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ABSTRACT. We prove that if a closed hyperbolic 3-manifold M contains
infinitely many totally geodesic surfaces, then M is arithmetic.

1. INTRODUCTION

Let G be a connected semisimple R-group so that G(R) has no compact
factors. An irreducible lattice Ty in G(R) is called arithmetic if there exists
a connected, almost Q-simple, Q-group F and an R-epimorphism ¢ : F — G
such that the Lie group (ker p)(R) is compact and I'g is commensurable with
o(F(Z)), see [29, Ch. IX].

Margulis [28] proved the following.

Theorem A (Arithmeticity). Let G be a connected semisimple R-group so
that G(R) has no compact factors. Let I'g be an irreducible lattice in G(R).
Assume further that rankg G > 2. Then I'y is arithmetic.

Let I'y and G(R) be as in Theorem A. One may reduce the proof of
Theorem A to the case where G is a group of adjoint type defined over a
finitely generated field L and I'y C G(L) —indeed using local rigidity, one
may further assume that L is a number field. The proof of Theorem A is
based on applying the following supperrigidity theorem to representations
obtained from different embeddings of L into local fields, which was also
proved in [28].

Theorem B (Superrigidity). Let G be a connected semisimple R-group.
Let Ty be an irreducible lattice in G(R). Assume further that rankg G > 2.
Let | be a local field, and let H be a connected, adjoint, absolutely simple
[-group. Let p : To — H(l) be a homomorphism so that

p(To) is Zariski dense and is not bounded in H(I).
Then p extends uniquely to a continuous homomorphism p: G(R) — H(I).

It follows from the weak approzimation theorem that if I'y is an arithmetic

group, the index of T’y in Commgg)(To) is infinite. Margulis proved the
converse also holds, see [29, Ch. IX].
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Theorem C. Let G be a connected semisimple R-group so that G(R) has
no compact factors. Let Ty be an irreducible lattice in G(R). Then Ty is
arithmetic if and only if the index of T'g in Commgg)(I'o) is infinite.

Supperrigidity and arithmeticity theorems continue to hold for certain
rank one Lie groups, namely Sp(n,1) and F; 2", [21 ©]. However, there are
examples of non-arithmetic lattices in SO(n, 1) for all n > 2 and also in
SU(n,1) for n =1,2,3.

Totally geodesic surfaces and arithmeticity. The connected compo-
nent of the identity in the Lie group SO(3,1) is isomorphic to

Isom™ (H?) ~ PGLy(C).

Let M = H3/T be a closed oriented hyperbolic 3-manifold presented as a
quotient of the hyperbolic space by the action of a lattice

I' C PGLy(C).

A totally geodesic surface in M is a proper geodesic immersion of a closed
hyperbolic surface into M —note that a totally geodesic plane is compact
in the setting at hand. It is well-known and easy to see that there can be at
most countably many totally geodesic surfaces in M.

Reid [32] showed that if I is an arithmetic group, then either M contains
no totally geodesic surfaces or it contains infinitely many commensurability
classes of such surfaces. There are also known examples for both of these
possibilities, [26]. More recently, it was shown in [14] that a large class of
non-arithmetic manifolds contain only finitely many totally geodesic sur-
faces.

The following theorem is the main result of this paper.

1.1. Theorem. Let M = H3/T be a closed hyperbolic 3-manifold. If M con-
tains infinitely many totally geodesic surfaces, then M is arithmetic. That
is: T' is an arithmetic lattice.

The statement in Theorem answers affirmatively a question asked by
A. Reid and C. McMullen, see [30, §8.2] and [I1, Qn. 7.6].

This paper is essentially a more detailed version of [27]. More explicitly,
several measurability statements were taken for granted in [27], we provide
their more or less standard proofs here; moreover, this paper contains a
more elaborate version of the proof of Proposition when compared to
the proof given in [27]. Overall, our goal has been to make this paper as self
contained as possible.

Shortly after the appearance of [27], Bader, Fisher, Miller, and Stover [1]
proved that if a finite volume hyperbolic n-manifold, H"/T", contains infin-
itely many maximal totally geodesic subspaces of dimension at least 2, then
I' is arithmetic; Theorem is a special case. Their proof and ours both
use a superrigidity theorem to prove arithmeticity, but the superrigidity
theorems and their proofs are quite different.
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In view of Theorem C, we get the following from Theorem If M=
H3 /T is a closed hyperbolic 3-manifold which contains infinitely many totally
geodesic surfaces, the index of I' in its commensurator is infinite.

As was mentioned above the arithmeticity theorem for irreducible lattices
in higher rank Lie groups was proved using the superrigidity Theorem B.
Similarly, Theorem follows from Theorem below which is a rigidity
type result.

A rigidity theorem. Let L be the number field and G the connected,
semisimple L-group of adjoint type associated to I', see §2|also [29, 26]. In
particular, L € R, I' € G(L), and G is R-isomorphic to PO(3,1) —the
connected component of the identity in the Lie group G(R) is isomorphic
to PGLy ((C)

Let S denote the set of places of L. For every v € S, let L, be the
completion of L at v and let 3, be the set of Galois embeddings o : L — L,,.

For every v € § and every ¢ € %, we let “G denote the algebraic group
defined by applying o to the equations of G. Let v € S and o € ¥, then
o(I') € G is Zariski dense.

1.2. Theorem. Let M = H3/T" be a closed hyperbolic 3-manifold. Assume
further that M contains infinitely many totally geodesic surfaces. Let L and
G be as above.

If v e S and o0 € ¥, are so that o(I') C “G(L,) is unbounded, then o
extends to a continuous homomorphism from G(R) to “G(L,).

Theorem follows from Theorem We will recall the argument
from [28] in §3.8) —indeed the group F in the definition of an arithmetic
group is the Zariski closure of I in the restriction of scalars group Ry /o(G),
see also [29, Ch. IX].

The proof of Theorem [I.2] is based on the study of certain I'-equivariant
measurable maps from OH? = S? into projective spaces —equivariant maps
of this kind also play a pivotal role in the proof of the strong rigidity theorem
by Mostow and the proof of the superrigidity theorem by Margulis.

Indeed the proof in [2§] is based on showing that an a priori only measur-
able boundary map agrees with a rational map almost surely; this rationality
is then used to find the desired continuous extension. Our strategy here is to
show that if M contains infinitely many totally geodesic surfaces, a certain
I'-equivariant measurable map on S? is almost surely rational, see Proposi-
tion[3.1] In §3.8we use Proposition[3.1]to complete the proof of Theorem
see [2§].

We end the introduction by mentioning that in this paper the discussion is
restricted to the case of closed hyperbolic 3-manifolds; however, our method
extends to the case of finite volume hyperbolic 3-manifolds. Indeed our
argument rests upon investigating certain properties of a cocycle which will
be introduced in The extension to finite volume hyperbolic 3-manifolds
requires some estimates for the growth rate of this cocycle. The desired
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estimates may be obtained using a similar, and simpler, version of systems
of inequalities in [12].

Acknowledgement. We would like to thank D. Fisher, A. Karlsson, C. Mc-
Mullen, H. Oh, and A. Reid for their helpful comments on earlier versions of
this paper. We also thank the anonymous referee for their helpful comments.

2. PRELIMINARIES AND NOTATION

Let G = PGLy(C), and let I' C G be a lattice. Let X = G/I', and let
volx denote the G-invariant probability measure on X. We denote by volg
the Haar measure on GG which projects to volx.

Let 7 denote the natural projection from G to X, also set K = SU(2)/{+£I}.

We let H = PGLy(R). For every t € R, set

et/? 0
(21) a= (% )

note that a; € H for all t € R. For every 0 € [0, 27], ry € PGL2(R) denotes
the rotation with angle 6.

The bundle of oriented frames over H?® = K\G may be identified with G.
The left action of {a; : t € R} on G and G/I" induces the frame flow on the
frame bundles of H? and M, respectively. For any g € G the image of Hg in
H? is a geodesic embedding of H? into H?3. In this setup, a totally geodesic
surface in M = K\G/T lifts to a closed orbit of H in X.

2.1. The number field L and the L-group G. Let L C R be the field
generated by {tr(Ad(v)) : v € I'}. Since I is finitely generated, L is finitely
generated.

As was mentioned in the introduction, PGLy(C) is isomorphic to the
connected component of the identity in the Lie group SO(3,1). Therefore,
there is a connected, semisimple L-group G of adjoint type, R-isomorphic
to PO(3,1), so that L C R, I' € G(L), see [29, Ch. IX].

In view of local rigidity of I', [18, Thm. 0.11], L is indeed a number field,
see also [33], 35, B6]. We will refer to the pair (L, G) as the number field and
the group associated to I, see [29, 26].

Let S denote the set of places of L. For every v € S, let L, be the
completion of L at v, and let X, be the set of Galois embeddings o : L — L,,.

With this notation, we let (vg,id) be the pair which gives rise to the
lattice I in G —recall that the connected component of the identity in the
Lie group G(R) is isomorphic to PGLy(C).

For any v € S and any o € 3, we let G denote the o(L)-group defined
by applying ¢ to the coefficients of the defining equations of G. Let v € S
and o € ¥,, then o(I') C ?G is Zariski dense.

Note that G is isomorphic to PGLe x PGLs over C. More generally, for
every v € S, there exists an extension [, /L, of degree at most 2 so that 7G
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splits over [,,. That is:
(2.2) ?G is isomorphic to PGLy x PGLy over [,,.

We note that [, depends also on the choice of ¢ € ¥,. Hence, a better
notation would be [, ,. However, in the sequel we will work with pairs (v, o)
separately; thus in order to simplify the notation slightly, we will suppress
the dependence on ¢ in our notation .

Let A C T be a non-elementary Fuchsian group; in the above notation,
we have the following. Let Ha be the Zariski closure of A in G. Then the
Lie group Ha (R) is locally isomorphic to SLa(R).

For every v € § and every o € ¥, let “Ha C ?G denote the o(L)-group
obtained by applying o to the defining coefficients of Hx —note that “Ha
is the Zariski closure of o(A) in ?G.

2.2. Lemma. Let A C T be a non-elementary Fuchsian group. Assume
that o(A) is unbounded in “G(l,) = PGLa(l,) x PGLa(l,). Then there exists
some g € PGLa(l,) so that

“Ha (L) N {(h,ghg™") : h € PGLy(L,)}
is a subgroup of index at most 8 in “HA(L,).

Proof. Since A is fixed throughout the proof, we omit it from the index in our
notation Ha and “Ha. The group H is isogeneous to SLo, in particular, it
is a proper algebraic subgroup of ?G. Moreover, “H intersects each factor
of G trivially. Indeed, G has trivial center; therefore, if “H intersects
a factor non-trivially, then this intersection is normal in “H which implies
that “H < “G. Now since H(L) and G(L) are Zariski dense in H and G,
respectively, we get that H < G. This is a contradiction as the Zariski
closure of A in G is not a normal subgroup.

In consequence, there exists an [,-group L which is an [,-form of SLy, i.e.,
either arising from a division algebra or SLo, and an [,-isogeny ¢ : L — “H,
so that “H(I,)) contains ¢(L(l,)) as a subgroup of finite index. We claim L
is indeed SLga. The group o(A) is unbounded, therefore, the group “H(l,)
is unbounded. Hence, “H is [,-isotropic, this implies the claim.

Since “H is a group of type Aj, the isogeny ¢ is inner, i.e., it is induced
by conjugation with an element g € PGLay(1,).

The claim regarding the index follows as [PGLa([) : SLo(I)] < ¥ /(1¥)? =8
for any local field [ of characteristic zero, see e.g. [5] §2] ([

2.3. Lemmas from hyperbolic geometry. In this section we will recrod
some basic facts from hyperbolic geometry which will be used in the sequel.
Let (7,dy) denote either a regular tree equipped with the usual path
metric or a hyperbolic space equipped with the hyperbolic metric.
We fix a base point o € T. Recall that the Gromov product of points
p,q € T with respect to o is defined by

(rlg)o = %(dT(o,p) + d7(0,q) — dr(p,q))
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We use the usual topology on 7 = T |JOT; in the case at hand T is a
compact metrizable space, see [6, III.H, §3] in particular [0, III.H, 3.18].

Let us begin by recalling the hyperbolic law of cosines. Let pgr be a
hyperbolic triangle and let # be the angle opposite to the edge gr. Then
(2.3) cosh(qr) = cosh(pq) cosh(pr) — cos(#) sinh(pq) sinh(pr)

here and in what follows, we abuse the notation, and use gr to denote the
length of gr as well, see e.g. [0, II, Prop. 10.8].

If T is a tree and pqgr is a tripod (triangles in this case are tripods), then
(g|r)p counts the number of edges in pg N pr and we have
(2.4) qr =pq + pr — 2(q|r)p-

We begin with the following lemma.

2.4. Lemma. Let {p, : n=0,1,...} C T with py = o. Assume that there
exist some Ly, Lz, No > 1 so that A7 (pn, p(n41)) < L1 for all n and

d7(pn,0) > n/Ly  for all n > Ny.
Then there exists some Eoo € OT S0 that pn — Exo-

Proof. This is a special case of [10, Thm. 4.4] applied with Z and 7. The
proof in loc. cit. actually provides a more quantitative estimate, namely one
has: if n and k < n are large enough, then (pg|pn)o > % —O(1). O

We will also need the following lemma, whose proof uses Lemma [2.4] and
Egorov’s theorem.

2.5. Lemma. Let (©,19) be a Borel probability space. Let ¢ : © — IT and
u:Z2% x © = T be two Borel maps satisfying the following.

(1) 9(p=Hp}) =0 for every p € OT.
(2) u(0,0) = o0 for a.e. 6 € O.
(3) There exists some L1 > 1 so that for a.e. € © we have

dT(u(n, 0),u(n+1, 0)) <Ly foralln.

(4) There exists some Ly > 1 and for a.e. 0 € O there exists some Ny
so that

dr (u(n,0),0) >n/Ly for all n > Ny.

In particular, by Lemma we have {u(n,0)} converges to a point in OT
for a.e. 0 € ©. Assume further that

(2.5) u(n,0) — ¥(0) for a.e. € O.

Let {&} C T be any geodesic with & = o. There exist some positive constant
d = d(,u, L1, Ly) and some Ng = Ny(u, L1, Ls) € N so that for all t > 0
and all n > Ny we have

/@dT(u(n, 0),&)d0(0) > 1+ 4% _
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Proof. We explicate the proof when T is a hyperbolic space, the proof in
the case of a tree is a simple modification.

For any 6 € O, let g9 = u(n,0). By the hyperbolic law of cosines, (2.3)),
we have
(2.6) cosh(gy&;) = cosh(o&;) cosh(ogg) — cos(a) sinh(o;) sinh(ogy)

where « is the angle between o&; and ogg —if T is a tree, (2.6 gets the
form ([2.4)).

Fix some 0 < € < 1/(8L1Ly). In view of our assumption (1) and the
compactness of 9T, there exists some § > 0 so that for every p € 0T

(2.7) I (Ns(p)) < e/2.

By Egorov’s theorem and (2.5)), there exists ©' C © with 9(0') > 1—¢/2
and some Ny > 1 so that for all § € © and all n > Ny, we have

(2.8) dr(u(n,0),0) > 57,

Let E:= {6 € O : ¢(0) &€ Ns(€x0)} where {oo = limy_y00 & € OT. Then
thanks to (2.7) and 9(©’) > 1 — /2 we have ¥(E) > 1 —¢.

Now using ([2.6) and (2.8]), we conclude that
(2.9) d7 (g, &) >t + 57, — Os(1)
for all 8 € E and all n > Nj.

Note also that by our assumption (3), we have dy(u(n,#),0) < Lin for
a.e. § € O. In particular, we get that
(2.10) d7(ge, &) >t — Lan

for a.e. # € © and all n € N.
Now, splitting the integral over E and its compliment and using the esti-

mates in (2.9) and (2.10]), we obtain the following:
/@dT(qe,ﬁt) d9(0) > (1 —e)(t+ g — Os(1)) + (t — Lin)e

iy
>t T G

st s L o,()
2

This completes the proof if we let ¢/ = Os(1). O

— Lien) — Os(1)

It is worth mentioning that the above lemmas hold for any proper, com-
plete, CAT(—1) space.

2.6. Action of I on varieties. Let C be the space of circles in S? = 9H3;
the space C is equipped with a natural PGLy(C)-invariant measure o. Let
m denote the Lebesgue measure on S2. For every C € C, let m¢ be the
Lebesgue measure on C.

Here and in what follows, by a non-atomic measure we mean a measure
without any atoms.
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The following general lemma will be used in the sequel.
2.7. Lemma. Let [ be a local field. Let H be a connected [-group which
acts [-rationally on an irreducible l-variety V. Assume further that H acts
transitively on V. Let p : I' — H(l) be a homomorphism so that p(I') is
Zariski dense in H and let ¥ : S — V(I) be a p-equivariant measurable
map. Then

(1) m({€ €S?:¥(&) e W(I)}) =0 for any proper subvariety W C V.
(2) For o-a.e. C € C and every p € V(I) we have

mc({§ € C:U() =p}) =0.

Proof. Part (1) is well-known, see [20, Lemma 4.2] also [29, Ch. VI, Lemma
3.10] and [17]. We explicate the argument for the convenience of the reader.

Suppose the claim in part (1) fails. For every d > 0, let ¥; denote
the collection of irreducible subvarieties W C V of dimension d so that
m(¥w) > 0 where Uy = {£ € $*: U(£) € W(I)}.

By our assumption, there exists some 0 < d < dim(V) so that X4 # 0.
Let dy be the smallest d so that X4, # 0.

We claim that for every ¢ > 0, there are at most finitely many W € X,
with m(‘llw) > ¢. To see this note that since ¥4, consists of irreducible
subvarieties, dim(W N'W') < dy for all W # W’ € ;. In view of the
choice of dy, thus m(\I/wﬂW/) = 0. This and the fact that m is a finite
measure imply the claim.

Let a = sup{m(\Ilw) : W e Edo}. In view of the above, there exists some
W € Yy, so that m(\I/WO) =a.

By a Theorem of Furstenberg, see e.g., [29, Ch. VI, Prop. 4.1], there
exists a probability measure v with supp(v) = I', so that ¥ * m = m. That
is: m= [~y.mdv.

Recall that W is p-equivariant, hence

e e w(E) e WD} = {€ €82 T(¢) € (p(7)W)(1)}.

This and v * m = m imply

a= /m(y_l\llwo) dv(v) = /m(\ij(,y—l)WO) dv(7).

In view of the definition of a, we thus have m(‘lip(vq)wo) = q for all
v € T' (recall that supp(rv) = I'). By our claim above, applied with € = a,
we thus conclude that

{yeT:p(v)Wo =Wy}

is finite index in I

Since H is connected and p(I") is Zariski dense in H, we conclude that
Wy is invariant under H. This contradicts transitivity of the action of H
on V and finishes the proof of part (1).
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We prove part (2). Let A = {(C,&,&) € CxS?xS?: ¢,¢ € C}. Equip A
with the natural measure arising from the G-invariant measure o on C and
the measure mg on C' € C.

Define @ : A — V(I) x V(I) by ®(C,&,¢)
claim in part (2) fails. Then

B:=o"'({(p.p):pe V(D}) C A

has positive measure.

In view of Fubini’s theorem then the projection of B onto S? x S? contains
a positive measure subset. That is: there exists a positive measure subset
of S? x S§? which gets mapped into {(p,p) : p € V(I)}. Thus using Fubini’s
theorem again, there exists some &' € S? so that {£ € S?: U(¢) = ¥(¢')} has
positive measure, i.e., ¥ maps a positive measure subset of S? to a point.
This contradicts part (1) and finishes the proof. O

(¥(€),¥(¢)). Assume the

Recall from that for any C' € C, the convex hull of C in H? corresponds
to a coset Hg for some g € G. For every ¥ C G, put

Cp ={C €C:3 g€ E so that the convex hull of C' corresponds to Hg}.

2.8. Lemma. Let the notation be as in Lemma[2.7. Further, assume that
V() is compact and that it is equipped with a metric. For every p € V(I)
and every r > 0, let N,.(p) denote the open ball of radius r centered at p with
respect to this metric.

Let E C G be a compact subset with positive measure. For every € > 0,
there exists a compact subset E. C E with volg(E \ E.) <g &3*volg(E)
and some 6 > 0 with the following property. For every C € Cg. and every
p € V() we have

mo({€ € C: (&) € Ns(p)}) < eme(C).

Proof. Up to a null set, we may identify the space of circles C with OH3 x (0, 1]
—normalize the metric on S? so that the great circles have radius 1, then
a circle C € C is determined by its center, a point in OH?, and its radius
r € (0,1].

By Lusin’s theorem, there exists a compact subset D C OH? with m(D) >
1 — % so that ¥|p is continuous.

Note that Cg is a compact subset of C with ¢(Cg) > 0. Therefore, ignoring
a possible null subset, there exist r,7’ > 0 so that

Cp C OH® x [r,1] =: C,

and m(Cg) > r'm(C,).
For every & € OH?, set

Ie = {t € [r,1] : mg,(6)(Ce(§) N D) < (1 = e*)mey 6 (Ce(€)) }

where C¢(§) is the circle with radius ¢ centered at &.
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For every ¢ € OH®, {Cy(€) : t € [r,1]} swipe a positive portion of OH?3;
hence, by Fubini’s theorem, |I¢| <, £3? for every £ € OH3. Therefore,

c({C €C :mc(CND)<(1-e?)me(0)}) <, ¥

Let B, = {g € E : me, (Cy N D) > (1 — e¥)me, (Cy)} where Cy is the
circle so that the convex hull of Cy corresponds to Hg. In view of the above
estimate and since Cg; C C,., we have vol(E \ E.) Ly €32v0l(E).

Let C' C C be the conull subset where Lemma [2.7(2) holds true. Let E.
be a compact subset of

E.n{geG:0,eC'}

so that vol(E\ E.) <, €¥?vol(E). In particular, E. satisfies the first claim
in the lemma. We now verify that it also satisfies the second claim.

Assume contrary to the claim that for every n there is some p, € V(I)
and some C), € Cg_ so that

(2.11) me, ({€ € Cp : W(E) € Ny jp(pn)}) > eme, (Cn).

Passing to a subsequence, if necessary, we assume that C,, - C' € Cp.
and p, — p € V(I) —recall that V(I) is compact.
For each n, let Cj, := {§ € C, : ¥(£) € Ny/p(pn)} N D. In view of the fact

that E. C E. and using (2.11]), we get that

Let C" := limsup C},; then C' € C' N D and mg(C") > eme(C) /2. More-
over, for every £ € C’ there exist some &, — £ with &, € CJ,. Since VU is
continuous on D, we get that ¥(§) = p, i.e., ¥(C’) = p. This contradicts
the fact that C’ € Cp. C €’ and finishes the proof. O

3. A I'-EQUIVARIANT CIRCLE PRESERVING MAP

In this section we state one of the main results of this paper, Proposi-
tion We then complete the proofs of Theorem and Theorem
using Proposition [3.1]

Let the notation be as in In particular, L is a number field and
G is an L-group. For every v € § and ¢ € 3, let [, denote C if v is an
Archimedean place, and an extension of degree at most 2 of L, so that °G
is [,-split if v is a non-Archimedean place. Recall from that

?G is [,-isomorphic to PGLy x PGLs.

For every g, let &, C Pl, x P, be the graph of the linear fractiona]ﬂ
transformation g : Pl, — PIl,.

19f [r,1] € PL,,, then g([r,1]) = [£+2,1] where g = (Z Z), with the usual convention,

cr+d’
see also
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Let B, denote the group of upper triangular matrices in PGLa([,). We
may define €, C B,\PGLy(l,) x B,\PGLa(l,) = PI, x Pl, alternatively as
follows. Let g € PGLa(l,), the stabilizer of €4 in PGLa(l,) x PGLy([,) is

(3.1) Stab(€,) = {(h,g 'hg) : h € PGLa(L,)}.

Recall from that C denotes the space of circles in S = OH?; the
space C is equipped with a natural PGLy(C)-invariant measure o. Recall
also that m denotes the Lebesgue measure on S?, and that for every C € C,
m¢ denotes the Lebesgue measure on C.

3.1. Proposition. Assume X = G/I' contains infinitely many closed H -
orbits. Let |, and G be as above and assume that

o(I') € PGLa(l,) x PGLy(ly) is unbounded.
There exists a o-equivariant measurable map
v S* =PI, x P,
with the following properties.

(1) For a.e. C € C we have (¥|c)smc is non-atomic. In particular, the
essential range of V|c is infinite for a.e. C € C.

(2) For a.e. C € C there exists some gc € PGLa(l,) so that the essential
image of ¥|c is contained in €y, .

This proposition will be proved in Our goal in this section is to
complete the proofs of Theorem [1.2] and Theorem [I.1] using Proposition [3.1

The argument in this section are measurable versions of well-known argu-
ments, see e.g., [19,[7]. In the sequel by an inversion of a circle C, we mean
a linear fractional transformation on C' of order 2 where C' is identified with

PR; similarly we define an inversion of €,;. The group of inversions on €, is
identified with Stab(€,), see (3.1]).

3.2. Lemma. Let ¢ : PR — &, be a Borel measurable map so that the
essential image of ¢ has at least three points. Let T be a subset of inversions
on PR so that the group generated by I contains PSLo(R). Assume further
that there exists a Borel map f : I — Stab(&,) which satisfies the following:

(3.2) foranyt€Z, por= f(t)op mpr-a.e. on PR.
Then f extends to a continuous homomorphism from PSLa(IR) into Stab(,).

Proof. First note that since the essential image of ¢ has at least three points,
any linear fractional transformation on €, is uniquely determined by its
restriction to the essential image of ¢.

In view of this and the map ¢ 0+ 01y — f(t1) 0o+ 0 f(tn) is a
well-defined measurable homomorphism from the group generated by Z into
Stab(&,).

The claim follows from this as the group generated by Z contains PSLy(R)
and any measurable homomorphism is continuous, see e.g. [29, Ch. VII,
Lemma 1.4]. O
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Let (£,&) € S x §2, with € # ¢/. We parametrize the family of circles
passing through {&, ¢’} as follows: using the stereographic projection with a
pole different from {¢,¢'}, we assume {&, &'} € R2. A circle passing through
{£,€'} is uniquely determined by a point on the orthogonal bisector of the
line segment ££ in R?, or it is centered at oo (which yields the straight line
through {¢,¢'} C R?).

In view of the above, we let {C}(¢,¢) : t € S'} denote the one parameter
family of circles in S? passing through ¢ and ¢’

Given a triple (&,¢&,C) € S? x S§? x C we say {£,¢'} and C are linked if ¢
and ¢ belong to different connected components of S? \ C. For every circle

C e, let
(3.3) Ec C $?* x §*

denote the set of (£,&') € S? x S? so that {¢,¢'} and C are linked.

If (£,¢') € Ec, we may also parametrize the circles passing through {¢, ¢}
using points on C'. Indeed, for every 6 € C, there is a unique circle C'(§,¢’,0)
passing through them —this is a two-to-one map: C(&,£,0)NC = {0,6'}.

3.3. Lemma. Let C € C and (§,&') € S? x S%; assume that {£,€'} and C
are linked. Define

legl :C = C

as follows. Let p € C, there exists a unique circle C' which passes through

{€,¢,p}. Then C"NC = {p,q}. Define ¢ ¢ (p) = q.
The map ¢ ¢ is an inversion on C.

Proof. First note that t¢ ¢ has order two. The fact that t¢ ¢ is an inversion
on C could be seen, e.g., as follows: we may assume C' is the unit circle in
the plane, & = oo and & = (0,b) for some 0 < b < 1. Let pr denote the
stereographic projection of C onto the line {y = b}U{oo}. Then pr(0,1) = oo
and ¢ ¢(0,1) = (0, —1). Moreover, if pr o ¢ ¢ (p) = (a,b) with a # 0, then
proee(q) = (X=1,0).

. 2_ . . . . .
Since a - % = b?> —1is a constant, L¢ ¢ 1S an inversion as we claimed. [

3.3.1. Remark. We also need an analogue of Lemma [3.3|in the target space,
i.e., for €4. This can be seen by a direct computation which involves solving
a quadratic equation. As was done in the proof of Lemma one may also
simplify this computation as follows: We may reduce to the case where the
graph is given by zw = 1, £ = (00, ), & = (r,s) with r, s both finite and
every line az + b through &’ intersects zw = 1. ;fhen, on the finite points of

the graph, the inversion is given by z — —z — .

3.4. Lemma. Let E' C E¢ be a subset with positive measure. For every
(£,&) € E', let 1ger be constructed as in Lemma . Then the group gen-
erated by the I' := {1e ¢ : (£,&') € E'} contains PSLa(R), where we identify
C with PR.
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Proof. Let us write

Inv:—{(a b ) :a,b,cER,a2+bc——1}.
c —a

We equip Inv with the Lebesgue measure, then Z’ C Inv has positive mea-
sure. Moreover, any set of positive measure in Inv generates a subgroup
which contains PSLa(R).

To see this, note that for a.e. (g,¢’) € Inv we have glnv N ¢'Inv is one
dimensional. Therefore, there are g,¢' € Z’' so that Q := (¢Z')(¢’Z’) has
positive measure in PSLa(R). Now Q'@ contains an open neighborhood of
the identity and PSLy(R) is connected, hence, Q'@ generates a subgroup
which contains PSLa(R). O

Let the notation be as in Proposition In particular,
U S? — P, x P,
is a o-equivariant measurable map in Proposition [3.1

3.5. Lemma. Let V = {(C,0,0/) € CxS?xS?: 0,0/ € C}. ThenV is a
subvariety of C x S? x S%; equip V with the natural measure. There exists a
conull Borel measurable subset

AcCV
so that W(0),¥(0') belong to the essential image of V¢ for all (C,0,0") € A.

Proof. Since V¥ is measurable, for any n € N there exists a compact subset
D, C S§? with m(S?\ D,) < 1/n so that ¥|p, is continuous; we may also
assume that D1 C Dy C ---.

For every m € N, let C,, denote the set of circles with radius > 1/m.
Then C,, is a compact subset of C and C = UC,,. For every m,n € N let
Cmpn={C €Cp : mc(CND,) >0} Then U,Cp,p is a conull Borel subset
of Cy, for every m.

Let C € Cy,n, and let 8 € C' N D, be a density point for C'N D,,. Then
by continuity of ¥|p, , for every r > 0, we have ¥~1(N,(¥(9)) N D, N C
is an open subset of D, N C; since 0 is a density point of C N D,,, we get
that mg(Y~1(N,(¥()) N D, N C) > 0. In particular, ¥() belongs to the
essential image of VU/|c.

Define A7, ,, = {(C,0,0') : C € Cpup, 0,0/ € C N Dyp}. Then A, is a
Borel subset of V. Using a countable basis of open subsets, we see that

Amn ={(C,0,0") € Ay, ,, : 0,0 are density points of C'N D}

is a conull subset of A;, .
This in view of the above argument implies that A = Uy, nAp,n satisfies
the claim in the lemma. O

3.6. Lemma. Let the notation be as in Proposition [3.1. For a.e. C € C,
there is a conull subset Er, C Ec, see (3.3)), so that for all (§,£') € Ef, the
following hold.
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(1) W(e) £ B(E).

(2) For a.e.t € S', there exists g; € PGLa(L,,) so that the essential image
of ¥|c, (¢ s contained in &g, .

(3) For a.e. 0 € St the following holds. Let CNC(&,¢',0) = {0,0'} where
C(&,8,0) is the circle passing through {&,&',0}. Then W(0) # ¥(0')
and they both belong to the essential image of V|c.

Proof. Let C' C C be a conull subset where Proposition [3.1(1) and (2) hold.
Then, for any C' € C’, we have the essential image of ¥|¢ is a subset of €4,
and the essential image is an infinite subset.

Applying Lemma (1) with U and ¥(€) (for every & € S? so that W(¢)
is defined), the set of & € S? such that U(¢') = ¥(£) is a null set. That is:
for a.e. (&,¢') € S? x S? we have U(&) # ¥(¢).

Note also that since C’ is conull, for a.e. (£,¢) € S? x S? we have

Ci(&,6) el forae. teSh

In consequence, for a.e. (§,&') € E¢ parts (1) and (2) hold true. We now
show that (3) also holds for a.e. C' € C’' and a.e. (£,&') € Ec.
Let A be as in Lemma 3.5l That is:

AcC{(C,0,0)cCxS*xS*:0,0/ cC}y=V

is a conull Borel measurable subset so that ¥(6), U(#’) belong to the essential
image of ¥|¢ for all (C,6,0') € A.
Define
A= Anpr ()
where pr : V — C is the projection map.

Let B' ¢ A’ x S? x S§? be the set of points (C, 0,6, &, &) where (C,0,0') €

A, (&,€) € Eg, then B’ is Borel subset. Let

B:={(C,0,0,6,¢)eB :CNCEE,0)=1{6,01};
note that B is also a Borel set. Indeed, B is the inverse image of the diagonal
in ((S' x SY)/(Z/2)) x ((S' x S')/(Z/2)) under the map (C,0,6,£,&) —
({6,0'},CNC (& ¢, 0)) where we identified C' with S!.

By the definition of B and Lemma[3.5] for any (C,6,6,¢,¢') € B we have
U(#) and ¥(#") belong to the essential image of ¥|c.

We now show that, after possibly removing a null subset from B, the first
claim in (3) also holds. Let B C B be the set of (C,0,6,¢,¢') € B so that
T(h) = ¥(¢'). We claim that B is a null set.

To see this, observe that if we fix (C,0) and vary (£,¢') € E¢, there is
a unique #' € C so that (C,0,0,£,¢') € B; indeed {6,0'} = C N C(&,&,0).
Assume now contrary to the claim that B has positive measure. By Fubini’s
theorem, thus, there exists some (C,6) so that

B = {(&¢.0):(C,0,0'.¢,¢) € B}

has positive measure —this fiber is the graph of the analytic map (£,¢') — ¢,
as we remarked above.
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Moreover, by varying (£,¢') € E¢, we cover every 6 # 6’ € C; they appear
as the intersection of C' N C(&,&,0). Using the implicit function theorem,
thus there is a subset J C C' with ma(J) > 0 so that ¥(6") = ¥(0) for all
¢’ € J. This contradicts the fact that C' € C’ —recall that Proposition[3.1[1)
holds for all C' € C’.

The proof is complete. O

3.7. Lemma. Let the notation be as in Proposition[3.1. In particular,
v:S§*— P, x Pl

is a T'-equivariant measurable map which satisfies parts (1) and (2) in Propo-
sition [3.1 Then I, = C and ¥ agrees with a rational map from S* into
PC x PC almost everywhere.

Proof. Let C € C be so that Lemma and Proposition holds true and
let Ef. C E¢ be as in Lemma In particular the essential image of ¥|¢
belongs to € := €y, for some gc € PGLa(l,). Let Z be the collection of
inversions of C' obtained by (&,£') € E(, as defined in Lemma Then by
Lemma[3.4] 7 generates a subgroup which contains the connected component
of the identity Stabg(C)° ~ PSLy(R) C Stabg(C).

Recall that the essential image of ¥|- in € is infinite, therefore, an in-
version is uniquely determined by its restriction to the essential image of .
By Lemma [3.6 and Remark [3.3.1] ¥ induces a map f from Z into the set of
inversions on €.

Since the essential image of V| in € is infinite, we get from Lemma
that f extends to a continuous homomorphism from Stabg(C)° ~ PSLa(R)
into Stabg(€) ~ PGLa(l,). Such a homomorphism can only arise from
algebraic constructions as follows: There exists a continuous homomorphism
of fields ¥ : R — [, and an isomorphism of algebraic groups ¢ : YPGLy —
PGLs so that f(g) = ¢(9%(g)) for all g € PSLa(R) where 9° : PGLy(R) —
PGLy(9(R)) is the isomorphism induced by ¥, see [29, Ch. I, §1.8].

Since there are no monomorphism from R into non-Archimedean local
fields, continuous or not, we get that [, = C.

We now show that ¥ agrees with a rational mapﬂ almost surely. Let C and
C’ be two circles which intersect at two points and both satisfy Lemma
—the set of intersecting circles has positive measure in C, hence, two such
circles exist. Let C N C" = {£,&'} where £ # &'. Using the stereographic
projection of S? with & as the pole, we get coordinates on R? induced by
two lines ¢ and ¢’ corresponding C and C’, respectively, which intersect at
the image of ¢. Thus V¥ induces a measurable map in two variables which
is rational in each variable. In view of |28, Lemma 17|, we thus get that ¥
agrees with a rational map almost surely. O

2In the case at hand this assertion can be proved using more elementary arguments,
e.g. by choosing three parallel circles.
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3.8. Proofs of the main theorems. In this section we complete the proofs
of Theorem and Theorem assuming Proposition [3.1

Proof of Theorem[1.3 In view of Lemma [3.7] we may assume [, = C and
U agrees with a rational map almost surely. Theorem follows from
this by [28, §1.3] as the action of PGLa x PGLg2 on its boundary is strictly
effective. O

Proof of Theorem[1.1. We recall the argument from [28, Proof of Thm. 1,
p. 97]. Let the notation be as in in particular, vy and ¢ = id are the
place and the embedding which give rise to the lattice I" in PGL2(C). By
Theorem [1.2] for any (v, o) # (vo,id) we have o(I') is bounded in G(L,).

Let G’ = Ry /g(G) where Ry /g is the restriction of scalars. Then G'(R)
is naturally identified with [[ G(L,) where the product is taken over all the
Archimedean places. Let ¢(I") denote the image of T’ in G’ — note that
() is isomorphic to T and ¢(T") C G'(Q).

Let F be the Zariski closure of ¢(I') in G’. Then the natural map p :
F — G is an R-epimorphism. Let K = ker(p). Recall that any compact
subgroup of a real algebraic group is itself algebraic. In view of this and
since ¢(I") has bounded image in K(R), we get that K(R) is compact.

Moreover, o(I") is bounded in G(L,) for all non-Archimedean places and
I is finitely generated, hence, ¢(I') N F(Z) in finite index in ¢(I"). Further,
since K(R) is compact, o(F(Z)) is discrete in G(R); we get that I' and
o(F(Z)) are commensurable. The proof is complete. O

4. THE COCYCLE AND EQUIVARIANT MEASURABLE MAPS

In this section we recall a construction due to Margulis which produces
an equivariant measurable map between certain projective spaces.

Let I' C G be a uniform lattice and let [ be a local field of characteristic
zero. We assume fixed a homomorphism

p:T'— PGLa(l)

whose image is unbounded and Zariski dense — in our application, p will
actually be a monomorphism.

In the sequel we will consider measurable maps which are p-equivariant.
Since p is assumed fixed throughout, we abuse the notation, and often refer
to these maps as I'-equivariant maps.

4.1. Characteristic maps and cocylces. Let By (resp. B) denote the
group of upper triangular matrices in G (resp. PGLa(l)). We now recall
from [29, Ch. V] the construction of a measurable map from S? 22 By\G to
B\PGLy(I) which is associated to the representation p. This approach relies
on the multiplicative ergodic theorem.

We fix a fundamental domain F' for I' in G using a Dirichlet fundamental
domain as follows, see e.g. [34]. Let d be the bi-K-invariant metric on G
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induced from the hyperbolic metric on H3. Let
F={geG:dleg) <dle,gv) for all y € T}

where e denotes the identity element in G.

Then FT = G, and F° N F°y = () for all e # v € T where F° = {g €
G : d(e,g) < d(e,gv) for all e # v € T'} is the interior of F. Note that the
closure of F' is compact, and dF is a union of finitely many manifolds with
lower dimension. Let {e,y1,...,7} = {7y € T': FN Fy # §}.

We now define F' inductively. Let Fjy = F.Let 0<i < n, and suppose
Fo, ..., F;_q are defined; put F; = F;_1 \ F;_17;. Let FF = F,. Then

(4.1) G=Fl and FyNF =10 forall v+#e.

In view of (4.1)), for any g € G there exists a unique 7, € I' so that
g € Fryy. Set

w(g) = p(7g)-
Then w : G — PGL4y([) is a Borel map and
(4.2) w(gy) =w(g)p(y) for all g € G and y € I'.

Define b/,(g,y) = w(gy)w(y)~! for all g € G and y € G. Note that by (4.2)
we have V) (g,y) = bl,(g,y7) for all v € T'. Define

bo(g,z) =V (9,7 (z)) for all g € G and z € X.

Then by, (9192, ) = bw(91, 922)b, (g2, ). That is: b, is a cocycle.
Define the cocycle

(4.3) u(n,x) = by(an, ) for all x € X and all n € Z;
where a; is defined in (2.1)).

4.2. Theorem (Cf. [29], Ch. V and VI). Let the notation be as above.

(1) There exist some A1 > 0 so that the following holds. Let w € 2\ {0}.
Then for volx-a.e. x € X we have

.1
lim —log([|u(n, z)w||/[|w]) = X

n—oo n

(2) There is a unique p-equivariant Borel measurable map
Y : G — B\PGLo(l) 2 PI
defined as follows: ¥(g) = [w], 0 # w € 2, if and only if

.1
lim —log(|lw(ang)wl/llwl]) = As.

n——oo

Moreover, 1(bg) = 1¥(g) for all b € By. In particular, v induces
a p-equivariant Borel map from S? = By\G to B\PGLy(l) which we
continue to denote by .
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Proof. This theorem is proved in [29, Ch. V] using the multiplicative er-
godic theorem. Indeed [29, Ch. V, Thm. 5.15] shows A\; > 0. The de-
sired p-equivariant map is constructed in [29, Ch. V, Thm. 3.2] from G to
B\PGLy(I), and it is shown in [29, Ch. V, Thm. 3.3(ii)] that this map factors
through a map from By\G = S2.

An alternative approach to the existence of a p-equivariant Borel map
from S? to B\PGLy(I) is due to Furstenberg, see [29, Ch. VI, Thm. 4.3]
—this approach is based on the amenability of By, see also [17] 20]. O

4.3. A set of uniform convergence. Let € > 0. Let F be as in . Let
F" C F be a compact subset volg(F") > (1 — e%)volg(F). Let F' C F be
as in Lemma 2.8

Let e; = (1,0) € [2. Assuming ¢ is small enough, there exists a compact
subset F! C F! with volx(F!) > 1 —&® so that the convergence in Theo-
rem {4.2(1) is uniform. That is for every 1 > 0 there exists some n, so that
for all n > n, and any = € F. we have

1
(4.4) ‘(ﬁ log [|u(n, z)e1|)) — )\1‘ <n forall n > n,.

Since the measure voly is G-invariant and in particular, SO(2)-invariant,
the following holds. There exists a compact subset F. C F! with

voly (F.) >1—¢&*

so that for every g € F. we have |{0 € [0,27] : rog € F!}| > 1 — &* where 7y
denotes the rotation matrix with angle 6.

Let 7 > 0 be fixed. For every a > 0, let F.(7,a) C F. be the subset with
the property that for every g € F.(7, ) we have

(4.5) {6 € [0,27] : B(arrgg, o) C Fw(arreg)}| > 2(1 — 2eh)2r

where for every h € G we have w(h) € T' is the element so that h € Fw(h)
and B(h, @) denote the ball of radius « centered at h.
Let 7 and € > 0 be fixed. There exists some ap = agp(e) so that

(4.6) vol(F.(7,aq)) > 1 — 2¢%.

Random walks and distances. Recall that 7 denotes the Bruhat-Tits
tree (if [ is non-Archimedean) or H? if [ = C. Let d7 denote the right
PGLs(l)-invariant metric on 7 —that is: if [ = C, then d is the hyperbolic
metric and if [ is non-Archimedean, then d+ is the path metric on a tree.
We fix a base point o € 7 which we assume to be the image of the identity
element of PGLy(l) in 7. Abusing the notation, given an element g €
PGLy(I) we sometimes write d7(g,0) for d7(o.g,0).
Recall that I' is uniform. Therefore, F' is bounded and we have

(4.7) dr(o.u(n,x),0) forallz € X andn > 1

where L; depends on the representation p.
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4.4. Lemma. Let 0 < e < 1/2 be so that[Lif < 0.01\;. Let F. be defined as
in §4.3. There exists some Ny so that for any n > Ny we have the following.

(1) For every geodesic & = {&} C T with §o = o and every g € Fy, there
exists a subset Ry¢ C [0,27] with |Rg¢| > 2(1 —e)m so that for all
0 € Ry ¢ we have

dr(ou(n,reg),&) >t + Ain/3 forallt >0
(2) For every geodesic & = {&} C T with & = o and every g € F. we

have )
1 Y
— dr(ou(n,reg),&)dd >t + An/5
2 0

for allt > 0.

Proof. The proof is a special case of the argument presented in the proof
of Lemma [2.5) we repeat parts of the argument for the convenience of the
reader.

Apply with 7 = 1/2 and assume n > ny ; for the rest of the discus-
sion.

For any 6 € [0, 27], let g9 = o.u(n,rgg). By the hyperbolic law of cosines,

see (2.3)), we have
cosh(qyp&;) = cosh(o&;) cosh(ogg) — cos(a) sinh(o&;) sinh(ogy)

where « is the angle between of; and ogg —if T is a tree, the above gets the

trivial form ([2.4)).
Then in view of Lemma and the fact that g € F. C Cpy, there exists

some 6 > 0 so that

(4.8) {0 € 10,27] : ¥ (rag) & Ns(§c)}| > 2(1 —&)m
where £ = limy_,o0 & € B\PGLo(I).

Therefore, we have
(4.9) dr(o-u(n, reg), &) > t+ 24" — O5(1)

for all # which lies in the set appearing in (4.8)). Assuming n is large enough,
depending on §, we get part (1).

Recall that dy(o.u(n,h),o0) for all h € F. In particular we have

(4.10) dr(ou(n,h),&) >t for all n.
Part (2) now follows from (4.9) and (4.10) as Lemma was proved
using (2.9) and (2.10)). O

4.5. Lemma. Let 0 < e < 1/2 with[Lif < 0.01\; and let T > Ny be a fived
parameter, where Ny is as in Lemma[{.f} Suppose x € X is so that there
exists some g, € F:(7,ap) with

(4.11) dist(arrgge, arrox) < ag/2  for all 6 € [0, 2],
see ({4.6). Then the following hold.
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(1) Let € = {&} C T with & = o be a geodesic. There exists a subset
Ry ¢ C [0,27] with |Rye| > 2(1 — 2e)m so that for all § € R, ¢ we
have

dr(o.u(r,rex), &) >t 4+ 7A1/3.
(2) Let & ={&} C T with { = o be a geodesic. Then
1 2m
— dr(o.u(r,rex),&)d0 >t + 71 /5.
2 0
Proof. We first prove part (1). Let
R, = {0 €[0,27] : B(a,;rggs, ao) C F'}.
Then by the definition of F.(7, ap), see (4.5, we have |R,, | > 2(1 — 2e%).
Let Ry, ¢ be as in Lemma (1) applied to g, and £ and put
Rye:= Ry, N Ry, ¢.

Note that \Rxd > 2(1 — 2¢)m.
Let now 6 € R, ;. By (4.11), we have
dist(a,rgg., arrgr) < ag/2.

Since 0§ € Ry q4,, we have u(7,79x) = u(7,799,). Moreover, since 0 € Ry, ¢
and 7 > N, we get from Lemma [1.4[1) that

dr(o.u(r,rex),&) = dr(o.u(T,1992),&) >t + \7/3,

as was claimed in part (1).
The proof of part (2) is similar to the proof Lemma as we now expli-
cate. Recall from (4.7)) that

(4.12) dr(ou(r,rex),&) >t

for any 6 € [0, 27].
Using part (1) and (4.12)) we obtain the following.

% 027r dr(ou(r,rex), &) d0 > (1 —2e)(t + %) +2(¢t )e
>t4+ ANT/4— 167’
LiF<001A 4 4 A 7/5.
The proof is complete. O

5. THE MAIN LEMMA

The following lemma is one of the pivotal ingredients in the proof of
Proposition 3.1}, and is one of the main technical tools in this paper.

5.1. Lemma (Main Lemma). Let the notation be as in §f Further, assume
that there are infinitely many closed H-orbits {Hx; : 1 € N} in X = G/T".
There exists some A\g = Ao(p) > 0, and for every € > 0, there exist positive
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integers iy, 7, and N with the following properties. For all i > ig, there
exists a subset Z; C Hx; with pp.,(Z;) > 1 — ¢ so that

dr(ou(nt, z),0) > Aotn  for all z € Z; and alln > N
where g, denote the H-invariant probability measure on Hx; for every 1.

The proof of this lemma relies on results in §4] equidistribution theorems
in homogeneous dynamics, and certain maximal inequalities. The proof will
occupy the rest of this section.

We begin with the following theorem which is a special case of a theorem
of Mozes and Shah [3I] —the proof in [3I] builds on seminal works on
unipotent dynamics by Dani, Margulis, and Ratner.

5.2. Theorem. Let I' C G be a lattice. Assume that there are infinitely
many closed H-orbits {Hz; : i € N} in X. For every i let jup,, denote the
H-invariant probability measure on Hx;. Then

/fduHIi — /fdvol for any f € C.(G/T).

This theorem plays an important role in the sequel. We record a corollary
of this theorem here which will be used in

5.2.1. Corollary. Let the notation be as in Theorem[5.4 Let 0 < e < 1/2
and for each i, let Z; C Hz; be a subset with pp.;(Z;) >1—¢. Let § >0
and for each i, let N; 5 be the open d-neighborhood of Z;. Then there exists
some i1 so that

voly (Nis) > 1—2¢ for alli > 1.

Proof. This follows from Theorem However one needs to practice cau-
tion as the geometry of the sets Z; is not controlled. We remedy this issue
using the fact that ¢ is fixed. Throughout, we assume that ¢ is less than the
injectivity radius of every point x € X, and write p; for ppy,,.

For each 4, fix a covering {B;;} of X \ N;s with balls of radius §/4
with multiplicity depending only on X. For all 7 and j, let B;rj denote the
ball with the same center as B;; and radius 6/3. Set O; = U;B;; and
of = UjBZj. Then Z; N O = 0 for all 4; hence, u;(O;) < e.

For each 4, let f; be a continuous function so that 1o, < f; < 1,+. Since §
is fixed and the multiplicity of { B; ;} is bounded by a constant deplending on
X, the number of balls {B; ;} is uniformly bounded (independent of 7). Thus
we may choose such f; so that furthermore F = {f; : i > 1} is precompact.

It suffices to show that vol(f;) < 2¢ for all large enough 4. Indeed if this
is established, then vol(Q;) < 2e which implies the result as X \ N5 C O;.

Assume contrary to the claim that there is a subsequence i,, — 00 so
that vol(f;,) > 2e¢. Passing to a subsequence, we assume {f; } converges
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uniformly to f for some continuous function f. Thus

[vol(fi,) — i, (fin)| < [vol(fi,) — vol(f)]
+ [vol(f) — pa, (F)| + |12 (f) — 12, (fi)]

Note that w;(f;) < ui(O)f) < e. Therefore, if n is large enough, Theo-
rem fi,, — f, and the above imply that vol(f;, ) < 2. This contradiction
finishes the proof. O

5.3. Maximal inequalities. Let Y = Hx C X be a closed H-orbit and let
1 be the probability H-invariant measure on Y. For any 7 > 0, define an
averaging operator A, on the space of Borel functions on Y by

1 27
Aro(y) = /0 o(arrgy)do.

T or
Let R = [0,27]% be equipped with dv := (%)‘82.
Let 7> 0 and defineny : R xY — R xY by

1y ((6n),y) = (n(0n), arre, y)

where 1 : R — R is the shift map n((6,)) = ((6n+1))-

Then the measure v X u is ny-invariant and ergodic. We refer the reader
to [2, Ch. 2], see in particular, [2, Prop. 2.9, 2.14, 2.23, and §2.6].

For any f € LY(Y, 1), we have 1® f € LY(RxY, v x u1). Therefore, in view
of the maximal inequality for 7y, there exists an absolute constant D > 0
so that the following holds. Let f € L(Y, u); for any ¢ > 0 we have

(5.1) wvx u{(@,y) ERXY: sup%Zl@f(né(gjy)) > c} < DHCfH1
"=t

We also need a maximal inequality similar to and more general than
Kolmogorov’s inequality in the context of the law of large numbers —see
also [3, §3] and [2, Ch. 3].

Consider the space W = YN and let wy be the Markov measure associated
to A; and y. That is: for bounded Borel function ¢y, ..., ¢, on Y we have

/ 61(11) - (1) Ay (1) = (1A, (- (1 Ar(Dm)) -+ ))(¥)

where w = (- -+ ,w_1,wy, wa,...).
The main case of interest to us is the trajectories obtained using the
operator A,. That is: trajectories of the form

(5.2) ((wj)jez) = ((w))j<o, (arre, - - arre,wo)j>1)

for a random (0;) € R. Let z € Y we let W, be the space of all paths as
in (5.2) with wg = z. In this case, the measure w, is obtained by pushing
forward v to W,.
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Fix some z € Y. Let p : ' — PGLy(l) be a representation as in
Lemma For every n > 1 define u,, ., : R — PGLa([) by

(5.3) Uz n((65)) = u(r,ro, wn—1) - - - (T, o, w1 )u(T, 79, 2);

where w1 = a;7g,z and for all j > 1 we have w; = a,;re,w;1, see (5.2).
Fix some z € Y. For all (;) € R and all n > 1, define ¢g,, : Y — R by

(54) ¢9,n(y) = dT(O.’U,(T, y)uz,nfl((ej)% O) - dT(O-uz,nfl((aj))a O)-
In view of (4.7)), there is some L = L(p, ), but independent of Y, so that
(5.5) |pon| < L for all  and n.

Put on((6;)) == don(re, wn-1) — 5 f027r G0, (rown—1) do.

5.4. Lemma. For every ¢ > 0 and § > 0, there exists some N1 = Ni(c,0, L)
with the following property. Let z € Y and define @y as above. Then

o(10= ;) € Rs mas | S0y nl6)] > }) <0

Proof. This lemma is proved using the following maximal inequality which
follows, e.g. by combining [25, p. 386] with [13, Thm 1.1], see also [23], §].

Let (2, B, B) be a standard probability space and let {(,} be a sequence of
bounded Borel functions on Q so that Eg((n|Cr—1,-..,C1) = 0 for every n.
Then for every N > Ny > 1 and every ¢ > 0 we have

(5:6) S{weRs max SIS G > o) <
l(zg M fné" + Nz PO f@%)

2
Returning to our setup, we now observe that

EV(QOn’SOn—la cee 901) =E, (EV(¢n|9n—la ce 791)|§0n—17 S 901)-

Moreover, we have E,(op|0p—1,...,01) = 0. Hence

E (Son|§0n—1a 1) =0.

Therefore, we may apply (5.6) with the space (R B®Z v) and the se-
quence {cpn} of functions. Slnce 2 < 212 see (B5), and > 5 is a
convergent series, the lemma follows. ([

5.5. Conclusion of the proof of Lemma Let 0 < ¢ < 1/2 with

< 0.01\, see ([1.7)), and let 7 = Ny + 1 where N is as in Lemma [1.4]
Let 6 > 0 be small enough so that for any ¢g,¢ € G with ¢ = hg’ and

|h —I|| <0, we have

(5.7) dist(aerag, arreg’) < ao/2

for all 6 € [0,27] and all 0 < ¢ < 27, see (4.6)).
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Let N denote the §-neighborhood of F(7,ap) in X. In view of (5.7) and
Lemma [4.5(2) we have the following. Let £ = {&} C T with § = o be a
geodesic. Then

1 2
o
for all x € N. Let us write Ay := A\ /5.
By Theorem there exists some i so that for all i > iy we have
e, N NY;) > 1 — 2%,
Fix some ¢ > ig and let Y =Y; and p = ppy,.

By Fubini’s theorem, there exists a compact subset Y/ ¢ N NY with

w(Y’) > 1 — &3 so that for all y € Y’, we have
O €[0,2n] :rgy e NNY}H >1—e.

Apply the maximal inequality in (5.1) with Y, f = 1y\y~, and 7 as above.
In consequence, there exists an absolute constant D > 0 so that

(5.8) dr(o.u(r,rex), &) d0 >t + 7A1/5

(5.9) v X ,u{(@,y) ERXY: sup%z L@ f(n'(0,y)) > 5} < D&%
"=t

Therefore, if € is small enough, Fubini’s theorem implies the following: there
exists some Z' CY with pu(Z") > 1 — 2¢ so that for every z € Z' we have

1 ¢ ¢
. : — > <
(5.10) 1/({9 €ER sup — ;1 1® f(ny(0,2)) > 5}> <e
Let 6 be in the complement of the set on the left side of ((5.10) and

= (6)
let (w;) € W, be the path obtain from this 6, see (5.2). Then
1
5.11 — 1y >1—e.
(5.11) LS b 21—

Put I,(0) .= {1 <l <n:wpeY'}and I/(0) := {1 < ¢ <n}\I,(0).
Then, by (5.11)), we have
(5.12) #I1,(0) > (1 —¢e)n.

Apply now Lemma with this z € Z’ and with ¢ = 0.1)\; and § = e.
Let Ni be as in Lemma [5.4] for these choices. Then

(5.13) ({e €R: max - |2g ()] > o.ug}) <e

Let R, C R be the comphment of the union of sets appearing on the left
sides of (5.10) and (5.13). Let # € R, and write I, and I, for I,,(f) and
I’ (9), respectively. Let ¢ € I,,. Then

/
Wy = Qrrg, | - Arrg 2 €Y,

and by the definition of Y, rgw, € Y NN for some 3 € [0, 27].
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Apply (5.8) with g = rgw, and the geodesic segment {&} C T connecting
o to q := o.ug((6;,w;)), see (5.3). Let us put ¢t = dy(q,0) and parametrize
so that & = o. In consequence, we have the following;:
21

1
(5.14) t+ X7 < % d7(o.u(r, rorgwe)ue((0;,w;)), &) do
1 27T
=5 d7(0.u(r, rorgwe)ue((6;,w;)), o) dé.
Moreover, by ([5.4) we have

1 2

Py ¢0,0+1(rowe) dO =
™ Jo

1 2w
L7 dr(outr,rowe)ul(8,.1)).0) — dr(g.0) 6.

Recall that dy(g,0) = t, therefore, using the above and (5.14]) we get that
1 2
27 Jo
Recall further from ) that dr(u(r,g),e) for all g € F; thus, we
may use the triangle inequality and get also the trivial estimate

(5.15) b9.041(rowe) dO > Ao if £ € T,

27
‘ o bo,041(rowy) d9‘
1 2T
S % ‘dT(O.u(T, T@TU[)U@((HJ’, wj)) ) dT q,0 } dﬂ
0
(5.16) Sy

forall 0 </ <n-—1.
In view of ([5.15) and (5.16), for every n € N we have

n 2w
Z % /0 ¢w,€(T6w€—1) dé > (#In)AQT - (’I’L - #In
(=1

G2~ > (1 —e)Xon — dLifrn
(517) e<0.1 & @<0.1>\2w 2 )\27'77,/2

Let now n > Nj. Therefore, since ((0;,w;)) € R., we conclude from ({5.13))
that

(5.18) %(Z W(e)‘ < 0.10.
/=1

Recall again from ([5.4) the definition of ¢g (79, wn—1), also recall that ¢,, =
Po.n — L 2” ®9.n- We thus obtain

2T
Zw = d7(0-uzn(f Z / Po,0(rowe—1) df



26 G. MARGULIS AND A. MOHAMMADI

This, together with and , implies that for all n > N; we have
(5.19) d7(0.uzn(0),0) > (7/2 = 1/10)Aon > Xotn/3 = A\i7n/15.
To get Lemma from it remains to note that trajectories
{oms.arre, - --arrg 9. : (0;) € R}

give rise to the rotation invariant distribution on the boundary circle corre-
sponding to Hg., recall that g, € F. Moreover, for v-a.e. 6 = (;) € R
there exists a unique geodesic {&p;} with & o = g¢. so that the trajec-
tory ogs.ar7g, - - - ar7g, g> is at a sublinear distance from {&p .}, see e.g. [24]
Thm. 2.1]. Indeed even a central limit theorem holds for these trajecto-
ries [16, (5], 22| [4]. O

6. PROOF OF PROPOSITION [3.1]

In this section we complete the proof of Proposition the proof uses
Lemma, We begin with some preliminary statements.

Let the notation be as in Proposition 3.1} In particular, recall that for any
g € PGLy(l,), €, denotes the graph of the linear fractional transformation

g : Pl, — PIl,.

We use the projective coordinates for Pl,, in these coordinates we have:
P, = {[r,s] : r,s € [,} and

¢, = {([’I“, s], [ar + bs, cr +ds])}
b
ik
Let a, 8 € 1, and define
Crs(a, 8) = {([a, 1], [s, 1]) € PL, x P, } U {([r, 1], [5,1]) € P, x PL,}.

We refer to Crs(c, 3) as crosses.

where g =

6.1. Lemma. Let {g;} be a squence of elements in PGLa(l,). Then at least
one of the following holds.

(1) There exists a subsequence {gi,,} and some g € PGLy(l,) so that
&y, — &y, or

(2) there exists a subsequence {g;,,} so that {€,, } converges to a cross
or a union of a line and a point.

Proof. If there exists a subsequence {g;, } and some g € PGLy(l,) so that
Gi, — g, then &g, — &, That is: part (1) holds.

Therefore, we may assume that g; — oo and will show that part (2) holds
in this case. Passing to a subsequence we may assume all g;’s are in one
PSLy(I,,) coset, hence we assume det(g;) = k for all .

Recall that Pl, = {[r,s] : r,s € [}, and

¢y, = {([7’, s, [a;r + bis, cir + dis])}
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a; b
¢ d;

First let us assume that for all but finally many g¢;’s we have ¢; # 0.
Omitting these finitely many terms, we assume ¢; # 0. Using the non-
homogeneous coordinates, we have

Q:gi = {([Tv 1]7 [%71]) : _di/Ci 7& re [v} U
{([1,0], [ai/ci, 1)} U{([=di/ci, 1], [1,0)}

Alternatively, except for two points, the graph €, is given by the equation
(6.1) (s—ai/ci)(r—i—di/ci) = —k/CZ2

—recall that det(g;) = k. The missing two points can be obtained by taking
limit as » — oo or s — oo.

Now if the sequence {c¢;} is bounded away from oo and 0, then since
gi — 0o we get from that €, converges to {([1,0],[—d;/ci,1])} or
{(Jai/ci, 1],[1,0])}. Therefore, we may assume that passing to a subsequence
either ¢; — 0 or ¢; — oco. In either case we get the conclusion in part (2).

It remains to consider the case where c¢;,, = 0 along a subsequence. In
this case, {€,, } converges to the union of a line and a point. O

where g; =

For j =1,2, let
p;: PGL2 X PGL2 — PGL2

be the projection onto the j-th component; put o; =p;joo : I' = PGLy(L,).
For j = 1,2, let u; denote the cocycle corresponding to o, see

If o(I') C “G(L,) is unbounded, then either o1 (I") or o2(I") is unbounded.
Using Lemma we can show that indeed both these projections are un-
bounded.

6.2. Lemma. Let M = H3/T be a closed hyperbolic 3-manifold which con-
tains infinitely many totally geodesic surfaces, {S; : i € N}. For every i,
let gi € F (F is our fized fundamental domain for T in G) be so that S;
corresponds to Hg;I', see @ For every i, let A; = g;ngi Nnr.

Suppose o;(I') is unbounded for some j = 1,2. Then both o1(A;) and
o2(A;) are unbounded for all large enough i. In particular, both o1(I") and
o9(I") are unbounded.

Proof. For every i, let “H; denote the Zariski closure of o(A;). Let j be
so that ¢;(I') is unbounded. Then it follows from Lemma that o;(A;)
is unbounded for all large enough 4. Indeed by loc. cit. there exists N and
7 so that for all large enough ¢ we have the following. There is a subset
Z; C Hg;I' with NHgiI‘(Zi) > 1/2 such that

(6.2) d7(o.uj(nt,2),0) > AN

forall z € Z;,alln > N, and j =1,2. Let z € Z;. Since Hg;I' is closed and
anrz € HgI for all n, there is a sequence k — oo so that u;(ng7, 2) = (k)
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where 8, € A; is so that a,, .9, € Fd; and g, € F is the lift of z, see
This and imply that o;(A;) is unbounded for j = 1,2.

Therefore, by Lemma we have: for all large enough i, there exists
some g,; € PGLa(l,) so that

“H;(L) N {(h, g, hgvi) : b € PGLy(1,)}

is a subgroup of index at most 8 in “H;(1,).
The claims hold for all such . ]

6.3. The definition of W. Recall that M = H3/T is a closed hyperbolic
3-manifold containing infinitely many totally geodesic surfaces, {S; : i € N}.
For each i € N, we let A; C I be defined as in Lemma Let °H,; C
PGLy x PGLy denote the Zariski closure of o(A;) for every i.
Let ¢ be large enough so that Lemma [6.2 holds true. In particular, there
exists some g, ; € PGLa([,) so that

{(h, gy 1hgus) : h € PSLy(L)}

has index at most 8 in “H;([,).
Let € = &, , C Pl, x Pl, denote the graph of g,; : Pl, — Pl,. Then
“H;(l,) is the stabilizer of €; in PGLy(l,) x PGLy(l,).
Recall that each S; gives rise to a periodic H-orbits, Hx; = Hg;,I'. For
every 1, the orbit Hx; corresponds to a closed I'-orbit
C;, = {Czl“} cC.

Identify X with F', then Hzx; is identified with a subset Y; C F’; note that
Y, has only finitely many connected components. For every y € Hx; we let
gy € F' be the point corresponding to y. The orbit Hg, gives rise to a plane
P, in H? and a circle
(6.3) Cy = 0P, = Cyy, € C; for some y € T.

By Lemma o;(I') is unbounded for j = 1,2. For j = 1,2, let u;
be the cocycle and ¢, the equivariant map constructed in using the
representation o;. Define

(6.4) = (Y1, ¢2).

We will show that U satisfies the claims in Proposition [3.1

6.4. Lemma. Let € > 0. There exist

o natural numbers N = N(¢) and 7 = 7(¢),
e for every i > N, a subset Z] C Hx; with ppy,(Z)) > 1 —¢, and
o for every z € Z!, a subset R, C [0, 27| with |R,| > 2(1 —¢)m
so that the following hold.
(1) For every z € Z!, 0 € R,, n > Ny, and j = 1,2 we have

(6.5) dr(o.uj(nt,rez),0) > AgTn.
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(2) For every z € Z! and 0 € R, put
Bg..0 = 1i7¥bn ansr9g: € C, = Cyy,
where g, C,, and v, are as in (6.3)). Then
(6.6) U(By.0) € Cio(72) = &y, ,0(7z)-
Proof. By Lemma 0;j(I") is unbounded for j = 1,2. Let
io = io(e?/2), T = 7(¢?/2), and N = N(?/2)

be so that the conclusion of Lemma holds with £2/2 and both o and
09. Moreover, assume that Lemma holds true for all i > 7.

Let Z; C Y; be a subset with pp,.(Z;) > 1 — &2 so that the conclusion of
Lemma [5.1] holds for all z € Z; and for both o1 and os.

For every z € Z;, let

R, ={0€0,2n] : r9z € Z;}.
By Fubini’s theorem there is a subset Z; C Z; with ppe,(Z)) > 1 —¢ so that
for all z € Z! we have |R,| > 2(1 — ).

We will show that the lemma holds with this N, Z!, and R,. Let z € Z/.
Then by Lemma [5.1] we have

(6.7) dr(o.uj(nt,r92),0) > Ao, O € R;,n>N,and j=1,2.
This establishes the part (1).

Let # € R,. Then by (6.5) and Lemma [2.4] we have the following. There
exists a unique geodesic {&; : t € R} C T with & = o so that

(6.8) ouj(nt,rgz) = € € 0T .

Note also that a;rg € H for all t and 6. Therefore, {py, (anrr09:) : 1 €
Z} C P, where pg, : Hg, — P, is the projection map. Moreover, since Hg,I"
is closed, we get the following:

(6.9) o.u;(n,T,r92) € T' for a sequence n,, — oo

where T is the subtree corresponding to o () *H;o (7).
Since by we have 0.u;(nm,T,792) — €, the definition of W, (6.4)),

and imply that ¥(5,, 9) € 0T = €;0(72).
This finishes the proof of part (2) and the lemma. O

Recall that for a circle C' we denote the length measure on C' by mg. The
following is a crucial step in the proof Proposition [3.1

6.5. Lemma. For every ¢ > 0, there exists a subset E. C F with

~

volx (F;) > 1—4e

and for every g € F. a subset CA’g,E C Cy with mg, (C’g,s) > (1 —2¢e)m¢,(Cy)
so that one of the the following holds.

(1) There exists some hy € PGLa(l,) so that U(Cy.) C &, or

~

(2) W(Cye) is contained in a cross or the union of a line and a point.
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Proof. Fix some ¢ > 0. Let ig, N, 7, Z/, and R, be as in Lemma applied
with this e.

Let F. and Ny be as in Lemma Fix a geodesic {¢;} emanating from
o for the rest of the proof. Let R, C [0,27] be the set where Lemma
holds for {&}, g, u1, and up. In particular, |Rg| > 2(1 —¢)7r and for j = 1,2
we have

(6.10) dr(o.uj(n,reg),0) > Ain/3 for all § € Ry, n > Np.

For any g € F;, let P, be the plane corresponding to Hg; put Cy = 0F,.
For any 0 € Ry, define

Bgo = qurlnpg(amrgg) € Cy.

where p, : Hg — Py is the natural projection. Then W(f5,4) € ¥(Cy).
Given i and § > 0, let N5 be the d-neighborhood of Z/. By Corol-
lary there exists some 77 (d) so that volx (N 5) > 1—3e for all i > i1(0).

Claim. For everyn > 0, there exists some 6 > 0 so that the following holds.
Let i > i, := max{io,11(0)} and let g € F. N N; 5. Then there exists some
Cy.n C Cq with

m¢, (Cy,,) > (1 —3g)me, (Cy)
so that W(Cy ) lies in the n-neighborhood of &, for some h € PGLa(ly).

Let us first assume the claim and finish the proof of the lemma. For every
m € N, let n,, = 1/m and let ¢, and i,, be given by applying the claim

with n,,. Set
FE =F.N (ﬂ U Mm,ém)§

>1m>/4

note that voly (F;) > 1 — 4e.

Let g € E. and let Cy be the corresponding circle. Then there exists a
subsequence {my} so that g € Mmkv5mk' In view of the claim, for every k,
there exists some C} ,, C Cy and some hy, € PGLy(l,) with m¢, (C .. ) >

g.mi g.mi
(1 —2¢)m¢, (Cy) so that
(6.11) (G, lies in the 1/my-neighborhood of €, .

Apply Lemma with the sequence {€}, : k € N}. Then there exists a
subsequence {k;} so that one of the following holds.
(1) lim; €, = &, for some h € PGLy(l,), or
(2) lim; €y, is contained in a cross or the union of a line and a point.

Let
~ o ,
Cg,e T ﬂ U Cgkivmki’
>1i>4

then mo(Cye) > (1 — 2e)m(C,). Moreover, for every 8 € Cy. we have
¥(B) € lim; €, . The lemma follows. O
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Proof of the claim. Let g € F.. Recall that we fixed a geodesic {&} ema-
nating from o, and let Ry, C [0,27] be the set where Lemma holds for
{&}, g, w1, and uy. For g € F; and § € Ry, define

u(nt,rog) = (u1(n7,7r99), u2(n7,7199)).

For any z € Z/, let R, be as in Lemma Similarly, for all i > 1o,
z € Z[,and 0 € R, define

u(nr,reg,) = ('LLI(TLT, rogz), u2(nT, ngz)).

Thanks to , , and Lemma, there exists some n,, so that for
all n > n, we have (o1, 02).u(nt,r9g.) and (01, 02).u(n7,79g) approximate
U(By..0) and ¥(S3y9), respectively, within n/4.

Let n = n, and let § > 0 be so that if d(hi,he) < ¢ for hy,hy € G,
then d(ap-hi,anrhe) < n/4 where d denotes the right invariant Riemannian
metric on G.

Apply Corollary with the sets N 5 and let 1(d) be as in that Corol-
lary. Let ¢ > max{ip,?1(6)} and let g € F. N N; 5. Then there exists some
g: € Z! so that d(g,g.) < 0.

The claim thus holds with Cf , = {8, : 0 € R. N Ry}. O

Proof of Proposition[3.1. First note that in view of Lemma U satisfies
part (1) in the proposition —recall that PGLy x PGLy acts transitively on
Pt, x PL,,

We now show that U also satisfies part (2) in the proposition. We claim
that there exists a full measure subset F' C F, and for every g € F a full
measure subset C'g C Cy so that one of the following holds.

~

(1) There exists some h, € PGLa(l,) so that ¥(Cy) C &, or
(2) ¥(C,) is contained in a cross or the union of a line and a point.

Apply Lemma m with e = 1/m for all m € N. Let F, = Fl/m and for

every g € E,, let Cmg = C’l /m,g denote the sets obtained by that lemma.
Define

Then F' is conull in F.

Moreover, for every g € F there exists a subsequence my, so that g € ka
for all k. Let Cy = Ny Upse Cmpg- Then C, C Cy is conull in C,.
Moreover, C, satisfies (1) or (2) in the claim —recall that the same property
holds for CA’mbg by Lemma

We now show that (1) above holds almost surely. To see this, set £ :=
{€, : h € PGLa(l,)} and L5 := {union of a line and a point or crosses}.
Note that both £, and L9 are I'-invariant. Moreover, V¥ is I'-equivariant and
I" acts ergodically on C. Therefore, either the essential image of ¥|x belongs
to L1 a.e. C € C or the essential image of ¥|o belongs to £y a.e. C € C.
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Let & # ¢ € S? be so that (¢) = ([r,1], [s, 1]) and ¥(&') = ([, 1], 5", 1])
with 7 # v’ and s # s’ —in view of Lemma we may find such points.
Then there are exactly two crosses passing through both of ¥ (&) and ¥(¢');
similarly for union of a line and a point. However, the set of circles in S?
passing through {, &'} covers the entire S2. Therefore, the essential image
of ¥|c belongs to Ly a.e. C' € C would contradict Lemma

In consequence, we have: for a.e. g € F there exists some hg € PGLy(L,)

~

so that U(Cy) C &, Since V¥ is I-equivariant, this concludes the proof of
the proposition. O
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