eie(dlinm)/2 . (zeet/anabfa) . (#anm)

We will compare (12.11) with a lower bound for ¢~ ; which we now obtain.
In view of (11.54), we have

#F// > (0‘5)d1511(d1—nm) . (#FEnm)

(12.10) Trmtl
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This and (6.8) imply that for all w € F”,

19 Ve (e exp(w)y) > e VI HE)
( . ) > 6—4\/Et(0‘5)d1611(d1—nm) X (#FE )
Since Z" ¢ Afﬁ, we have
Yara, > % sup ven p(e, exp(w)y).
w
Combining this with (12.11) and (12.12), we conclude that
7€(d17nm)

T (2 F b0 - (#Fs,,) 2 Yo

et
> e2 sup Yer p(e, exp(w)y)
w

v

6%6_4‘/gt(0.5)d1ﬁ11(d1_nm) . (#FEnm )

Comparing the first and last terms, cancelling #F=, ~and e“t/2 from both

11(d1—nm)

sides, and multiplying by 8~ and replacing 2171 by 71,

e—é(d1—nm)/2/6—ll(d1—nm)—l . (n—ab—a) > 6_4\/&.

Recall now that 8 = e " 0 < k < £/10%, see (12.1), and that ¢ = 0.01&t.

Therefore,
e~ tdr=nm)/2 g 11(d1—nm)~1 < o—H(dr—ny)/3

This and the above thus imply that
(1213) e_g(dl_nm)/i; . (n—ab—a) 2 6_4\/gt.

However, £ = 0.01et and dy — n,, > dy — dy > 10*/y/z. Therefore, we have
{(dy — nyy) > 1004/ct. This, together with n > et and b = e~V implies

o~ Udi—nm)/3 (nfabfa) < e—30VEt
which contradicts (12.13) and finishes the proof in Case 2 as well. O
In view of this lemma, let Ag‘; &y = Ag‘;, and for every dy < d < dy, let
Afig,d ={E¢€ Afl‘) L E, & A for any dy < n < d}.

Let Ngo = #Agg g For all d as above and all 1 <i < Ngo, let &£ and fe
denote EEZ and pg_, , respectively — we note that 52 and Igi also depend on
—d

(o, however, this abuse of notation will not cause confusion in what follows.
12.4. Lemma. For every ¢ € C°(X), all 0 < 7 < dil and |s| < 2 we have

‘/ o(arushxa) dpe g q, (h) — Z Z Cd,i / w(arusz) dyédl—d) * ,ugji(z)

Z di
< Lip(p)p*
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where for every (o € Z, the inner sum is over de < d < dj and1 <17 < NCO,
cdi > 0 with 3, cai =1 — O(8*), Lip(p) is the Lipschitz norm of ¢, and
the implied constants depend on X.

Proof. We will use the above notation also the notation from §11. Let
{(ECOHUCO) ¢ € Z}

be as in (11.14). For every ¢y € Z, let Agg be as in (11.57). Then by part (2)
in Lemma 11.13, for 0 < 7 < 2d1¢, we have

(12.14) ‘/gp(aT/ushxl)d,ut,g,,b Z Z c~/ arusz) dpss (2 )‘
CoGZH AQO

< max{nl/Z, e_”Qt/M} Lip(p)

Recall that ag urap, = ag 4e,u,—ty, for all £1,09,7 € R. Arguing as in
Lemma 7.4, (12.14) (applied with 7/ = 7+ (d1 — d2)¢ < 2d;¢) implies that

(12.15) ’/ (arushxr) dped, (h Zc—/ ArUs? d,/ (di—d2) pe (2 )’

< max{n1/2, e‘”2t/64} Lip(yp)

2

Let (o € Z and let E € Agg. For every dy < d < dy, put

note in particular that if = € Afl‘;, then Agg 4(8) =0 for all d > d.
We claim that

(12.16) ‘ /go(aTusz) dp(di—d2) pe= — anz/go(a.rusz) dpldi—d) [

< max{nl/Q, e‘“Qt/M} Lip(¢)

where now - = >, -4 ZA(%O @ and again Y cz > 1 — O(p*).
25

Note that (12.16) and (12.15) finish the proof of the lemma. Thus, we
need to prove (12.16).

As it was mentioned, if = € ACZ, then Agg 4(8) = 0 for all d > dy, and
there is nothing to prove. Let now = € Aflo \ Ago. Then we have
2 2

1
/gp(aTusz) dp( =)y e :/ /gp(aTusz)d(ydl_dTl * (apuppes)) dr.
0
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Thus by Lemma 8.9 applied to the right side of the above, see also Lemma
11.13, we have

‘/ plarusz) AR s e, % " ez / ((arusz)) dWh =2 x e )
< nt*Lip(yp),

where the sum is over = € AY , . with =/, = =.
da+1 da
We now continue inductively, i.e., write

=/ ¢o - -
{: EAd =2, =2t =
2+1 da
AS = = G B VA~ I A S =
Adg’d2+1(_) U {_/ € Adg+1 : sz === ¢ Adg7d2+1(u)}

and decompose the sum ) -, accordingly. Repeat the above for all =’ €
A,y with 2 = Z but & ¢ AL ;. (2). In view of Lemma 12.3, this
process terminates at some d < dj, and the claim in (12.16) follows. O

Proof of Proposition 10.1. Proposition 10.1 follows from Lemma 12.4, as we
now explicate. The decomposition in Lemma 12.4 is of the form claimed
in (10.3).

Moreover, the sets provided by Lemma 12.4 satisfy (10.1) in view of (11.55);
they also satisfy (10.2) thanks to Lemma 12.2. In view of Lemma 8.3 and
Lemma 8.8, the measures are (., M.)-admissible with M. depending only on
X and the number of steps, which is < d;. Finally, in view of (12.2),

Rd S Rdl S e0.0lEt'

The proof is complete. O

13. FROM LARGE DIMENSION TO EQUIDISTRIBUTION

Let 0 < xk7 < 1 be the constant given by Proposition 5.2; recall that
this constant is closely related to the spectral gap (or mixing rate) in G/T,
c.f. (5.1). Throughout this section, we fix ¢ as follows

(13.1) 0 < Ve < 10 8ky.

We also recall that 8 = e™" and n? = 8 where 0 < k < £/10°.
The following is the main result of this section.

13.1. Proposition. The following holds for all large enough t. Let F C
B.(0, B) be a finite set with #F > €9 Let

E=E{exp(w)y:we F} C X,
be equipped with an admissible measure ug (the definition is recalled below).
Assume further that the following two properties are satisfied:
(1) For all w € F, we have

(13.2) #(B:(w,4binj(y)) N F) > e~ S%%#(Bt(w', 4binj(y)) N F).
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(2) For all z = hexp(w)y with h € E\ 010E, we have
(13.3) fear(e,2) < eiheple, 2)

where R < ¢90let o=VEt < ph < e VE/2 gpd o =1— VE, see §9.
Let 2¢/et < 7 < 0.01k7t. Then

‘ /Ol/w(afurz) dpg (z) dr — /@dmx‘ < S(gp)e—a%
for all p € CX(X).

The proof, which is based on Proposition 5.2 and Theorem 6.2, or more
precisely Theorem C.3, will be completed in several steps.

Let us first recall from §7.6 that a probability measure pug on & is said to
be (A, M)-admissible if

1
He = ZwEF Mw(X) Z Hw

weF
where for every w € F, 1, is a measure on E. exp(w)y satisfying that
(13.4)  dpw(hexp(w)y) = Aow(h) dmp(h)  where 1/M < gy(+) < M;
moreover, there is a subset E,, = Uﬁil Ewp C E so that
(1) 1 ((E\ Euw)- exp(w)y) < Mua(E.exp(w)y),

(2) The complexity of E,,, is bounded by M for all p, and
(3) Lip(owlg,,) < M for all p.

13.2. Localizing the set F. Recall that F' C B(0, ), and the set
& =E{exp(w)y:w e F}

is equipped with a (A, M)-admissible measure pg. In order to use Proposi-
tion 5.2, we need to move F' to the direction of Lie(V') C ¢, while controlling
the errors in other directions. To facilitate this, we cover F' with subsets
contained in cubes of size < binj(y) — localized Margulis functions were
considered in the improving the dimension phase, precisely for this reason.

Let 7 > 0 be so that /2 < inj(z) < 27 for all z € £, and that 7b is a
dyadic number. For every v € B,(0, ), let Q(v) be a cube with center v and
size 47b. Fix a covering {Q(v;) : v; € F'} of F' with multiplicity bounded by
K (absolute).

Since #{Q(v;) : v; € F} < (7b)~3, (13.2) implies that for all i and j,

(13.5a) e - (#(Q(v;) N F)) < #(Q(vi) N F) < ™ - (#(Q(vj) N F)) and
(13.5b) #(Q(v:;) N F) > (iib)* - (#F)

where we used e Vet < b < e7VE/2 and 77 > e 0001t and assumed ¢ is large
to account for implied multiplicative constants.
For every i, define p; : Q(v;) = {1/j:j=1,...,K} by

pi(w) = (#{Q(v;) 1 w € Qvy))™h
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we extend p; to t by defining it to be zero outside Q(v;).
For every i, let & = E{exp(w)y : w € Q(v;)}. Let
dpe, (hexp(w)y) = pi(w) dug (hexp(w)y).
Then pg = 37, pe,-

13.3. A decomposition of the integral. Recall that 7 > 2/et. Let
ly = |log 1287b| (then /et/2 < by < /et + et) and let {4 = 7 — {3. Let
0<d<1,andlet ¢ € C°(X). Then

a3 | 1 [ elarurz) dpetz) ar =

6 rl
6! / / / (g, Upy g, Ury2) dpie (2) drg dry 4+ O(e™*2 Lip(p))
0o Jo

where the implied constant depends on X. Note that in the integral above
r1 runs over [0,0] and ry over [0, 1].

Thus we will investigate the first term on the right side of (13.6). Using
the decomposition g = > ug, and Fubini’s theorem we have

§ rl
(13.7) 5_1/0 /0 /go(aglunagzumz)dug(z)drgdrl:
6 rl
51/0 /0 Z/ap(aglumagzumz) dpe, (z)dradr =
§ rl
26_1/ / /go(aglurlabumz) dpeg, (z) dradry.
| o Jo

The following lemma will complete the proof of Proposition 13.1.

13.4. Lemma. Fiz some i, and let jig, = mugﬂ i.e., the probability

measure proportional to pg,. Then

5 1
‘5—1/ / /@(azlumabumz) diig, (z) dro dr _/SOde‘ < €_€2t8(gp),
0o Jo

Proof. Recall that & = E.{exp(w)y : w € Q(v;)}. Let z; = exp(v;)y. It will
be more convenient to replace y in the definition of &; by z;: Note that

hexp(w)y = hexp(w) exp(—wv;) exp(v;)y

13.8
(13.8) = hhy, exp(vy)z;

where [|h, — I]| < b8 and $|lw — v;|| < [|vw| < 2|lw — v;]|, see Lemma 3.2.
Note also that the map w — vy, is one-to-one. Let F; = {v,, : w € Q(v;)}
and let E = E\ Oy0pE. Put

A~

& = Ef{exp(v)z s v € F}.
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Then by (13.8) and since ||h, — I|| < b, we have & C &; moreover,

fg; (& \ &) < b. Thus it suffices to show the claim in the lemma with fg,
PP 1 _ =01

replaced by [, := e £y hele-

For later reference, let us also record that (13.8) and |h, — I]] < b
implies also that in fact
(13.9) & & =FE {expw)y:we F}
where E' = E \ 0105E. In particular, (13.3) holds true for all z € &;.

Recall that fi; is the probability measure proportional to ), fi; . Where
dftiw = piwdmpg and (KM)™1 < p;,, < M. We will use Fubini’s theorem
to change the order of disintegration of fi; as follows. Let z € &;, then

z = hexp(v)z; = exp(Ad(h)v)hz; € &.

Moreover, Ad(h)v € B.(0,87b). Since 77/2 < inj(z’) < 27 for every 2’ € &;,
we conclude that

Ad(h)U S Ighggb(e, hzl)

Let 7 : & — E.z; denote the projection z = h exp(v)z; — hz;. Using Fubini’s
theorem, we have

fii = /u? dm fii(h.z),

where ,&;‘ denotes the conditional measure of ji; for the factor map 7. Note
that Al is supported on {exp(w)hz; : w € Ig, 3ap(e, hz;)}. In view of the
above discussion, dm,ji; is proportional to pdmy restricted to the support
of m,f1; where 1 < p < 1, moreover, for every i, and every w € supp(/l?),

(13.10) iy (w) = (#F) ™"
where the implied constant depends on K and M.
Now, using Fubini’s theorem we have

6 rl
5—1/ / /sﬁ(azlurla@umz) dji;(2) dra dry =
0 JO

6 pl
6t / / / /gp(aglurlaburz exp(w)hz;) il (w) dry dry dmfis(h.z;).
EzJo Jo

Fix some i and h € E=E \ OogpE. We will investigate
6 rl
(13.11) 51/ / /go(aglurlagQuTQ exp(w)hz;) il (w) dry dry.
0o Jo

Discretized dimension of ,&;‘. Let us put
F} = supp(if) = {Ad(h)v : v € Fj}.

Moreover, recall from (13.9) that exp(Ad(h)v)hz; = hexp(v)z € & C &
Since ||v|| < 4nb, for every v € Fj;, we conclude that

(1312) Fz-h C Ig/732b(6, th)
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Furthermore, by (13.5b) and since #F > %% we have

(13.13) F} = #F; = #(Q(vi) N F) > ()" - (#F) > ™.
Recall now that
(13.14) feor(e, 2) < epg e, 2') < e sup yg (e, 2”)
2eE

for all 2’ € &', where we used (13.3) to get the first bound.
Apply Lemma 9.2 with T = e sup,.c¢ Ve ple, ), 2 = hz;, and Iy, =
I¢r 30p(e, hz;). We thus conclude that

(13.15) 9r,.. R(wW) < T for every w € Iy,,.
Moreover, by (13.5a) and Lemma 10.2, we have
Ef = #F; = #(Q(vi) N F) > ™ sup 41z p(e. )
= e~ sup((inj(")b) e p(e, 2'))

> 6_2€t(ﬁb)aT,

where we also used the definition of T in the last inequality.
Recall that R < ¢%01¢f, Therefore, (13.12), (13.13), and (13.15), in view
of the above, imply that

Gpnr(w) <T < e (7jb) ™ - (#F) for every w € F.

Using R < €%9%¢ and (13.13) again, we conclude that
oM (B(w, b)) < e®t(b /ib)®  for all b > (#FM) 7L,
where o is the uniform measure on F". This and (13.10) imply that
(13.16) N(B(w, b)) < e®t(b /7)™ for all b > (#FM7L,
where the implied constant depends only on M and K.
Projecting the dimension. Recall that 0 < k7 < 1, we have
2v/et <7 < 0.01k7t < 0.01¢.
For every r € [0,1] and w € B,(0,1287b), write

(13.17) exp(Ad (. )w) = (‘CZ;" : /SMU) <(1) 5’“%“”)

where |d,.., — 1], |crw] < e72.
In view of (13.16), we may apply Theorem C.3 with Fih, b1 = e”
1287b, by = (#EF") ™1, b, e, and

b _

where we used 7 < 0.01¢ and (13.13).
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Let Jy C [0,1] and Oy ., C Ff' (for every 75 € Jy) be as in Theorem C.3.
Set J" := Jy. Let /_‘?,7"2 denote the projection of [LH@U vy under the map
w +— &y (w). Then, by Theorem C.3, we have

(13.18) A, (I) < Le ™ e (¥ /by~

for every interval I of length & where L is absolute.
Moreover, |[0, 1]\ J"| < Le~2b" which is < Le"e~="* since i/ < e~2V&,
Thus for any r1 € [0, ]

1
(13.19) / /@(aglurlagzum exp(w)hz;) Al (w) dry =
0
/ /go(aglumabum exp(w)hz;) dph (w) dry + O(S(@)Ls_Le_aB/Qt).
Jh

Approximating orbits using the projection &,,. In view of (13.19),
we need to investigate the contribution of the first term on the right side
of (13.19) to (13.11). We begin by fixing the size of § and some algebraic
considerations.

Recall that \/et/2 < ly < \/et + et and {1 = 7 — by > /et — et. Define
0 < 0 <1 by the following equation

(13.20) 16 = Vet < of2/2,
For any ro € [0,1], put 2" = ag,ur,hz;. Using (13.17) and (13.12), for

1,72

any w € F" and all 71 € [0, ], we have

Apy Upy eXp(Ad(afzuTz )w)zzh,rg =

dryw 0 1 e2&,(w)\ h
gy Upy (e_fzcrz,w 1/d7~2,w 0 1 Zi,rg

where |Cry.u|, |dryw — 1| < €72, From this, we conclude that

lo

e w
(13.21) ag, Uy, exp(Ad(ag2ur2)w)z2T2 = gag, Ur, <() &“12( )> zth
where |lg — I]| < ef1de 2 « e72/2 < e7VE4 see (13.20).

Applying Proposition 5.2. Fix o € J". Let ﬂ?m denote the image
of ﬂ?’rz under the map s +— es. In view of (13.21) and the fact that
AR (ER\ Op ) < LeLe=="%t we have

o
5! /0 [ (s, exp(Ad(arun,w)2h,) dib ) dry =

5 .
51 / /QD(aZlUm'UsZQTQ) dﬂ?,’f‘g (5) dry + O(S((p)Lg*L(a*E&/Qt)'
0
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Recall that & = 1 — /e. By (13.18), the measure [L?M satisfies the condi-
tion (5.2) in Proposition 5.2 for

0 = /e +Te, b=e30, and C = Le le?.

Apply Proposition 5.2 for ¢t = ¢, and the above chosen §; note that |log 6| /4 <
t =, <|log6|/2 so that in particular (5.3) holds. Then as /2 < e~ the
first term in the right hand side of (5.4) dominates and

1
(1322) ’61/ /‘p(aélurlvszi'q,m) dﬂ?ﬂ’g (8) dry — /(Pde‘
0
< S((p) (LE—LeZEte?)(ﬁ—i-?s)él)l/Q (681 5)—57‘
Recall that /1 < 7 < 0.01x7t. Therefore,

BVEL < 0.03n7/EL
Moreover, ¢1 < 7 < 0.01t, hence 21el; < et, and using (13.1) we get
3e = 3(v/2)? < 0.01k7v/E.
Thus, e2et . g2lely < 3ot < 0-01k7VEL Altogether, we conclude that
26t 3(VEtTe) < 0.04mT Vet
Since /16 = eVe'/4, The above implies that the right side of (13.22) is
< S(p)Le Le VS « S(p)Le Te !

where in the second inequality is a consequence of (13.1).

Choosing ¢ large enough so that Le~Le=="*t < ¢~ we conclude that

§ rl
‘5_1/ / /gp(aglunc%ur2 exp(w)hz;) Al (w) dry dry —/cpdmx‘
0 Jo
< S(go)e*EQt.
The proof is complete. ([

Proof of Proposition 13.1. In view of (13.6) and (13.7), the proposition fol-
lows from Lemma 13.4. ([

14. PROOF OF THEOREM 1.1

The proof will be completed in some steps and it is based on various
propositions which were discussed so far.
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Fixing the parameters. Fix ¢ as follows
(14.1) 0 < Ve <10 8Ky

where k7 is as in Proposition 5.2.

Let D = DgDy + 2D where Dy is as in Proposition 4.6 and D1 is as in
Proposition 4.8; we will always assume Dy, Dg > 10. We will show the claim
holds with

A =15+ 2Dy.
Let us assume (as we may) that
(14.2) R > max{(10C,)%nj(zo) 2, e, e, C1},

see Proposition 4.3 and Proposition 4.6. Let T > R4, and suppose that
Theorem 1.1(2) does not hold with this A. That is, for every x € X so that
Hzx is periodic with vol(Hz) < R,

(14.3) dx (x,20) > R*log T)AT ™1 > (log §)P0 5!

where S := R=AT.
Since Dg, D1 > 10, we have

A=15+2Dg > 10+ (10 +2D)D;* > 10+ (3ve + 9+ 23D L.
Therefore,
logT — ((5ve+9+2E=2)D; ") log R > logT — Alog R+ 10log R
> log S + 2|loginj(zo)| + 8log R

(14.4)

we used R > inj(zg)~2 and logS = logT — Alog R in the last inequality.

Let t = p-log R, £ = t/100, and d; = 100[*5=2]. Then

(14.5) =3¢ < dyt < B3¢ 4 et
As it was done in (12.1), fix
0 < & < min{10~%d;*,107%]}.
Let S =e " and let n = BY/2; note that n > e 01¢
Let us write logT = t3 + to 4+ t1 + to where
to=1ogT — ((5vE+9+ 45-3)D1 ") log R
tl == 8t, and t2 =t+ dlf.

(14.6)

Note that tg,t1,t2 >t (see (14.4) for ¢ty > t). We now estimate t3; indeed
ts =logT — (to +t1 + t2)
=(5vVe+9+ 23D log R — 9t — dy ¢
= (3VE+9+253)t — 9t — dyf
where we used t = D% log R in the last equation. This and (14.5) imply
(14.7) 2V/et < tg < 3y/et.
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Recall that as urap, = ap, +o,u,—1,,. Thus, for any ¢ € C°(X), we have

1
(148) [ plagrua)dr = Ollgllne™) +
0

1 1 pl gl
/ / / / DAty Upy Aty Upy Aty U, Ay Ur, To) drg dra dry drg
o Jo Jo Jo

where the implied constant is absolute and we used tg, t1,t2 > t.

Improving the Diophantine condition. Apply Proposition 4.6 with S =
R~AT, then for all

7 > max{log S, 2|log inj(xo)|} + so,
we have the following

aru,xo € Xy or dx with vol(Hz) < R H < 771/2

(14.9) HT €[0,1]: so that dx (z, ayuyzg) < R~Po—1

where we also used 171/2 >R 1land R > ().
Let Jy C [0,1] be the set of those rg € [0,1] so that asuy,zo € X, and
dx (2, agytpyxo) > R™P071 = e~ D1(Dot1)t
for all  with vol(Hz) < R = eP'*. Then since by (14.4) and (14.2) we have
to > log S + 2|loginj(xo)| + 8log R > max{log S, 2| loginj(xo)|} + so,

the assertion in (14.9) implies that [[0,1] \ Jy| < 1'/2. In consequence,

1
(14.10) / olarogrurzo)dr = O(|lglloar’?)  +
0

1 1 gl
/ / / / Oy Uy Oy Upy Qi Up, 2 (10) ) drg drg dry drg
JoJo Jo Jo

where z(r9) = at,ur,xo and the implied constant depends on X.

Applying the closing lemma. For every rg € Jy, we now apply Propo-
sition 4.8 with z(rg), D = DyD; + 2Dy and the parameter ¢. For any such

79, we have
Dy(Do+1)t _ ,(~=D+D1)t

dx(z,z(ro)) > e~
for all x with vol(Hx) < ePt*. Thus Proposition 4.8(1) holds. Let
J1(ro) = I(2(ro)) = I(atyur,wo)

Then

1
(14.11) /Sﬁ(amgTuron)dT: Ollelloen'’?)  +
0

1 1
/ / / / DAy Upg Oty Up, (10, 71)) drrg drg dry drg
Jo JJi(ro) JO JO

where x(rg,r1) = at, ur, at,ur,xo and the implied constant is absolute.
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Improving the dimension phase. Fix some ry € Jy, and let 1 € J(rg).
Put z; = z(rp,71). Recall from (8.10) that

/Lng,dl:l/g*”-*yg*a*ljt

where vy appears d; times in the above expression. In view of Lemma 7.4,

1 p1 1

(14.12) ’// DAty Upy Aty Ury 1) ATg drg—// o(ag,up,hay) drapie g g, (h)
0J0 0

< Lip(p)e™" < Lip(p)n'/2.

We now apply Proposition 10.1 with z1, t3 and r3 € [0,1]. Then

1
(14.13) //np(amumhxl)d,ut,g’dl(h) drs =
0
1
S [ [ elaryury ) ar Y s s, (2)dra -+ OLin(e) )
dyi 0

where the sum is over
di — [10%712) = dy < d < dy,

cq; > 0 and Zd,i cq; = 1 —O(p") and the implied constants depend on X.
Moreover, for all d,i both of the following hold

(14.14a) #(B.(w,4binj(y)) N Fy;) > e sup #(B:(w', 4binj(y)) N Fy;)
w'eFy ;

(14.14b) fe, . pr(e;2) < €€t1/}gd7i7b(€,z) where R < e001¢¢

for all w € Fy; and all z = hexp(w)yq,; € Eq; with h € E\ O104E.

From large dimension to equidistribution. For every do < d < d1, set
T =tz + (d1 — d)L.

Since 0 < dq —d < [10%e1/2], £ = 0.01¢t, and 2\/et < t3 < 3\/et, see (14.7),

(14.15) 2Vet < 14 < (44 10%)v/et < 0.01k7t

where in the last inequality we used 0 < /& < 107%k7, see (14.1).
In view of Lemma 7.4, for all d,i as above, we have

1
(14.16) / /np(at3ur3z) dyédl_d) * ey, (2) drs =
0

1
A/@mwﬂmwﬁww+0@mwe%

where the implied constant depends on X.
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We now apply Proposition 13.1 with £, (in view of (14.14a) and (14.14b)
the conditions in that proposition are satisfied) and 7; which is in the ad-
missible range thanks to (14.15). Hence, for all d,7 as above, we have

1
(14.17) ‘/ /cp(amurz) dpe,,(2) dr—/tpdmx‘ < S(go)e_€2t
0

where the implied constant depends on X.
Let ©1 = min{e?, kyk, k/4}. Then (14.17), (14.16), (14.13), (14.12), (14.11),
(14.10), and (14.8), imply that

1
‘/ 9"(“logT“M0)dT—/sﬁdmx( < S(p)e ™t « S(p)R™ /D
0

where the implied constant depends on X. The proof is complete. O

15. PROOF OF THEOREM 1.3

The argument is similar to the proof of Theorem 1.1, the main difference
here is that even though Proposition 4.6 holds without the arithmeticity
assumption on I', its output, i.e., points which are not near periodic H-
orbits, is too weak for our closing lemma, in the absence of arithmeticity.
Indeed the assertion (2’) in §4.7 only guarantees that if Proposition 4.8(1)
fails, then we can find a nearby point x whose stabilizer contains a non-
elementary Fuchsian subgroup which is generated by small elements; with-
out the arithmeticity assumption on I', however, the orbit Hz need not be
periodic, see e.g., [BO18, §12], in contrast to what happens in the arithmetic
case (cf. Lemma B.1). Therefore, the proof of Theorem 1.3 will not include
the improving Diophantine condition step which was present in the proof of
Theorem 1.1 (see p. 93). To remedy this issue, we will choose the parameter
D in the proof to be O(1/4); this is responsible for the error rate T=%%1 in
Theorem 1.3(1). Let us now turn to the details.

Fixing the parameters. Fix ¢ as follows
(15.1) 0< e <10 8k,

where k7 is as in Proposition 5.2.
Let 0 < § < 1/4 be as in the statement of Theorem 1.3, and let Dy be as
in Proposition 4.8. Put t = D% logT', and define D by

(15.2) D=3 19+ 3\/e=Dy/s
Since § < 1/4, we have D > 2D;. Let
(15.3) A= (B2 49+ 56)/(D - Dy);

note that A’ < 1 where the implied constant is absolute.
We assume T is large enough so that

et > (10C,)%inj(z0) 2.
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Suppose that Theorem 1.3(2) does not hold with this A’. That if x € X
satisfies the following: there are elements 1 and 7, in Stabg (x) with ||y, <
T9 for i = 1,2 so that (y1,72) is Zariski dense in H, then

(15.4) dx (z,2q) > T~ YA = e(=D+D1)E,
We will show that Theorem 1.3(1) holds.

Put ¢ = £t/100, and dy = 100[45=3]. Then

(15.5) D=3 < dyt < B3¢ 4 et

We define the parameter x as follows:
(15.6) k= 2 min{107%; !, 107 %},

and let 8 = e " and let n = 8'/2; note that n > e %1% and that x =< 4.
Let us write logT = t3 + to + t1 where

(15.7) t1 =8 and to =t-+dif.
Note that t1,ts > t. We now estimate t3; indeed
ts =logT — (t1 + t2)
=tDy/d — 9t —dil
= (42 + 9+ 3/e)t — 9t —dil

where we used tD;/0 = logT in the second equation and (15.2) in the last
equation. This and (15.5) imply

(15.8) 2V/et < tg < 3y/et.

Recall that as urae, = ap, +o,u,—1,,. Thus, for any ¢ € C°(X), we have
1
(159) [ planrum)dr = Ollgllwe™) +
0

1,1 pl
/ / / Oy Upg Oty Upy Gy U, To) drg drg dry drg
o Jo Jo

where the implied constant is absolute and we used t1,t2 > t.
The rest of the argument follows, mutatis mutandis, the same steps as in
the proof of Theorem 1.1, as we now explicate.

Applying the closing lemma. We now apply Proposition 4.8 with xq, D
as in (15.2) and the parameter ¢ (which is assumed to be large). In view
of (15.4), Proposition 4.8(1) holds. Let J; = I(xp). Then

1
(15.10) /So(alogTuer)dT: Ollelloen'’)  +
0

1 1
/ / / So(atsurg atQUrgl'(Tl)) drg dry dry
J1J0O JO

where x(r1) = a¢, ur, xo and the implied constant is absolute.
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Improving the dimension phase. Fix some r; € Jp, and put 7 = z(rq).
Recall from (8.10) that

Ptod =Vek - *Vpx0*1y

where vy appears d; times in the above expression. In view of Lemma 7.4,

1,1 1

(15.11) ’// gp(at3ursat2u7~2$1)dr3dr2—// o(agurshar) drap o q, (h)
0Jo 0

< Lip(p)e™ <« Lip(p)n*/2,

We now apply Proposition 10.1 with z, t3 and r3 € [0,1]. Then

1
(15.12) //(p(at3ur3hx1)dut757dl(h) drs =
0
1
S cai [ [ elargun,2) dvf s« ey, (2)dra -+ OLin()5™)
di 0

where the sum is over
di — [10%e7V?] = dy < d < dy,

ca; > 0 and Ed,i cq; = 1 —O(p") and the implied constants depend on X.
Moreover, for all d,i both of the following hold

(15.138) # (Be(w. 4bini(y)) 1 Fas) > e sup ##(Be(w’, 4bini(u)) 1 Fi)
w’'e d,i

(15.13b) fe,, pRr(E,2) < €Et¢gd7i7b(€,z) where R < €001t

for all w € Fy; and all z = hexp(w)yq,; € €4, with h € m.

From large dimension to equidistribution. For every ds < d < d1, set
T4 :=t3+dy —d.

Since 0 < dy —d < [10*~1/2], £ = 0.01¢t, and 2\/et < t3 < 3/et, see (15.8),

(15.14) 2vet <74 < (44 10%)y/et < 0.01k7t

where in the last inequality we used 0 < /& < 1078k, see (15.1).
In view of Lemma 7.4, for all d,i as above, we have

1
(15.15) / /(p(atg,umz) dyédl_d) * g, ,(2)dr =
0

1
A/ﬁ@ﬂﬂm%Aaw+0@mwfﬁ

where the implied constant depends on X.
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We now apply Proposition 13.1 with £y ;, in view of (14.14a) and (14.14b)
the conditions in that proposition are satisfied, and 74 which is in the ad-
missible range thanks to (14.15). Hence, for all d,7 as above, we have

1
(15.16) ‘/ /cp(aTdurz) dpe,,(2) dr—/cpdmx‘ < S(go)e_52t
0

where the implied constant depends on X.
Let & = min{e?, x4k, k/4}. Then (15.16), (15.15), (15.12), (15.11), (15.10),
and (15.9), imply that

1
‘ / Platog Turzo) dr — / sodmx‘ < S(p)e Rt = S(p)T /P
0

where the implied constant depends on X.
In view of the definition of & and (15.6), we have & > § where the implied
constant depends only on X. The proof is complete. [l

16. PROOF OF THEOREM 1.2

The proof is based on Theorem 1.1 and the following lemma, which is a
special case of [LMMS19, Thm. 1.4] tailored to our application here.

16.1. Lemma. There exist Az, D3, and Cs (depending on X ) so that the
following holds. Let S,M >0, and 0 < n < 1/2 satisfy

S > M4 and M > C’gn_AS.
Let x1 € X,), and suppose there exists Exc C {r € [=5,5] : u,x1 € X} with
|Exc| > Cgn'/P38
so that for every r € Exc, there exists y, € X with
vol(Hy,) <M and d(urzi,yr) < M43,

Then one of the following holds

(1) There exists x € G /T with vol(H.z) < M43, and for every r € [-S, 5]
there exists g € G with ||g|| < M43 so that

|s = |

S

(2) For every r € [—S,S]| and t € [log M,logS], the injectivity radius at
a_su,x1 is at most MAset.

1/Ds
dx (uszy,gH.x) < M43 < ) for all s € [-S,S].

The lemma will be proved using [LMMS19, Thm. 1.4] or more precisely
[LMMS19, Cor. 7.2]. The statements in [LMMS19] use a slightly different
language than the one we used in this paper, thus we begin by recalling
some terminology to relate Lemma 16.1 to [LMMS19, Thm. 1.4].
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Arithmetic groups. Let G = SLy x SLg if G = SLa(R) x SL2(R), and
G = Resc/r(SLz) if G = SL2(C). Then G is defined over R and G' = G(R);
moreover, H = H(R) where H C G is an algebraic subgroup.

Recall that I' is assumed to be arithmetic. Therefore, there exists a
semisimple simply connected Q-group G C SLy, for some N, and an epi-
morphism

p:GR) = GR)=G

of R-groups with compact kernel so that I' is commensurable with p(G(Z)).
Note that G can be chosen to be Q-almost simple unless I' C SLy(R) x
SLy(R) is a reducible lattice, in which case G can be chosen to have two
Q-almost simple factors. We assume G is thus chosen.

Moreover, since G is simply connected, we can identify G(R) with G x G’
where G’ = ker(p) is compact.

We are allowed to choose the parameter M in the lemma to be large
depending on I', therefore, by passing to a finite index subgroup, we will
assume that both of the following hold:

e I' C T := p(G(7Z)), where G(Z) = G(R) N SLy(Z), and
e if I' C SLa(R) x SLa(R) is reducible, then I' =T’y x I's.

With this notation, every v € I lifts uniquely to (7,0 (7)) € ', where o
is (a collection of) Galois automorphisms. For every g € G, we put

i=(9,1)eGxG.

Suppose now that g € G is so that Hgl is periodic. Let A, = I'ng 'Hy,
and let Ag =p Ay N T. Let I:Ig be the Zariski closure of Ag. Then I:Ig
is a semisimple Q-subgroup, and the restriction of p to I:Ig surjects onto
g 'Hg. Let ﬁg = I:IQ(R), then

§g-YHGT = H,T

Lie algebras and the adjoint representation. We continue to write
Lie(G) = g and Lie(H) = b; these are considered as 6-dimensional (resp.
3-dimensional) R-vector spaces.

Let vy be a unit vector on the line A3h. Note that

Ng(H)={9 € G: gvg =vg}

which contains H as a subgroup of index two.

Let § = Lie(G(R)), this Lie algebra has a natural Q-structure. Moreover,
gz := §Nsly(Z) is a G(Z)-stable lattice in §.

If there exists ¢ € G so that Hgl' is periodic, fix g1,...,gmn so that
vol(Hg;I') < 1 (the implied constant and m depend on I') and that every
ﬁg is conjugate to some H; = flgi in G. Let v; be a primitive integral vector

on the line ) )
/\dimHi (Lle(ﬁz)) C /\dimHiﬁ.
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Then Ng(H;) = {g € G : gv; = v;}, and H; C Ng(H;) has finite index. For
all i, v; = ¢; - ((g; 'vm) A v}) where v} € ALie(G’) and |¢;| < 1.

More generally, if L C Gisa Q-algebraic group, we let vy, be a primitive
integral vector on the line AY™ XLie(L) C AY™ LG where L = L(R).

Volume and height of periodic orbits. Let L ¢ G be a Q-algebraic
group. Recall the definition of the height of L from [LMMS19]

ht(L) = [lvLl].

Recall that G = G x G'. We fix a right invariant metric on G defined
using the killing form and the maximal compact subgroup K = K x G’ where
K =S0(2) xSO(2) if G = SLa(R) x SLo(R) and K = SU(2) if G = SLy(C);
this metric induces the right invariant metric on G which we fixed on p. 3.

16.2. Lemma. Let Hgl' be a periodic orbit, and let I:Ig be as above. Both
of the following properties hold:

ht(H,)* < vol(H,T/T) < ht(H,)*
lgll~*vol(HgT') < vol(H,I'/T) < ||g|[*vol(HgT)

Proof. For the first claim see [EMV09, §17] or [EMMV20, App. B] (for the
upper bound, see also [ELMV09, §2], which treats the case of tori but the
proof there works for the semisimple case as well).

To see the second claim, note that ﬁIgf’ projects onto g~ Hgl' and the
fiber is compact which volume =< 1. Therefore,

vol(H,T') = vol(g~ ' HgT).

Moreover, left multiplication by ¢g changes the volume by | g||*.
The claim follows. O

Proof of Lemma 16.1. In view of our assumption in the lemma, periodic H
orbits exists. Let ﬁl, R I:Im be as above. Let A3 and D3 be large constants
which will be explicated later, in particular, we will let A3 > max(A, D3),
D3 > D and Cg > max{mF;,C5} where A, D, and E; are as in [LMMS19,
Thm. 1.4] applied with {@,} C G, and Dy and Cs are as in Lemma 4.4.

We first interpret the condition in the lemma as a condition about the
action of {@,} on G/T. Let us write z; = 1T, where ||g1|| < Csn~ P2 < M,
see Lemma 4.4 and our assumption in this lemma. Similarly, for every
r € Exc, let us write y, = g(r)I’ where ||g(r)|| < M and for every such r,
there exists v, € I' so that

(16.1) lurg1yel| < M +1 and  upg1y = €(r)g(r),

where |Je(r)| < M~4s.
For every 1 <i¢ < m, let

Exc; = {r € Exc: H" := H

g(r) 18 a conjugate of H;}.
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Then, there exists some i so that |Exc;| > |Exc|/m. Replacing Exc by

Exc;, we assume that H" is a conjugate of H; for all r € Exc. Let us write
A" = §(r)"LH;5(r). Then

g(r) = (g7 'g(r),d'(r)) € G x &,

lvarll =/ \—1
v = g(r) " v; = £vz,.. Moreover, we have
and V7= G ()T v = £V , we ha

(16.2) v" =c, - ((9(r) 'om) A (F'(r) "))  where || < Mht(H,) < M*

()

where we used Lemma 16.2 to conclude Mht(H,) < M*.
Recall that § = (g, 1) for all g € G. In view of (16.1), we have

(16.3) Urg1 (v, o () -V = cp - <<G(T)DH) A ((U(’Yr)gl(r)il)vg))
Since G’ is compact, we conclude from (16.3) that

(16.4) g1 (v, o (7)) V7| < MAéu

for some Aj.
Let z € g be a vector so that u, = exp(rz). Using (16.3) and associativity
of the exterior algebra, we have

12 A (@rgr (v o (30) V) | = lerl][ (2 A e(ryom) A ((0(7)d ()i |
(16.5) < MM~ < pAM~ A% /B

where we used ||e(r)|| < M~ in the second to last inequality, A and E;
are as in [LMMS19, Thm. 1.4], and we choose As large enough so that the
last estimate holds.

In view of (16.4) and (16.5), conditions in [LMMS19, Cor. 7.2] are satis-
fied. Hence, there exist 4 = (v,0(7)) € I, r € Exc, and a subgroup

H cy 'H3NnH"

satisfying that H'(C) is generated by unipotent subgroups (see [LMMS19,
p. 3]) so that both of the following hold for all r € [-S, S|

(16.6a) |urg1v g || < M*
(16.6b) 12 A (urg1v )| < S~YP M,

Let H' = H'(R). Since ||g1]| < M, we conclude from (16.6a), applied with
r =0, that

(16.7) [V || < M*.

Let us consider two possibilities:
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Case 1. p(H’) is a conjugate of H.
First note that this implies
p(H') = g(ro)"'Hg(rg) where ry € Exc is as above.
Let us write ¢’ = g(r). Then |¢'|| < M, and we have
vol(Hg'T/T) < [|¢'|[*vol(¢'"' Hg'T/T)
< M*ht(H') <« M*

where we used Lemma 16.2 in the second and (16.7) in the last inequality.

Recall that H is a symmetric subgroup of G, i.e., there exists an involution
7: G — G so that H is the connected component of the identity in Fix(7).
In particular, G = KA'H for an R-diagonalizable subgroup A’. For every
r €[S, 5], let us write

(16.8)

Urgr = g'_lkrbrg'g'_lhrg’ c g/_lKA,g,g,_ngl,
and put g. = ¢'"'k.b.g’. Then (16.6a) and (16.7) imply that
lgrll < Nlgev g v I llg" I < Mlurgrv g *M* < M*.

Since the map r + wu,g1vy, is a polynomial map whose coefficients are
< M™*, we conclude that

gL = (s,1)g, where |¢(s,r)]| < M*(ls — rI/S)".
Since usg1 = g.g' 'hsg’ and d is right invariant, the above implies
d(usg1, 9. 'Hyg') < M*(\s - r|/5’)*;
hence part (1) in the lemma holds if for every r € [-S, S] we let g = g/.¢'~ L.
Case 2. p(H') = ¢"'Ug’ where U = {u,}.

First note that if this holds, then G = G (as R:groups). Indeed in
this case I' is a non-uniform arithmetic lattice, thus G = Ry, /g(SL2) for a
quadratic extension k/Q if G = SLy(C) or G = SL2(R) x SLa(R) and T" is
irreducible. If I' = T'; xI'g in G = SLa(R) x SL2(R), then since the projection
of ¢'~1Ug" to both factors is a nontrivial unipotent subgroup, I'y and I'y are
both non-uniform arithmetic lattices; hence, G = SLy x SLs.

Moreover, note that in this case v, € Lie(G), and we have

exp(vy,) € H'NT.

Let us consider the case of G = SLy(C), the computations in the other case
is similar by considering each component. Put

a b
9V = <C _a> .

Then (16.6a) implies that for every r € [—S, S| we have

a b a+cr —cr?—2ar+b
‘ur ¢ —a) T :H c

—a—cr
Hence |¢|S? < M* and |a]S < M*, which implies |a + er| < M*S~1.

)H < M*
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Let now t € [log M, log S|, then

—t(_ .2
o, a b S a+cr e '(—cr®—2ar+0b) < Mre!
c —a ’

elc —a—cr
where we used €'|c|, la + cr| < M*S™! < M*e™.
Since exp(v,) € H' NT, the above implies the claim in part (2). O

16.3. Proof of Theorem 1.2. Let A be as Theorem 1.1, and let A3, Dj
and Cg be as in Lemma 16.1. Increasing As and D3 if necessary, we may
assume Asz, D3 > 10A. We will show the theorem holds with

Ay =xA3 > 4A3 and Ay = Ds
Let C = max{(10Cy)3,e%, e%, C1, Cg}, see (14.2). Let R > C?, and put
d=3AslogR and 7= (C/R)Y4s.
Let T'> R4, and put T} = e 9T > R43. Then
1

1 T
(16.9) T/ o(upzg)dr = T o(aguy, a_gxo) dry
0 0

1 Ty r1 a
== / o(aguruy a_qgzro) drdri + O(||¢|lec Ty D)
1Jo 0
where the implied constant is < 2.
Put 21 = a_gxo, and define
(16.10a)  Excy = {r1 € [0,T1] : up 21 & X}

there exists x with vol(Hz) < R }

(16.10b) - Fxcp = {n €0, h]: and d(up,21,2) < R4d4e™?

Let us first assume that

(16.11) [Exc)| < Cp'/?Ty  and  |BExco| < 2C2R™"T1,
where k = min{1/(2A43),1/(2D3)}.
For every

r1 € [0,71] \ (Exc; UExcy),
put x(r1) = uy, 1. Then

R > Cy~ > Cinj(z(r1)) 2,
see (14.2); moreover, e > R4. Thus conditions of Theorem 1.1 hold true
with e?, R, and z(r1). Moreover, in view of the definition of Excy, part (2)

in Theorem 1.1 does not hold with these choices. Altogether, we conclude
that for every r1 as above,

‘/01 @(adurfﬁ(rl))d’r—/spdmx‘ < S(p)R™™

This, (16.11) and (16.9) imply that
1 T
’T/ o(upzo)dr — /cpde’ < (R™™ 4 3C%R™ + 217 H)S(p),
0
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where we used 0171/2 < C?R~.
Hence, part (1) in Theorem 1.2 holds with k2 = min(k1, k)/2 if we assume
R is large enough.

We now assume to the contrary that (16.11) fails:

Assume that |[Exc;| > Cn'/?T;. We will show that part (3) in the theorem
holds under this condition; the argument is similar to Case 2 in Lemma 16.1.
Let us write xg = goI'. Then

{ur,z1 71 €10, T1]} = {@og 1y Ur@—d—10g T, %0 : 7 € [0, 1]}
= {alongura— logTQOF re [07 1]}
Our assumption |Excq| > Cn'/?Ty and the change variable thus imply
|{T € [O, 1] : alongura—logTQOF g Xﬁ}| > C4771/2’

where we used C' > Cy, see Proposition 4.2 for Cy.
This and Proposition 4.2, applied with a_jos7gol’, the interval [0,1],
log 11, and € = 7, implies that

inj(a, long(]F) < Tl_l;
the implied constant depends on X. Hence, there is some v € I so that
a_ 10gT9079(;1a10gT € Bg’Tfl

where C’ depends on X. Assuming R and hence T} is large enough, the
above implies that v is a unipotent element. In particular, we have

1 a b
A_10gTJd0Ygy QlogT = €XP c —a

where |al, |b], |c| < Tyt = e4T~1 = R33T~1. Hence,

—1 a Tb
90790 =expP | (-1, _, ] |-

Let b =Tb and ¢ = ¢/T. Then
| < R*%  and |¢| < R¥3T772,

which implies that |a + ¢r| < R*3T 1 for every r € [0,7]. Therefore, for
every r € [0,7] and every ¢ € [log R,log T we have

. a+dcr e t(=cr? —2ar +)
a—tUrgovgy U—rar = etd —a—cr .

Note that |a + ¢'r| < R33T71 ef|d/| < R¥3T~1, and
et — r? = 2ar + V| < R3set

In consequence, part (3) in the theorem holds with A; = 343 + 1 if we
assume R is large enough.
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Assume that |[Exco| > 2C2R*Ty. If |Exc;| > Cn'/?Ty, then part (3) in
the theorem holds as we just discussed. Thus, we may assume that

|Exca| > 2C2R™"Ty and |Exci| < Cn'/?Ty.
Put Exc’ := Excy \ Excy. Then

Exc — {'r €[0T : ur, 1 € X, and there exists x with }
= 1 sy L1 - )

vol(Hz) < R and d(u,,z1,z) < RAd4e™?

and |Exc/| > C?R™"Ty > CsR~Y/PsTy. Moreover, assuming R is large
enough, we have
RAd4e™? = RA(343log R) R34 < R™43,
Fix some r; € Exc for the rest of the argument. Put
Ty = Up, T = Uproa_qro and Exc = Exc —r C [-Ty, Ty

Then the conditions in Lemma 16.1 are satisfied with zo, Exc, n, M = R,
and S =T} = R34s7-1,

Assume first that part (1) in Lemma 16.1 holds. Then there exists = €
G/T with vol(H.z) < R*, and for every r € [T}, T1] there exists g € G
with [|g|] < R4 so that

|s — 7] 1/Ds
dx(usra, gHz) < R4s <> for all s € [-T1,T1].

Since s — ry,r —r; € [=T1,Ty] for all s,r € [0, T}], the above implies

dx (upagxo, aggHx) = dx (agusa_qzo, aqggHx)
= dx(aqus—r, Up,a_qx0, aqggHx)
= dx(aqus—r, x2,a59Hx)
leds — edr|>1/D3
T

That is part (1) holds with A; = A3 and Ay = D3 for all large enough R.
Assume now that part (2) in Lemma 16.1 holds. Therefore, for every
r € [-T1,T1] and every t; € [log R,logT}], the injectivity radius of a_;, u,x2
is at most R43e~",
Let ¢ € [log R,log T1] and r € [0,T1], then

< 6*ddx<u5_7»11’2, gHz) < R*A3<

inj(a—¢, Uea, o) = nj(a—t, GqUp—p, Up, G_qx0)
< e nj(a_, tp_p x9) < R3e70,
This implies part (3) of the theorem for all ¢t € [log R,logT;] and large
enough R.

Let now t € [logTy,logT]. Then t = s+ log 71 where 0 < s < 3A3log R,
and we have

inj(a—tuedrxﬂ) = inj(a—sa— 10gT1uedrx0) < R*A3Tf1 < R*Ag’e_t‘
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Altogether, part (3) in the theorem holds, again with A; = xA3 and assum-
ing R is large enough depending on X. O

APPENDIX A. PROOF OF PROPOSITION 4.6

In this section we prove Proposition 4.6. The proof is based on the study
of a certain Margulis function whose definition will be recalled in (A.4).
For every d > 0, define the probability measure o4 on H by

2
/‘P(h) dog(h) = ;/_1 o(aqu,) dr.

Let us first remark our choice of the interval [—1, 2]: We will define a function
fy in (A.4) below. In Lemmas A.1-A.4, certain estimates for

/hWM@mWMMW)

will be obtained, then in Lemma A.5, we will convert these estimates to
similar estimates for

1
/ fy(ady+-td,ur+) dr.
0

The argument in Lemma A.5 is based on commutation relations between
aqg and w,. Similar arguments have been used several times throughout
the paper, however, since the function fy can have a rather large Lipschitz
constant, we will not appeal to continuity properties of fy in Lemma A.5.
Instead, we will use the fact that [0, 1] C [—1,2] 4 r for any |r| < 1/2.

We begin with the following linear algebra lemma.

A.l. Lemma (cf. Lemma 5.2, [EMMO98]). For all 0 # w € v, we have
[ 1A 8 doy(h) < €)1
where C' is an absolute constant.

Proof. We may assume ||w|| = 1. Let us write w = <j Y ) Then

Ad(atur)w = <~71 +tzr et(_2r2 et y))

etz —r —zr
For every € > 0, let
I(e) ={re [—1,2]:5/2§\—z7"2—25m"+y] < e},

then |I(g)| < C"e"/? where C" is absolute, see e.g. [KM98, Prop. 3.2]. (This
estimate is responsible for our choice of exponent 1/3 which is < 1/2.)
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Moreover, for every r € I(g), we have || Ad(a;u,)w|| > e'c/2. Note also
that sup_y 9 [ — zr? — 2zr + y| < 10. Altogether, we have

/HAd(h)w”l/Sdad < Z/ | Ad(agu, )w| =3 dr
2 J102¥)

S C// Z 2—k/2 (6—t/32(k+1)/3) S 20//€—t/3 Z 2—k/6
k=—4 k=—4
The claim follows. O

We also need the following
A.2. Proposition. There exists C > C' (absolute) so that

/inj(hx)_1/3 do*l(f)(h) < Clem3inj(2)~1/3 + Be?d/3

where ay) denotes the {-fold convolution and B > 1 depends only of X.

Proof. This follows from [LM21, Prop. A.3] if one replaces the use of Equa-
tion (2.12) in that proof by Lemma A.1, see also [LM21, Lemma 2.4]. O

Let Y = Hy be a periodic orbit. For every z € X \ Y, define
Iy(z) ={w € v:0 < ||w|] < inj(z),exp(w)z € Y}.
Recall from [LM21, §9], that
(A1) #Iy (z) < Evol(Y)

for a constant E depending only on X.
For every h = aqu, with d > 0 and r € [—1,2], and all w € g, we have

(A:2) | Ad(hE ]| < 106 uw].
Replacing 10 by a bigger constant ¢, if necessary, we also assume that
(A.3) ¢ tem%inj(z) < inj(h*'z) < celinj(z)
for all such h and all x € X.
Define
(A1) foe) = L Zwer @ ol Ir(@) £ 0
inj(z)~1/3 otherwise

A.3. Lemma. Let C' be as in Proposition A.2, and let d > 3log(4C). Then

/ F(ha) dog(h) <
Ce " fy (x) + ce’Bvol(Y) - (Ce™?inj(x)/* + Be?)

where B is as in Proposition A.2.
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Proof. Since Y is fixed throughout the argument, we drop it from the index
in the notation, e.g., we will denote fy by f etc.

Let d > 0 and let h = aqu, for some r € [—1,2]. Let x € X. First, let us
assume that there exists some w € I(hx) with

|w| < ¢ 2 2%nj(hz) =: Y.

This in particular implies that both I(hz) and I(z) are non-empty. Hence,
we have

flhay =Y |lwl ™"

wel(hx)
Yool 3 )

[[w]| <Y [Jw]| =7
(A.5) < > lAd(R)w] B + B3 (#1(ha)) - inj(har) T3,

wel(x)

Note also that if ||w| > T = ¢~2e~2dinj(hx) for all w € I(hx) (which in

view of the choice of ¢ includes the case I(z) = 0) or if I(hx) = 0, then
(A.6) f(hx) < B2 (H1(ha)) - inj(ha) =3,

Averaging (A.5) and (A.6) over [—1, 2] and using (A.1), we conclude that

[ fhayaouiny < 3 / |l V3 doa(h) +

wel(x
21323 Byol(Y) - / inj(ha) "3 dog(h);

we replace the summation on the right by 0 if I(z) = 0.
Thus by Lemma A.1 and Proposition A.2, we conclude that

/f(hm) dog(h) < Ce4/3 . Z HwH—l/g n

wel(x)
ceEvol(Y) - (Ce=3inj(z) "/ + Be?)

where we replaced 2d/3 by d. This may be rewritten as
/ f(ha)dog(h) < Ce™ 3 f(z) + ceEvol(Y) - (Ce™inj(z) /3 + Be?).

The proof is complete. O
A.4. Lemma. There is an absolute constant Ty so that the following holds.
Let T > Ty and define

di=10"2- (27 log T)
foralli=1,...,k where k is the largest integer so that dy > 3log(4C) and
C is as in Proposition A.2 — note that %log logT < k <2loglogT.
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Then
/fy (ha dadioo --~*a((iioo)(h) <
(log )27~ Y/3( () + B'vol(Y Jinj(z)/* T2k, €24 ) + Blvol(Y)

where D, B' > 1 are absolute.

Proof. Again since Y is fixed throughout the argument, we drop it from the
index in the notation, e.g., we will denote fy by f etc.
Let us make the following two observations:

k
(A7) 53 dj >0.05x27" " ogT >0.01 x 27" log T = dj
j=i+1
There is an absolute constant M > 1 so that the following holds
7 k
(A.8) choo(z‘—j)e—dj < choo(k—j)e—dj <M
j=1 j=1

forall 1 <i<k.
By Lemma A.4, for all d > 31og(4C), we have

(A.9) /f(ha:) dog(h) <
Ce B f(z) + cEe¥vol(Y) - (Ce=3inj(z) /3 + Be?).
Let A = cEB and £ = 100. Tterating (A.9), (-times, we conclude that

/ Flhi - hz) o) (hn) - doly) (hy,) <

Cﬂe—ﬂdk/B /f(hkl - h1x> dUé?(hl) L. dac(li),l(hkfl) +
cEe®vol(Y)(Z), + 2Be)

we used Ce~%/3 < 1/4 to bound the (-terms geometric sum by 2Be%, and

/—1
Zp =) (Cedu/3)id / inj(hhp—-hiz) 5 doly) (h)~dol)  (hy_1) do) ().
j=0

Note that cEe®vol(Y)(Z, + 2Be®) < Avol(Y)e?d (Z; + 2), therefore,
(A.10) /f i) dol) (hy) oty (hy) <

Cle—tdi/3 /f(hk_r"hw) d%(z?(hl)"'dac(li),l(hk_l) +
Avol(Y)e2dk (2, + 2).
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We will apply Proposition A.2, to bound Z; from above. Let us begin by
applying Proposition A.2, j-times with dj, then

=y < Cletn/3 / inj(hpr - hax) Y2 Aol (h) - dol) (hi_r) + Ae

where we used Ce~%/3 < 1/4 and A = cEB > 2B to estimate the (-terms
geometric sum.

The goal now is to inductively apply Proposition A.2, ¢ times with d;
for all 1 < ¢ < k — 1, in order to simplify the above estimate. Applying
Proposition A.2, {-times with di_1, we obtain from the above that

=), < O2e~Hdk+di-1)/3 / inj(hyz--haz) V2 Aol (h)--doly) (he—s) +
Cletd/3 . ()\ed’“*l) + e,

Put © = 0, and for every 1 < i < k, let ©; = Z
above inequalities inductively, we conclude

=it d;. Continuing the

k—1
S < Céke—f(2§:1 di)/3inj(x)—1/3 + )\(edk + Zcz(k_i)e_g@i/gedi)
=1
k—1
< Otk o=t di)/ginj(x)—l/S + )\(edk 4 Z Cg(k_i)e_di)
=1

< OthetZin 4)/3inj(x)~Y3 4 A(e® + M)
where we used ¢0;/3 = 1000;/3 > 100d;/15, see (A.7), in the second to last

inequality and (A.8) in the last inequality.
Iterating (A.10) and the above analysis, we conclude

/f hix)dol) (h) - ol (hy) <

k
Ol (a3 f () 4+ avol(Y) Y U (0324 (=, 4 9)
=1

where for every 1 < i < k, we have

~

—1
= (Ce_di/?’)g_j/inj(hz‘hi—l"hlx) 3 dol) () doy) (hier) o) (ha).
j

[1]

S.
Il
o

Arguing as above, we have

=i < Clie ()= 4)/3inj(z) =13 + Me® + M).
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Recall that ©; = Z d;; therefore, we conclude that

Jj=t+1

/f - hiz) o) (hn) -+ oty (hy) <

Otk U1 di)/3 ( F(@) + Avol(Y)inj(z) /2 328, eQdi> +
(M + 2)A*vol(Y Z Ok t0:/3 3

In view of (A.7), ¢©;/3 = 1000;/3 > 100d;/15. Hence, using (A.8), the last
term above is < B’vol(Y') for an absolute constant B > A.

Moreover, £ d; = 100)d; = logT — O(1) where the implied constant
is absolute, and k < 2loglogT. Hence,

CZke—Z(Zledi)/S < (log T)1+20010gCT—1/3
so long as T is large enough. The proof of the lemma is complete. (I

A.5. Lemma. Let the notation be as in Lemma A.4, in particular for every
T > Ty define dy,...,d as in that lemma. Put d(T) = 100)_ d;, then

1
/ Ty (ageryurr) dr <
0

3(10g T)POT 1/ (fy (2) + Brol(Y )inj(z) /33" %) + Brol(Y)
where B > 1 is absolute.

Proof. Again, since Y is fixed throughout the argument, we drop it from the
index in the notation, e.g., we will denote fy by f etc.
By Lemma A.4, we have

(A.11)
1
3100k | T . f(adk“m,mo Cr Qg Uy g 'ad1ur1,1$) dry1---drgi00 <

(log T)20T 13 ( fy () + B'vol(Y Jinj () "1/ 37 ) + Bvol(Y).
Now, for every (rk.100,---,71.2,71.1) € [—1,2]*°% we have

Ady Urg 100 * " AdpUrg ) " Ady U1 = Ad(T) Up(F) 4711
where 7 = (74 100, - - - ,71,2) and |o(7)] < 0.2.
In view of (A.ll) there is # = (rk100, - - -, 71,2) € [—1,2]19%~1 50 that

1 [2+e(?)

(A.12) 3/ flagryurz)dr <

—1+p()
(log T)PoT~1/3 (fy(:r) + B'vol(Y )inj(z) /3 Z 2 > + B'vol(Y).
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.2, we have [0, 1] C [—1,2]+ (7). Therefore, (A.12) and the

<0
> 0 imply that

Since |p(7)|
fact that f

1 1
3/ flagryurz)de <
0

(log T)PT~Y/3( fy () + Bvol(Y Jinj(x) /3 3" 24 ) + B'vol(Y).
The lemma follows with B = 3B’. O

Proof of Proposition 4.6. Let R > 1 be a parameter and assume that vol(Y) <
R. Recall that for a periodic orbit Y, we put

fy(z) = {ZWEIY(I) Jw|| =13 Iy(z) #0

inj(z)~1/3 otherwise -
Let ¥(z0) = max{d(xo,Y) /3, inj(z¢)~'/3}. Then
(A.13) w(xo) < fy,d(xo) < VO](Y)w(xO),

where the implied constant depends only on X, see (A.1). '
With the notation of Lemma A.4: let T > Ty and d; = 0.01 x 27 *log T
for 1 <7< k. Then

(A.14) logT —b<d(T) <logT

where b is absolute.
There exists T7 > Ty so that for all T' > T7 we have

(log T)PoT—1/3 Zezdi < TV,
Let T = max{T1,3D}}, then (log T)P0T~1/3 is decreasing on [T}, c0). Let
(A15) Ty = inf{T > max{T},inj(x0) 2} : Qog T)P0T~1/3 < d(z0,Y)"/?}.
In view of (A.13) and since vol(Y') < R, thus for all ' > T5, we have
(log T)P0T /3 fy (o) < R(log T)P0T /34 ()
By the definition of T, we have (log T)PoT~1/3d(zy,Y)" /3 < 1, and
(log T) 20T~ inj(ag) /3~ 2 < T 4inj(zo)~/* < 1.

In particular, using (A.13) again, we have (log T)PoT—1/3 fy-(x0) < R.
Altogether, we conclude that for all T > T5, we have

(A16)  log(T)P0T Y3 (fy (wo) + Bvol(Y)inj(zo) /%> " e¥) < ByR

where B} is absolute.
Let T > T5, and let d(T") = 100 > d; where d;’s are as above. Using (A.16)
and Lemma A.5,

1
(A17) / fy(ad(T)uTx) dr < BQR
0

where By = 3B}, + B.
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Let D > 10. Then by (A.17) we have
‘{T’ € [0, 1] : fy(ad(T)ur:Uo) > BQRD}’ < BQR/BQRD < R+

In view of (A.13), there is an absolute constant B; so that dx (asu,zg,Y) <
Bl_lRf?’D implies fy (asuyx¢) > BoRP for all s > 0 and r € [0, 1]. Therefore,
we conclude from the above that

(A.18) {r €[0,1] : dx(agrurzo,Y) < By '"R*P}| < R7PH
Let now s > log Ts, then by (A.14) there exists some T' > T5 so that
d(T) —2b < s <d(T)+2b

For every s > logTs let Ts denote the minimum such 7. Then (A.2) implies
that is B > 1 (absolute) so that if s > log T, and r € [0, 1] are so that

dx (asurzg,Y) < 3_1R_3D,
then dx (aq(r,)urzo,Y) < Bl_3R*3D. This and (A.18), imply that
(A.19) {r €[0,1] : dx (asu,z0,Y) < B_lR_SD}} < R~PH

Let C4 be as in Proposition 4.2, increasing 77 if necessary, we will assume
log T > | log(inj(xo))| + C4. Using Proposition 4.2, thus, we conclude that

(A.20) [{r €10,1] : inj(asurz) < n}| < Cyn'/?

for any n > 0 and all s > logT5.
Altogether, from (A.19) and (A.20) it follows that for any s > log 75, we
have
. inj(asu,x) <n or
(A.21) Hr 10115yl ) < oD

In view of [MO20, Cor. 10.7], the number of periodic H-orbits with
volume < R in X is < ERS where F depends on X. Let D = 8 and
Cy) = max{F, B,C4}. Then (A.21) implies

H < CynM? + R+,

(A.22) Hr €0,1] :

inj(asu,z) < n or there exists z with
vol(Hz) < R s.t. dx(asuyzg,z) < ﬁ H
<Ci(n'?+R7Y).
We now show that (A.22) implies the proposition. Suppose
dx (z0,x) > S~ (log §)*Po
for every x with vol(Hz) < R. Then by (A.15), we have
Ty < max{S,inj(xo) 2, T }.

Therefore, the proposition follows from (A.22) if we let Dy = max{24,3D{}
and put sg = logT7. O
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APPENDIX B. PROOF OF PROPOSITION 4.8

In this section, we will give a detailed proof of Proposition 4.8. As it was
mentioned, the proof is a slight modification of [LM21, Prop. 6.1].

Proof of Proposition 4.8. In what follows all the implied multiplicative con-
stants depend only on X.

We begin by recalling Proposition 4.2: for all positive €, every interval
J C [0,1], and every x € X, we have

(B.1) ’{r € J :inj(aqu,z) < 52}] < CyelJ|,

so long as d > |log(|J|%nj(z))| + Cy.
We also recall Lemma 4.4: Let 0 < n < nx and let g € G be so that
gl' € X;,. Then there exists some v € I' so that

(B.2) lgv[l < Csn~P=.
For the rest of the argument, let
(B.3) t > 100Dz |log(ninj(z1))| + C4

Let m € [0,1] be so that o = awu,z1 € X,. Write 23 = goI' where
lg2| < P2, see (B.2).

We will show that unless part (2) in the proposition holds, we have the
following: for every zs, there exists J(z2) C [0,1] with |[0,1] \ J(z2)| <
200C4n'/? so that for all 7 € J(z2), we have:

(a) anurzo € X5,
(b) the map h +— hazu,x2 is injective on E;, and
(c) for all z € Es.aziuyx2 we have fio(2) < elt.

This will imply that part (1) in the proposition holds as
A7tUrQtUp L] = AUy 4 e—tp L] -

Assume contrary to the above claim that for some x2 as above, there
exists a subset I, C [0,1] with |I]_4| > 200C4n'/? so that one of (a), (b),
or (c) above fails. Then in view of (B.1) applied with x5 and 7¢, there is a
subset Ipag C [0, 1] with |[Ipaq| > 100C4n'/? so that for all 7 € I,,q we have
aryurT2 € Xy, but
e cither the map h — haru,x2 is not injective on Ey,

e or there exists z € Er.azu,x2 so that fi(2) > elt.

We will show that this implies part (2) in the proposition holds.

Finding lattice elements ~,. We introduce the shorthand notation h, :=
aziuy, for any r € [0, 1]. Let us first investigate the latter situation. That is:
for 7 € Ipaq (recall that h,xo € X)) there exists some z = hih,z2 € Ej.h,a2,
so that f; o(2) > ePt. Since h,xy € X, we have

(B.4) inj(hh,x2) > ne”?, for all h € E,.
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Using the definition of f;,, thus, we conclude that if I;(z) = {0}, then
fra(z) < ntet. Since t > 100D9|logn|, assuming t is large enough, we
conclude that I;(z) # {0}. Recall also that by virtue of Lemma 8.1 we have
#1;(z) < n~*e*, see also [LM21, Lemma 6.4].

Altogether, if D > 6 and t is large enough, there exists some w € I;(2)
with

0 < |lw|| < el=P+o),

The above implies that for some w € ¢ with ||w| < e=P+5t and hy #
hy € E;, we have exp(w)hyh,xs = hah,xs. Thus
(B.5) exp(wr)h;lsrhr:zg = 29

where s, = hy *hy, w, = Ad(h; 'hy)w. In particular, |jw,| < e(ZP+13)t,
Assuming ¢ is large enough compared to the implied multiplicative constant,

(B.6) 0 < ||lw,| < ePFE,
Recall that x5 = goI" where |go| < n~P2, thus, (B.5) implies

(B.7) exp(w,)hy s by = 927,95
where 1 #'s, € H with ||s.|| < €' and e # ~, € T.
Similarly, if for some r € I,q, h — hh,xo is not injective, then
hylsihe = govrgy 't # e
In this case we actually have e # v, € g5 LH g, — we will not use this extra

information in what follows.

Some properties of the elements ~,. Recall that ||g2|| < 772 and that
t > 100D2|logn|. Therefore,
(B.8) Iyt < e
again we assumed ¢ is large compared to ||ga|| hence the estimate < 8 is
replaced by < e%.

Let £ > 0 be so that ||gyg~' — I|| > 20&n?P2 for all v € T'\ {1} and

lgll < Csn~ P2, see (B.2). Write s, = (a1 a2

u € H where |a;| < 10e.
3
Then by (B.7), we have

aq 677ta2

—1
oy "sehor = T} = Hu” (e”ag ay

> Uy — IH > 10&n*P2
which implies that
(B.9) max{e"|ag|, a1 — 1], |as — 1|} > &n°P2.

Note also that if e |az| < &n?P2, then |agas| < 10£n*P2e=%, thus |ajas —
1| < n*e~. We conclude from (B.9) that |a; — a4 > n?P2. Altogether,

(B.10) max{e’|as], |a1 — aq|} > n?P2.
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Since |Ipaa| > 100C41'/2, there are two intervals J,J' C [0,1] with
d(J,.J') = n'/2, |J], 1T = 02, and

(B.ll) |JmIbad’ >n and ‘Jlﬂfbad‘ >n.

Put J77 =JnN Ibad-

Claim: There are > ¢?%/10 distinct elements in {v, : 7 € J,}.
Fix r € J, as above, and consider the set of 7’ € J,, so that and ~, = 7.
Then for each such 7/,

hy ts hy = exp(—w;)gavrgy - = exp(—wy) exp(wy )b, s, by

= exp(wrr/ ) h;,lST/ hr’

where Wypt € @ and ”wTT,H < 6(_D+14)t,

Set 7 = e™(r' —r). Assuming D > 32, we conclude that
(B.12) UrSpu—r = hprh b s, hehot = exp (g )s,

where HwT’T’H = H Ad(hr’)wrr’” < 6(_D+21)'
Finally, we compute

sl — ai +ast as+ (ag — ar)T — azt?
T as a4 — asT :

In view of (B.10), for every r € J,, the set of ' € J, so that

(B.13) lase™ ™ 4 (ag — a1)(r' —7) — azge™ (' —r)?| < 10%e76

has measure < n~*P2¢73 since at least one of the coefficients of this qua-

dratic polynomial is of size > 7?P2. Let Jyr be the set of 7’ € J,, for which
(B.13) holds.

If ' € Jy \ Jyr, then |ag + (a4 — a1)7 — azT?| > 10%e’ (recall that 7 =
e™(r' —r)), thus for all 7’ € J, \ J,,, we have

|wrs,u_r|| > 10’ > || exp (i )sy ||,

in contradiction to (B.12).

In other words, for each v € I" the set of r € J,, for which v, = v has mea-
sure < 7~ 4P2¢73t and so the set {7, : 7 € J,} has at least > ntP1H1edt >
e?/10 distinct elements (recall from (B.3) that ¢ > 100Ds|logn|); this es-
tablishes the claim.

Zariski closure of the group generated by {7, : r € Iaq}-

We now consider two possibilities for the elements {7, : 7 € Iaq}-
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Case 1. The family {7, : r € Iyaq} is commutative.

Let L denote the Zariski closure of (v, : r € I1,q). Since (,) is commu-
tative, so is L. Let Cg denote the center of G. We claim that L = L'C’
where C' C Cg and L/ is either a unipotent group or a torus. Indeed since
L is commutative, we have L = TV where T is a (possibly finite) alge-
braic subgroup of a torus, V is a unipotent group and T and V commute.
Therefore, if both T and V are non-central, then G = SLa(R) x SLy(R) and
I' = I'y x I'y is reducible. Moreover, T C T'Cg where T’ is an algebraic
subgroup of a torus, and T/ and V belong to different SLy(R) factors in G.
Let us assume V belongs to the second factor. Recall from (B.5) that

(B.14) exp(wy)h, 'sphy = 927095 "

where |w,|| < ePH! with D > 32 and h;'s,h, € H = {(h,h) :
h € SLa(R)}. Now if v, = (v},+2), then (B.14) together with the bound
|hi s, hy|| < €3 implies that [tr(v}) — tr(72)] < e(~P+22t moreover, since
72 € VCOg, we have [tr(72)| = 2. This and the fact that the length of closed
geodesics in (finite volume) hyperbolic surfaces is bounded away from zero
imply that [tr(v;})| = 2 if ¢ is large enough. This contradicts the fact that T
is a non-central subgroup of a torus. Hence, the claim holds.

We now show that L’ is indeed a unipotent group. In view of the above
discussion, #{y, : v € J,} > /10 Note also that that for every torus
T C G, we have

#(Br(e, R)NT) < (log R)?,

where the implied constant is absolute. These, in view of the bound ||7,|| <
e see (B.8), imply that L’ is unipotent.
Since L’ is a unipotent subgroup of G, we have that

#{77“ : H’YTH < 64t/3} < €8t/3.
Furthermore, there are > ¢29/10 distinct elements vy with r € J,,. Thus
#{v ]l > 100e*/ and r € J,} > 2910,

For every r € Iaq, write

a a
S, = 1,r 2,r cH
azr Q4.p
where |a;,| < 10€e'.

We will obtain an improvement of (B.9). Let &n?P2 < T < e*/3 and
assume that ||gayyg5 " — I|| > 20T — by definition of &, this holds with
T = &n?P2 for all r € I,,q and as we have just seen this also holds for with
T = ¢*/3 for many choices of r € Jpaq. We claim

(B.15) |z, > Te ™.
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Indeed by (B.7), we have

Tt
-1 ai,
|, “srhe — I = Hu,r (e%a;,,

e '""azr

) uy — IH > 107.
a4,y

This implies that max{e"|as |, a1, — 1|, |as, — 1|} > Y. Assume contrary
to our claim that |ag,| < Te~". Then

(B.16) max{|a, — 1], |as, — 1|} > T
furthermore, we get |asa3,| < Ye 0. Thus,
(B.17) a1 rag, — 1] < Te 8 < e 143,

Moreover, since h, 's.h, is very nearly goy,g, ! and the latter is either a
unipotent element or its minus, we conclude that

(B.18) min(|a1,; + ag; — 2|, |ar, + ag, +2|) < TP

Equations (B.17) and (B.18) contradict (B.16) if ¢ is large enough (recall
again from (B.3) that ¢t > 100Ds|logn|). Hence necessarily |as,| > Ye ™.
Using this, we now show that Case 1 cannot occur. Since L’ is unipotent,
there exists some g so that L/(R) C gNg~!; moreover g can be chosen to be
in the maximal compact subgroup of G — for our purposes, we only need
to know that the size of g can be bounded by an absolute constant.
It follows that

ary e tag, -1
(B.19) Uy eﬁa’g as ") u, € exp(—w,)(gNg™ ") - Ca
T K

for all r € I,q. We show that this leads to a contradiction when G =
SL2(C), the proof in the other case is similar by considering first and second
coordinates.

Recall the intervals J and J' from (B.11), and let ro € J' N [aq. then
lro — r| > n'/? for all r € J,. Then, (B.19), yields that

—7t
(B.20) tu—rsrq (G%ZT ‘ a2,7»> Ur—rg € eXp(—w;,)(umgNg_lu,m) -Ca
3,r a4.r

)

for all r € Ipag.
Let us write u,,g = (Z 2), then for all z € C we have

1 z\ _4 1—acz a’z
Urod\g 1)9 o=\ —22 14acz)”

Let zyp € C be so that

Tt 2
ai,r e tagy, 1 —aczg a‘zg
< 7t 00 O) = +exp(—wy) ( 9 ) .

e'*as r, a4.r, c’zg 14 aczy

By (B.15) applied with T = &n?P2, |ag .| > én?P2e". Since |al, |b, |c|, |d| <
1, comparing the bottom left entries of the matrices, we get |zo| > n?P2,
Now, since |az .| < 10€’, comparing the top right entries we conclude that
la| < n2P2e73t <« 7210, Since det(g) = 1, it follows that |c| is also >> 1.
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Let now r € J,, be so that |y,.|| > 100e*/3. We write v, = r — 1o, ay, =
e "ag, and aj . = eaz,. By (B.15), applied this time with T = M3 we
have that |aj .| > e/3; note also that |ab,.| < e7%. In view of (B.20), there
exists z, € C so that

/ / / / 2
u 1 Gy o (Ol = T103,  Ggy + (a4 — a1,)r1 — az, 7y
T \ag, asy) as., a4, + 103,

1—acz a’z
— o/ T r
= £ exp(—wy) < —c%z, 1+ aczr> ‘
Recall that |a3,.| > M3 ay,| and |as,| are < ef, and |ah,.| < e O

moreover i/ < |r1| < 1 and by (B.3) e//10 > =1, We cocnlude
|aé,r|77/10 S |a’/2,r + ((14,7« - (11,7«)7“ - CL%J,T2‘ S 2|aé,r"

Hence, since w/. is small, |c?z,|n < |a?z.| < |c?2;]. On the other hand,
using 7 = 79, we already established |a| < e 210 and |¢| > 1, thus
la%2,| < e75|c%2,|, which is a contradiction, see (B.3) again.

Altogether, we conclude that Case 1 cannot occur.

Case 2. There are r,7" € I;,q so that 7, and 7,» do not commute.

We first recall versions of [LM21, Lemma 6.2] and [LM21, Lemma 6.3].
The statements in those lemmas assume go € Gpi. However, the arguments
work without any changes and one has the following.

Let vy be a unit vector on the line A3h C A3g.

B.1. Lemma. Assume I is arithmetic. There exist Cy and kg depending
on I', and Cyo (absolute) so that the following holds. Let 1,72 € I' be two
non-commuting elements. If g € G is so that v, ‘vg = g vy fori=1,2,
then Hgl' is a closed orbit with

vol(HgT') < Cyllg||“ (max{[ri I, e 13) ™

B.2. Lemma. Assume I' has algebraic entries. There exist kg, K19, C11
and Cia so that the following holds. Let 1,72 € I' be two non-commuting
elements, and let

§ < Cui Y (max{|vEH, ha3) .

1 1

Suppose there exists some g € G so that vig~ vy = €9~
where |le; — I|| < 0. Then, there is some ¢ € G such that

lg" = g7 HI < Cuallgl 20 (max{ i, 2™ 113) ™

and vig'vyg = g'vy fori=1,2.

vy for i =1,2

Let us now return to the analysis in Case 2. Recall that ||ga|| < 771, we
will assume ¢ is large enough so that

Bt 2 ,’7—2D1 max{Cm,Clz}'
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Recall that exp(w;)h, s h, = ggwggl, thus

7r-g;1UH = eXP(Ad(ggl)wr)-9510H~

Moreover, since [|w,|| < e(=D+16)t

| Ad(gy Dw,|| < n2Pre(=PHIE « (=DF15)

similar statements also hold for 7’.
Recall that |41, ||'yf1|| < €%, If D is large enough, we may apply
Lemma B.2 and conclude that there exists some g3 € G with

—-DC —D+15+9 t —D+16+9 t
||927g3|| < Cynp ™ 126( +15+9k10) §C11e( +16+ H10)7

so that %.gglvH = gglvH and %/.gglvH = g;lvH.
In view of Lemma B.1, thus, we have Hgsl' is periodic and

vol(HgsT') < Con~ 210 (maxc{ ||y, 175 1})"™ < Coel+omst,

Then for ¢ large enough, vol(HgoI') < ePot and dx (gol, goT') < e(=P+D0)t
for D{j = 9max{ks, K10} + 16.

Since goI' = x9 = au,, 1, part (2) in the proposition holds with 2/ =
(arup, )" tgsl and Do = max{D}, + 2,32} if ¢ is large enough (recall that we
already assumed in several places that D > 32). U

We note that the only place we used the arithmeticity of I" is Lemma B.1.
If we instead assume I' has algebraic entries, the argument above goes
through and yields (2’) in §4.7.
APPENDIX C. PROOF OF THEOREM 6.2

Theorem 6.2 will be proved using the following theorem. First note that
replacing © by %@ and T by by, Y, we may assume by = 1.

C.1. Theorem. Let 0 < a < 1. Let © C B,(0,1) be a finite set satisfying
(C.1) Gor(w) <Y, for every w € © and some R>1,

where T > 1.

Let 0 < ¢ < 0.01la, and let J C [0,1] be an interval with |J| > 1074, For
every b > Y-V there exists a subset J, C J with [T\ Jp| < LcLbe so that
the following holds. Let r € Jy, then there exists a subset Oy, C O with

#(© \ Ou,r)
#0O
such that for all w € ©y,., we have

#{w’ €0: ¢ (w) — fr(’w/)‘ <b} < LeLyltTepa

where L is an absolute constant and

< Letpe

ér(w) = (Ad(ur)w)lg = —w21r2 — 2w11r + wq9.
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We prove the theorem for J = [0, 1], the proof in general is similar. We
begin by fixing some notation. Let p denote the uniform measure on ©.
Let

E(w) = {(r,&(w)) : r € [0,1]}
for every w € ©, and let = = |J,, E(w).
For every b > 0 and every w € O, let

2 (w) = {(q1,42) € [0,1] X R : |g2 — &, (w)| < b}.
Finally, for all ¢ € R? and b > 0, define

(C.2) mg(q) = p({w €v:qe=)}).

The assertion in the theorem may be rewritten in terms of the multiplicity
function mg as follows. We seek the set J;, C [0,1], and for every r € Jj, the
set O, C O so that

—L Tcpa
(C.3) mz((r, &(w))) < LC;{% for all w € Oy,

The following lemma plays a crucial role in the proof of Theorem C.1.
This is a more detailed version of [Sch03, Lemma 8] in the setting at hand,
see also [Wol00, Lemma 1.4] and [Zah12a, Lemma 2.1], and [KOV17, Lemma
5.1]. The general case has recently been addressed in [PYZ22].

C.2. Lemma. Let the notation be as in Theorem C.1. In particular, © C
B:(0,1) and (C.1) is satisfied. For every 0 < ¢ < 0.0la, there ewists
0 < D < c*Y/(#0O) (implied constants are absolute) so that the follow-
ing holds. Let b > Y=Y/ Then there exists a subset © = O, C O with
#(0\ ) < b - (#0) so that for every w € ©, we have

=0 (w) N {q € R? : mb(q) > Db*~"¢}| < b2/ |2 (w)].
Proof. The proof of [LM21, Lemma B.2] goes through mutatis mutandis. O

Proof of Theorem C.1. Assume that the conclusion of the theorem fails for
some L. That is, there exists a subset J C [0,1] with |J| > Lc™%b° so that
for all r € J we have

(C.4) p(©L) > Lty

where O], = {w € © : m)((r,&(w))) < L P/ (#0)}.

We will get a contradiction if L is large enough. Let us write C = Lc= L
and C = C - (#6)7!. Let © be as in Lemma C.2 applied with 8b, then
p(©) > 1 — (8b)°. This and (C.4) now imply that for every r € .J, we have
p(GNO.L) > Cb/2 so long as L > 16.

We conclude that

0.5C2p* < / p(GNO)dr

J
< /@ [{r = mb(r, & (w)) > CTHTeRY| dp.
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Therefore, there exists some wy € O so that
(C.5) [{r € [0,1] : m)((r, & (wo))) > CY 7>} > 0.5C%6%.

For every r € [0,1], let I C {(r,s) : s € R} be an interval of length b
containing (r,&,(wp)). Put

I = {(ql,qg) efr—br+b xR:3(r,s)el,|g—s|l < b}.
If (q1,92) € I+, then |g1 — 7| < b and |g2 — & (wp)| < 2b. Therefore,
g2 — &g, (wo)| < [g2 — & (wo)| + |&r(wo) — &g, (wo)| < 8.

We conclude that (g1,¢2) € Z8(wp). This and mZ((r, fr(’wo))) S O HTepa
imply that for every ¢ € I, ;, we have

(C.6) m%b(q) > p({w/ cE:(ré&w)) e I}) > Critrepe,
Combining (C.5) and (C.6), we obtain that
|58b(w0) N{geR?: mgb(q) > C_'T1+7cba}}| > C?pitee
> CQbQC‘ESb(wO)’ > bZC/a‘ESb(wO)’

where the implied constant is absolute, and we assume L (and hence C) is
large enough so that the final estimate holds — recall that 0 < o < 1.
This contradicts the fact that wg € © and finishes the proof. O

Proof of Theorem 6.2. We will work with dyadic scales. Let ¢1 = Lé log 1.
Let L be as in Theorem C.1; put C = Lc™% and C = C - (#0)71.
Let ¢2 =20+ |clog Y |. Then

i 27 < 10767,
=Ly

Let J = ﬂi;& Jo—¢. Then the choice of ¢5 and Theorem C.1 imply that

7\ J|<Ccr<.
For every r € J', let ©, = ﬂglzéz ©y-¢,. Then by Theorem C.1,

p(©\0,) <Ccr <.

Moreover, for all w € O, and all ¢, < ¢ < {1 we have

(C7) pw €O g w) - &(w) < 27Y) < CTITE L,

Let w € ©,, and put O(w) = O\ {w’ € O : |&(w') — &(w)] <274} In
view of (C.7), applied with ¢ = ¢;, we have

(C.8) #(0\ O(w)) < 20T,
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Moreover, (C.7) applied with o < ¢ < {1, implies that

£y
>l (w) — & w7 < (#0) - (3 0T Ter ooty 20)
(CQ) w'€O(w) =05

— 610T1+7C + 20152 . (#@)

Recall that #6 < T and that 2%%2 < 2207¢ The claim in the theorem
thus follows from (C.8) and (C.9). O

We also need the following theorem which was used in §13, in particu-
lar in the proof of Lemma 13.4. We will reduce this to the results proved
in [LM21, App. BJ, these results have now been obtained in greater gener-
ality, see [PYZ22].

C.3. Theorem. Let 0 < a <1, and let 0 < by < by < 1. Let © C B(0,bp)
be a finite set, and let 6 denote a probability measure on ©. Assume further
that the following two properties hold

(C.10a) K1 <fw) <K
(C.10Db) O(B.(w,b)) < T - (b/by)* for all w and all b > by

where ¥ > 1 and K is absolute.

Let 0 < ¢ < 0.01a, and let J C [0,1] be an interval with |J| > 1074, For
every b > by, there exists a subset J, C J with |J \ Jp| < b so that the
following holds. Let r € Jy, then there exists a subset Oy, C © with

6(0\ Op,) < b°
such that for all w € ©y,., we have
0({w' € © : |G (w') = G (w)] < b}) < C(b/bo)* ™

where C' < ¢™*Y, the implied constants are absolute and (.(w) is defined as

follows:
(e 0 (1 Glw)
Uy exp(w)u_, = (cﬁw 1/dr,w> (0 1 ) .

Proof. In view of the assumption (C.10a), it suffices to prove the claim when
0 is the uniform measure on ©.
Define f : B(0,0.01) — G by

F(wn _ (1twn w12
wol  —wi1 wy Mzt )
There exists an absolute constant ¢y so that the map g = f~!oexp is a

diffeomorphism from B, (0, dy) onto its image and

(C.11) |Dg — I|| < 0.01.
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We may, without loss of generality, assume that © C B,(0,dp). Let ©' =
9(©). Then, in view of (C.10b) and (C.11), we have
#B(w,b)NO’
#6’

Moreover, for any w € B(0, dy), we have

(C.12) <27 - (b/by)" for all w and all b > by.

ur exp(w)u—y = ur f(g(w))u—r.

Therefore, it suffices to prove the theorem with exp replaced by g.
Altogether, it suffices to prove the theorem for (. defined as follows

o (Prwn w0 1 ¢(w)
r W1 l'ﬁg‘il% o \gw d,)\O 1 ’

and when 6 is the counting measure.
The above definition, implies that

wiawa1 —2wi1 —w?, 2
T+wi, r wo1r )

1+ w1 +worr

define Z(w) = {(r, - (w)) : 7 € [0,1]}.
We also define @ : R? x R2 — R by

. w19 +
Gr(w) =

)

(221 + 2)y1 + (w2 + 2122)y7

P(z,y) =y2(1 + 1) +
(z,y) = ya 1) T ——

Note that ®(0,y) = y2 and that
Z(w) = {y € R? : y; € [0,1], ®(w11, w21, y) = wiz}.

Assuming |z;| < 0.1 and |y;| < 1, a direct calculation shows that

A (1+z1)(2F + 221 + 221 + =1)y1 + 23y7)
oy (1421 4 z2y1)?

20 21+ 217

oyt (14 + m2y1)®

In particular, there exists some absolute constant C' so that

2
(C.13) & max{|z1], |z2|} < [F7] + I%T?I < Cmax{lzy], 2]}

In view of [KW99, Eq. (21)], thus, the family Z satisfies the cinematic
curvature conditions [Zahl12a, Eq. (1.5) and (1.6)].
For two curves Z = {y € R? : oy € [0,1], ®(w11,w21,y) = wiz} and
Z/ = {y/ € RQ : yi € [0’ 1]a q)(wlllvwélvy/) = w,12}, define
A(Z, Z/) _ ]Hf ] Hy_y/” + dyq)("wll,U)Ql,y> o dy(b(w/n,w/zpy) :
yeZy' e’ [dy® (w1, war, y)|| - [|dy®@(wiy, why, y') |l

this provides a quantitative tool to study incidence of Z and Z’.
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In view of (C.13), we may apply the results? in [Zah12b]. Therefore, the
proof of the theorem goes through the same lines as the proof of [LM21,
Thm. B.1] (see also the proof of Theorem C.1) if we replace the family =

there by the family Z and A there by A above. O
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